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The brain enables animals to behaviorally adapt in order to survive in a complex and

dynamic environment, but how reward-oriented behaviors are achieved and computed

by its underlying neural circuitry is an open question. To address this concern, we have

developed a spiking model of the basal ganglia (BG) that learns to dis-inhibit the action

leading to a reward despite ongoing changes in the reward schedule. The architecture of

the network features the two pathways commonly described in BG, the direct (denoted

D1) and the indirect (denoted D2) pathway, as well as a loop involving striatum and

the dopaminergic system. The activity of these dopaminergic neurons conveys the

reward prediction error (RPE), which determines the magnitude of synaptic plasticity

within the different pathways. All plastic connections implement a versatile four-factor

learning rule derived from Bayesian inference that depends upon pre- and post-synaptic

activity, receptor type, and dopamine level. Synaptic weight updates occur in the D1

or D2 pathways depending on the sign of the RPE, and an efference copy informs

upstream nuclei about the action selected. We demonstrate successful performance of

the system in a multiple-choice learning task with a transiently changing reward schedule.

We simulate lesioning of the various pathways and show that a condition without the D2

pathway fares worse than one without D1. Additionally, we simulate the degeneration

observed in Parkinson’s disease (PD) by decreasing the number of dopaminergic neurons

during learning. The results suggest that the D1 pathway impairment in PD might have

been overlooked. Furthermore, an analysis of the alterations in the synaptic weights

shows that using the absolute reward value instead of the RPE leads to a larger change

in D1.
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INTRODUCTION

The BG have a parallel pathway structure suitable for conveying
action commands, with both action promotion and suppression
built in (DeLong, 1990; Graybiel, 1995, 2005; Houk et al., 1995;
Mink, 1996; Redgrave et al., 1999). Originating with the medium
spiny neurons (MSNs) of the striatum, two main pathways are
distinguished by their expressed dopamine receptor type (i.e.,
D1 or D2). D1 and D2 receptors are mostly mutually exclusive
and distributed equally throughout striatum (Gerfen, 1992).
Specific stimulations of D1 or D2 pathways lead to an increase
or decrease in motor response, respectively (Kravitz et al., 2010,
2012; Tai et al., 2012). Both types of MSNs receive similar
afferent glutamatergic input from cortex, thalamus and the limbic
system (McGeorge and Faull, 1989; Parent, 1990; Doig et al.,
2010) and both pathways converge onto the output structures
of the BG, the internal globus pallidus (GPi), and the substantia
nigra pars reticula (SNr). It has been suggested that cortical,
thalamic and limbic inputs inform BG about the current state
of the environment. Furthermore, the striatum has been shown
to encode action values and to serve as the interface between
these inputs and the rest of the BG (Samejima et al., 2005).
Neurons in the striatum also get diffuse dopaminergic inputs
from the ventral tegmental area (VTA) and substantia nigra
pars compacta (SNc; Parent, 1990). Phasic and tonic dopamine
release is believed to be critical for synaptic plasticity, triggering
bi-directional changes of the connections onto the two different
types of MSNs in the striatum (Reynolds and Wickens, 2000;
Surmeier et al., 2007; Berretta et al., 2008; Shen et al., 2008). This
dopaminergic signal is commonly accepted as coding for the RPE,
which is the difference between the expected and the actually
received reward and resembles the temporal difference (TD)
error in reinforcement learning algorithms (Berns et al., 2001;
Suri and Schultz, 2001; Suri, 2002; Glimcher, 2011). Degeneration
of dopaminergic neurons has been observed in patients with PD
(Obeso et al., 2000) and is believed to cause impairmentmainly in
the indirect pathway (Kreitzer and Malenka, 2007; Kravitz et al.,
2010).

It is commonly considered that the system should increase

the weight to the relevant D1 population if an action led to an

unexpected excess of reward, and to the D2 population if reward
was less than expected. Meanwhile, the reward prediction (RP)
system should also learn the value of the reward delivered. In
the TD learning framework, a reinforcement only contributes
to learning if it is not predictable (Sutton and Barto, 1998).
Computational models based on the Actor-Critic framework and
using TD learning have tried to reproduce the functional and
architectural features of BG (for reviews: Gillies and Arbuthnott,
2000; Joel et al., 2002; Doya, 2007; Cohen and Frank, 2009;
Samson et al., 2010; Schroll and Hamker, 2013). Additionally,
most of the computational models of the BG have either focused
on biological plausibility (Lindahl et al., 2013; Gurney et al., 2015)
or functional reproduction of the behavior during learning or
action selection (Limousin et al., 1995; Gurney et al., 2001; Frank,
2006; O’Reilly and Frank, 2006; Ito and Doya, 2009; Potjans et al.,
2009; Stocco et al., 2010; Jitsev et al., 2012; Stewart et al., 2012;
Collins and Frank, 2014). As a result, there has been limited focus

directed toward implementing functional spike-based models,
specifically those that can also simulate dopamine depletion (but
see Potjans et al., 2011).

The central nervous system has been shown to be able to
perform inference (Körding and Wolpert, 2004), and Bayesian
probabilities can be represented by artificial neural networks
and spiking neurons (Doya et al., 2007; Buesing et al., 2011;
Boerlin et al., 2013). If the brain is representing information
in a probabilistic manner, it is plausible that this is reflected
on the level of neurons and synapses (Deneve, 2008; Tully
et al., 2014). We have extended our previous computational
model of BG based on a Bayesian Confidence Propagation
Neural Network (BCPNN) learning rule derived from Bayesian
inference (Berthet et al., 2012) with spiking neurons such
that the plasticity probabilistically depends on the activity of
neural populations, mimicking the RPE supposedly conveyed by
dopaminergic neurons. This step enabled both the comparison
with our previous more abstract implementation, as the general
architecture was preserved, and also offered more biologically
relevant predictions and analogy as the general architecture
of the BG was better represented. The versatile framework of
BCPNN has been implemented in the context of associative and
working memory, memory consolidation, pattern completion
and recognition, olfactory modeling, and data mining (Bate et al.,
1998; Sandberg et al., 2000; Sandberg, 2003; Lundqvist et al., 2011;
Meli and Lansner, 2013; Fiebig and Lansner, 2014; Kaplan and
Lansner, 2014).

We evaluate the performance of the model in action selection
and reinforcement learning tasks. The ambition here was to
investigate how our previous top-down approach, enhanced with
some more neurological details such as spiking neurons and
volume transmission of dopamine, could offer insights, and
predictions that could be biologically tested. We demonstrate
that performance of the spiking model is similar to that of our
previous abstractmodel.We further assess the impact of reducing
dopaminergic neuron number during the simulation, mimicking
PD, and exposing the roles of the D1 and D2 MSNs for the
degraded performance.

MODEL AND METHODS

Extending a previous abstract model of the BG (Berthet et al.,
2012), we implemented a spiking neuron model incorporating
plasticity governed by spike-based BCPNN learning (Tully et al.,
2014) that was globally modulated through volume transmission
of dopamine (Potjans et al., 2010). Grounded in the hypothesis
that the brain builds a model of the world by computing
probabilities of occurrences and co-occurrences of events,
BCPNN assumes synaptic weights and neuronal excitabilities are
the substrate for storing these probabilities. It should be noted
that not all components of the BG are included in themodel as we
instead abstracted them to their general functionalities (Delong
et al., 1984; Mink, 1996; Bar-Gad et al., 2003; Romanelli et al.,
2005; Sesack and Grace, 2010; Stephenson-Jones et al., 2013).

Our model was implemented in PyNEST (Gewaltig and
Diesmann, 2007; Eppler et al., 2008) and simulations ran on a
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CRAY XC30 system. A simulation of the 725 neuron, 70,000
synapse network for 15 min biological time took around 120 min
when executed on 20 cores. Details of the parameters and their
values, as well as the source code, are provided as Supporting
Information (Tables S1, S2).

Competition between the D1 and D2
Pathway for the Selection
In the input layer of our network, different populations were
assumed to code for the various states. These states conveyed
contextual information about the environment and represented
the cortical, thalamic and limbic inputs, referred to as “cortical”
in the following, to the BG. In biology, the functional topology
of BG implies that polysynaptic projections from D1 and D2
MSNs in the striatum code for the same action, and therefore
inhibit or excite a population of neurons coding for that same
action in GPi/SNr (Alexander et al., 1986; Nambu, 2008; Freeze
et al., 2013). Thus, in our model, specific populations of neurons
in the D1 and D2 pathways represented the different actions.
We used a model with three states and three actions for all the
simulations presented in this work. As reported in biology, MSNs
in the striatum layer belong either to matrisomes or to striosomes
(Gerfen, 1989; Johnston et al., 1990; Nakamura et al., 2009).
Both types of MSNs receive similar afferent glutamatergic input
from cortex, thalamus and the limbic system (McGeorge and
Faull, 1989; Parent, 1990; Doig et al., 2010), and topographically
organized projections from cortex and thalamus target both the
matrix and striosomal compartments of the striatum (Joyce et al.,
1986; Graybiel et al., 1987; Gerfen, 1992; Crittenden andGraybiel,
2011). It has also been shown that matrisomes are preferentially
targeted by sensori-motor related neurons, whereas striosomes
receive inputs mostly from the limbic system, orbito-frontal and
pre-frontal cortex (Eblen and Graybiel, 1995; Graybiel, 2008;
Crittenden and Graybiel, 2011). In our model, we interpreted the
striosome/matrisome organization in the striatum as carrying a
functional representation, similarly to its suggested actor-critic
apparatus implementation (Houk et al., 1995). The MSNs in the
matrisomes received connections from all neurons in the state
coding input layer and these connections are modified using a
dopamine dependent BCPNN plasticity rule. A matrisome was
defined as a specific compartment of the matrix and coded for a
specific action, whereas striosomes were instrumental to compute
the expected reward for the state-action pairings. As suggested in
our previous work (Berthet and Lansner, 2014), it was not only
the neuronal activity of these populations but also the synaptic
weights of their connections that coded for their relative values,
i.e., action or state-action pairings.

Furthermore, in our model, each action was coded twice in the
matrix, once for each of the D1 and D2 pathways. These D1 and
D2MSNs differed in the sign of the connections they sent to their
respective action coding sub-population in the following layer,
representing theGPi/SNr output layer of the BG. D1 neurons sent
inhibitory projections andD2 neurons sent excitatory projections
to the same specific action coding population in the subsequent
layer. In the text we refer to inhibition and promotion of an
action as D2 and D1, respectively. Therefore, we emphasize the

perspective taken from the overall effect of activity on action
selection in these pathways. Additionally, each action coding
matrisomal population sent inhibitory connections to the other
action coding populations sharing the same dopamine receptor
type, i.e., D1 to other D1 and D2 to other D2 (Kemp and Powell,
1971; Taverna et al., 2008; Tepper et al., 2010; Szydlowski et al.,
2013).

The motor circuit within the striato-pallidal system receives
a continuous delayed read-out of cortical motor activity and
issues an output directed through the thalamus mainly to pre-
motor cortical regions (Marsden and Obeso, 1994; Kimura et al.,
2004; McHaffie et al., 2005). A topographical organization has
furthermore been reported on the thalamo-striatal connections
(Mengual et al., 1999). It has thus been hypothesized that
these feedback loops represent an efference copy that informs
upstream populations, which otherwise would only get inputs
about the state of the environment, of the eventually selected
action (Redgrave and Gurney, 2006; Schroll and Hamker, 2013;
Fee, 2014; Lisman, 2014). Based on this, the role of the efference
copy in our model was to ensure that the current state-coding
neurons fired simultaneously with the neurons coding for the
selected action in the striatum, as suggested by Fee (2014) and
Lisman (2014).

Neurons in GPi/SNr were driven to a baseline activity of
around 35 Hz in the absence of matrisomal input. This is within
the range of experimental data on GPi (Delong et al., 1984), but
data for SNr suggest a broader dispersion (Gernert et al., 2004;
Atherton and Bevan, 2005; Freeze et al., 2013).

Reward Prediction by the Striosomes
Striosomes are widely distributed within the striatum. It has
been reported that striosomes are specifically avoided by sensori-
motor projections (Flaherty and Graybiell, 1993). They are also
thought to be the only striatal neurons to project directly to
the dopaminergic neurons in SNc (Lévesque and Parent, 2005).
Thus, it has been suggested that they could convey reward
predictions in a similar fashion as matrisomes code action values
(Houk et al., 1995; Amemori et al., 2011; Morita et al., 2012;
Stephenson-Jones et al., 2013). Even though synaptic plasticity
has been reported at synapses on to dopaminergic neurons in
VTA, there is not enough data, to our knowledge, to specify
the properties of this plasticity (Bonci and Malenka, 1999;
Jones et al., 2000; Lüscher and Malenka, 2011). In our model,
we assumed that development and previous experience had
segregated sub-populations into coding for exclusive state-action
combinations. This suggests a representation of the different
state-action pairings instead of distinct states and actions. The
striosomal MSNs received connections from the state layer as
well as the efference copy in such a way that only one specific
state-action coding sub-population would get activated, more
specifically the one receiving inputs from the currently active
state and selected action (cf. Discussion for a comment on this
particular setup). One aim of ourmodel is thus to test the possible
role of synaptic plasticity in the RP pathway from striosomes
to dopaminergic neurons. Additionally, we artificially inserted
a connection delay from the efference copy poisson generator
to the striosome equal to the fixed duration of the efference
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copy phase in order to induce the activation of the relevant
striosomal sub-population concomitantly with the delivery of
the reward, and therefore the change of the external incoming
activation given to the dopaminergic neurons. Hard coding the
delay between the selection of the action and the reward delivery
obviously did not allow for variable delays and was therefore less
flexible than in biology. But we acknowledge that relaxing the
constraint of delivering the reward at a fixed time would require
a more complex temporal processing in the model, which lies
outside the scope of this work, but could involve eligibility traces
or spectral timing in the striosomes (Brown et al., 1999; Cardinal,
2006; Daw et al., 2006; Jin et al., 2009; Rivest et al., 2010; Morita
et al., 2012; Gershman et al., 2014; Ruan et al., 2014).

RPE Modulates Plasticity
It has been experimentally shown that dopaminergic neurons
in SNc and VTA innervate both the striosome and matrix
compartments (Gerfen et al., 1987; Joel and Weiner, 2000;
Matsuda et al., 2009; Ilango et al., 2014) and that the release
of dopamine serves as a non-specific reward signal that affects
both compartments (Matsuda et al., 2009; Threlfell and Cragg,
2011). The extracellular dopamine concentration seems to be
critical for modulating plasticity (Pawlak and Kerr, 2008; Pawlak
et al., 2010), and its phasic levels are believed to code for
the RPE (Schultz et al., 1997; Hollerman and Schultz, 1998;
Bayer and Glimcher, 2005). Therefore, the dopamine feedback
in our model was unspecific, i.e., it conveyed a global signal,
representing the RPE and regulating the dopamine dependent
synapses. However, in the RP pathway, specific reward value
predictions were made for each state-action pairing (one for each
state-action combination).

It should be noted that this model differs from TD algorithms
as it does not bootstrap the estimated values of the next states
or actions in order to use them in the update of the current
value, but instead depends on the actual reward and its future
reward-independent predicted value.

Reward Mapping
The reward mapping during simulated trials was consistent
within the same block of 40 trials. A reward was delivered, i.e.,
the external excitatory input of the dopaminergic neurons was
increased for a pre-defined period and then set back to baseline,
if when in state i, the action selected j verified

((

i+ b
)

mod a
)

≡ j (1)

where b is the block number starting at zero, and a = 3 is the
number of actions. The reward was delivered every time the
correct action was selected. Therefore, if there was a change in
the dopaminergic neurons firing rates, it meant that there was a
mismatch between the inhibition sent from the active striosomes,
i.e., the expected reward for this state-action pairing, and the
external, reward mapping dependent excitation. The external
reward delivery, or its absence, was coded by a change in the
firing rate of the driving Poisson generator of the dopaminergic
neurons: from baseline to high if a reward was obtained, or to
low if no reward was obtained. Values of the static weights and

delays, as well as those of the membrane voltage, threshold and
reset value for the neuron model were all sampled from normal
distributions.

Phases of a Trial
The whole simulation comprised several blocks, with each block
comprising several trials. A trial consisted of four successive
phases corresponding to four simulation times and lasted 1.5
seconds (Figure 2A details a single trial). At first during the
selection phase, a state was defined by 30 Hz activation of a
specific cortical population by Poisson inputs. The remaining
populations of this layer also received Poisson inputs, but only at
3 Hz in order to simulate background noise. All the state coding
populations had the same number of neurons (cf. Table S1 for a
summary of the values used).

This activity flowed downstream through the D1 and D2
pathways to the GPi/SNr, but also to the striosomes. At the end
of this phase, a softmax function was carried out on the spike
counts of the three action coding populations in GPi/SNr in order
to select an action (Daw and Doya, 2006). We first normalized
the spike counts and then applied the softmax on the inverse
distribution, as the goal was to have the action coded by the least
active population be the one with the highest probability of being
selected. Driving the GPi/SNr to fire in the absence of additional
inputs allowed the D1 pathway to have an impact on selection
by decreasing the spike count of the action coding population in
GPi/SNr which was rewarded during the next occurrence.

For the second phase of the trial, the efference copy of the
selected action was set to fire at a high rate while keeping the
current state coding population active. This joint activity also
enabled a single sub-population of a striosome to fire at around
15Hz. The emitted spikes from this sub-population arrived at the
dopaminergic neurons at the same time as the external reward
mapping dependent excitation was applied (which happened in
the following phase). Before the next phase of the trial, the reward
had to be computed based on the current state, the selected action
and the current block as described previously. The external input
to the dopaminergic neurons was accordingly set to a higher
(correct trial) or to a lower (error) value than baseline.

The third phase therefore represented the actual learning.
Learning and plasticity occurred in the system at all dopamine
dependent BCPNN synapses. For the fourth and last phase of
the trial, the efference copy and the state layers were reset to
their background noise and driven by low activity, and the
dopaminergic neurons were set back to their baseline firing
rate. This was done to avoid overlapping effects between trials
(Figure 2 displays an example of the activity in the network
during 20 trials).

Tests and Lesioning of Different Pathways
We recorded the performance of the model as a moving average
of success. A trial was correct when the selected action was the
one leading to the reward. As defined previously (Equation 1),
there was only one correct action for each state. The reward
mapping was changed for each block of trials. Weight values
were accessed every 250 ms of simulation. The mean weights
and their standard deviations (SD) were computed based on 20
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simulations for each condition. The success ratio was normalized
so that chance level was 1/3, and the maximum score was 1.

We tested the impact of each pathway on the performance. To
this end, we removed any contribution from a specific pathway
on the selection: we set the outgoing weights of the corresponding
striatal population, be it D1, D2, or RP, to zero. The population
was consequently still active as it was receiving other inputs.
However, its own output was blocked. For the condition without
the RP pathway, only the absolute reward value impacted the
dopaminergic neuron population. In order to assess the role of
the efference copy, we ran simulations where it was removed.
Similarly, we tested a condition where the lateral inhibition in
striatum was removed. We also simulated the degeneration of
dopaminergic neurons in SNc as observed in Parkinson’s disease
(Obeso et al., 2000). This was tested by silencing portions of these
dopaminergic neurons (16, 33, and 66%), preventing them from
having any further impact on the dynamics. This occurred after
eight blocks of otherwise standard simulations. Performance was
represented by the moving average of the success ratio in the
successive three-way choice task, which quantified the learning
capabilities of the model.

Synaptic Plasticity Model
A two-factor learning rule, such as the standard spike timing
dependent plasticity (STDP) (Bell et al., 1997; Markram et al.,
1997; Bi and Poo, 1998), does not sufficiently characterize the
dynamics of cortico-striatal plasticity (Pfister and Gerstner, 2006;
Farries and Fairhall, 2007; Izhikevich, 2007; Legenstein et al.,
2008; Frémaux et al., 2010, 2013; Paille et al., 2013; Gurney et al.,
2015). Additionally to the pre- and post-synaptic spike timing,
the dopamine level and MSN dopamine receptor type have been
shown to be involved (Reynolds and Wickens, 2000; Surmeier
et al., 2007; Berretta et al., 2008; Pawlak and Kerr, 2008; Shen
et al., 2008; Yagishita et al., 2014). A recently described variation
of STDP for cortico-striatal plasticity, implemented in a simple
network with spiking neurons and derived from the plasticity
observed in experiments, featured additional variables taking into
account dopamine signaling and receptor types (Gurney et al.,
2015). It offered dynamics comparable to our learning with one
notable difference: the weight updates in a pathway, D1 or D2,
was not restricted by the sign of the RPE. They did not however
investigate the RP pathway and the computation of the RPE.

The spike-based BCPNN learning rule computes traces based
on activity and co-activity in pre- i and post-synaptic j neurons.
This is done in order to estimate the probability of the
postsynaptic neuron being active given that the pre-synaptic one
fires. The order of firing of the pre- and post-synaptic neurons
is not critical here (unlike in Shen et al., 2008, but similar to
Yagishita et al., 2014). The model takes advantage of the RPE
as the learning rate, similar to Actor-Critic models (Suri and
Schultz, 1999; Joel et al., 2002; Cohen and Frank, 2009) and
reinforcement learning frameworks (Sutton and Barto, 1998).
Specifically, three synaptic traces consisting of exponentially
weighted moving averages are computed in order to estimate the
probabilities of pre- and post-synaptic activation as well as their
joint activations. The synaptic weight wij between the pre- and
post-synaptic neurons can then be inferred from these traces. The

RP pathway also exhibits dopamine dependent BCPNN plasticity
to learn to predict the probability of reward given the current
state and selected action.

The pre- Si and post-synaptic Sj spike trains are defined by

summed Dirac delta pulses with respective spike times tisp and t
j
sp:

Si (t) =
∑

sp
δ(t − tisp) Sj (t) =

∑

sp
δ(t − t

j
sp) (2)

Traces with the fastest dynamics, Zi and Zj, are exponentially
smoothed spike trains:

τZi
dZi

dt
=

Si

fmax1t
− Zi + ε τZj

dZj

dt
=

Sj

fmax1t
− Zj + ε (3)

which lowpass filters pre- and post-synaptic activity with time
constants τZi and τZj , like what would be expected from rapid

Ca2+ influx via NMDA channels or voltage-gated Ca2+ channels.
It is assumed that each neuron could fire maximally at fmax Hz
and minimally at εfmax Hz, which represents absolute certainty
and doubt regarding the evidential context of the input. Within
that range, firing levels correspond to the estimated probability.
Each spike event had a duration of 1t ms.

These Z traces are then passed on to the E eligibility traces:

τe
dEi

dt
= Zi − Ei τe

dEj

dt
= Zj − Ej τe

dEij

dt
= ZiZj − Eij

(4)
where, in order to track the coincident activity from the Z traces,
a separate equation is introduced. τe is the time constant for
these traces which are assumed to represent intracellular Ca2+-
dependent processes (Fukunaga et al., 1993). The E traces then
are used in the computation of the P traces, whose longer time
courses are inspired by processes like gene expression or protein
synthesis. These values represent the final probability estimates
based on smoothed activity levels:

τp
dPi

dt
= κ(Ei−Pi) τp

dPj

dt
= κ(Ej−Pj) τp

dPij

dt
= κ(Eij−Pij)

(5)
where κ is the RPE value and τp the time constant of these P
traces.

In the absence of external inhibition from the striosomes,
dopaminergic neurons were driven by an external Poisson
process to a baseline activity of around 10 Hz, and, were set to
fire at around 14 and 6 Hz for the delivery and non-delivery
of the reward, respectively (Kiyatkin and Stein, 1995; Robinson
et al., 2004; Ungless et al., 2004). At this baseline activity, the RPE
was zero. When it deviated from baseline, the RPE became non-
zero and enabled plasticity (Calabresi et al., 2000; Reynolds and
Wickens, 2002; Wickens et al., 2003; Surmeier et al., 2007; Shen
et al., 2008). Two cases could therefore occur: an increase of the
firing rate of the dopaminergic neurons resulting in a positive
RPE, or a decrease resulting in a negative RPE. These cases
corresponded to biological processes (Hollerman and Schultz,
1998) shown to be sufficient for behavioral conditioning (Lavin
et al., 2005; Tsai et al., 2009). D1 P traces are updated only if the
RPE > 0 and D2 ones only if the RPE < 0 (Frank, 2005; Shen
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et al., 2008; Nair et al., 2015). The RPE value is computed from
the spiking activity it receives from the dopaminergic neurons via
the volume transmitter as follows:

RPE = κ = (σdopa
(

βdopa + q
)

)
λ

(6)

βdopa is the value that biases the RPE to 0 when the dopaminergic
neurons fire at baseline level. σdopa and λ are the gain and
the power, respectively, and are different for matrisomes and
striosomes. By using λ= 2 for the striosomes, κ is always positive
and used to enable plasticity without respect to the sign of the
RPE. However, λ = 7 was used for the matrisomes in order
to retain information about the sign. The exponentiation helps
to decrease the impact of small variations while increasing the
impact of large variations. q was the filtered dopaminergic spike
activity and acted as a proxy for the dopamine level in the model:

τq
dq

dt
=

∑

sp
δ

(

t − t
dopa
sp

)

− q (7)

with τq as the time constant of volume transmission and t
dopa
sp the

spike times of the dopaminergic neurons.
Weights wij and biases βj (cf. section Neuron Model) are

computed from the final learning rule equation:

βj = log
(

Pj
)

wij = log

(

Pij

PiPj

)

(8)

The resulting synaptic learning rule was Hebbian and
bidirectional, i.e., synapses show both LTD and LTP (Reynolds
andWickens, 2000; Shen et al., 2008; Pawlak et al., 2010; Yagishita
et al., 2014). With the parameters used here, the precise order of
firing of the pre- and post-synaptic neurons is not necessarily
critical for the sign of the weight update, contrary to what is
commonly using STDP learning rules (Gurney et al., 2015). The
directionality of the update depended more on the correlated
activity during a defined time interval (Tully et al., 2014).

Weights of a specific connection can grow alternatively
positive or negative due to the logarithmic term in Equation (8).
This could be understood as part of a microcircuit comprising
a direct excitatory connection and a di-synaptic connection via
an inhibitory interneuron, or as representing the axo-axonic
ionotropic glutamate receptor-mediated excitation of the nerve
of terminals of inhibitory neurons (Ren et al., 2007, but see
Hull et al., 2009; Merchán-Pérez et al., 2009). A net positive
weight means that the excitatory contribution would dominate
over the inhibitory one and vice versa. In this work, we
constrained the weights of the cortico-matrisomal connections
to be only positive, setting a hard lower bound of 0 on wij, but
allowed the weights of the connections from striosomal neurons
on to dopaminergic neurons to alternate between positive or
negative values, as to not make a distinction based on the
receptor types expressed in this pathway (cf. Discussion for
some considerations). Consequently, the RP pathway cannot
differentiate between the omission of an expected reward and
an unexpected reward based only on the RPE. It is the degree
of correlation between the pre- and post-synaptic activity that

determines the increase and the decrease of the weights in RP,
with the RPE acting only as a learning rate in this case.

The parameters of the learning rule in the RP pathway were
set such that when pre-synaptic activity was associated with a
high postsynaptic activity, e.g., after a reward has been obtained,
the inhibitory weights would increase. This in turn would cause
a decrease of the firing rate of the postsynaptic neurons during
the next occurrence of that situation. Similarly, in the event of a
reward omission or dip in the dopaminergic neuron firing rate,
the weights from the active striosomal MSNs would decrease,
possibly becoming negative, thereby driving up the activity in
the postsynaptic population. This interplay between feed-forward
inhibition/excitation, reward delivery, and the plasticity rule
leads the striosomo-nigral weights to converge to a value where
the dopaminergic neurons can fire at their baseline level, where
the RPE is equal to zero.

Neuron Model
The neuron model implemented is of the leaky integrate-and-
fire type with alpha function-shaped postsynaptic conductance
(Meffin et al., 2004), which has been shown to be a useful model
reduction of cortical neurons (Rauch et al., 2003). Parameters
used are in the range of experimental observations (Pawlak and
Kerr, 2008; Gittis et al., 2010). The neuron model is amended
with Iβj , which accounts for the bias term βj (Equation 8). The
bias represents the prior probability of activation of a specific
postsynaptic neuron. It enters the sub-threshold voltage Vm

equation of the postsynaptic neuron according to:

− Cm
dVm

dt
= gL (Vm − EL) +

∑n

i=1
gex,i

(

Vm − Eex,i
)

+
∑n

i=1
ginh,i

(

Vm − Einh,i
)

+ φIβj (9)

When threshold Vth is reached (Vm ≥ Vth) a spike is generated
and Vm is reset to the potential Vres for tref ms, representing
the absolute refractory period. The total current flow across
the membrane is determined by the membrane capacitance Cm,
the leak reversal potential EL, excitatory Eex and inhibitory Einh
reversal potentials, the leak conductance gL, excitatory gex and
inhibitory ginh synaptic conductances, and Iβj that is scaled by
φ to represent an activity-dependent, intrinsic, hyperpolarizing
current quantity. This could relate to the opening of some K+

channels. Postsynaptic conductances gex and ginh are modified by
the occurrence of an excitatory or inhibitory input event from
one of the n presynaptic neurons at time tisp by:

gex|inh,i (t) = gmaxwij

t − tisp − d

τex|inh
e
1−

(t−tisp−d)

τex|inh (10)

This enables gex or ginh to rise with finite duration τ ex or τ inh to its
peak conductance gmaxwij at time t − tisp − d = τex or τinh, where
d is the transmission delay, and to decay with time constant τex
or τinh thereafter.
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RESULTS

Our model consisted of the three main pathways in BG: D1,
D2, and the dopaminergic RP feedback pathway (Figure 1). A
state layer provided inputs to the striatum, which symbolized
the set of possible actions. The striatum was divided into
striosomes and matrisomes. Matrisomes consisted of D1 and D2
MSNs projecting to the output layer GPi/SNr, with inhibitory
and excitatory projections representing the direct and indirect
pathways, respectively. This simplified the polysynaptic circuit
by providing functional dis-inhibition in the D1 pathway and
dis-inhibition of excitatory neurons in thalamus or brain stem
in the D2 pathway (Gerfen et al., 1990; Parent and Hazrati,
1995). Additionally, an efference copy informed the striatum
about the action selected, which was based on the activity in
GPi/SNr. The striosomes were part of the RP pathway and
projected to dopaminergic neurons. The level of dopamine coded
for the RPE and modulated plasticity in the system, which
occurred at cortico-striatal synapses as well as synapses from
striosomes targeting dopaminergic neurons. Learning in our
model was dependent on four factors: pre- and post-synaptic
activity, dopamine level and receptor type. Positive RPE triggered
synaptic plasticity in D1, negative RPE triggered synaptic
plasticity in D2, and either positive or negative RPE triggered
synaptic plasticity in the RP pathway. The model comprised
spiking integrate-and-fire model neurons and synaptic plasticity
was based on the BCPNN learning rule.

Learning the State-Action Mapping
The synaptic weights of the D1 and D2 MSNs for separate
actions were successfully controlled by the RPE. Figure 2 shows
the spiking activity of the cortical, striatal, pallido-nigral, and
dopaminergic neurons during a change of reward mapping. The
first trial of the new block was the one where the selection was
incorrect (Figure 2: the trial immediately after the vertical orange
dashed line), resulting in a dip in dopaminergic neuron activity
starting at time = 244.75 s. This dip coded for a large negative
RPE, which affected the D2 and RP pathways.

The model was able to learn the correct reward mapping in
simulations consisting of 15 blocks of 40 trials (Figure 3). The
average success was well-above chance level and approached the
maximum value 1 at the end of each block. This is comparable to
the results from the abstract model, which featured 10 states and
five actions on blocks of 200 trials (Berthet et al., 2012).

At the next occurrence of that same state, three trials later,
the D2 population for the previously selected action fired more
initially than during the previous occurrence of that state. This
was, however, not sufficient to prevent the same action being
selected. A decrease in the contrast of the firing rate of the
three populations in GPi/SNr can be noticed for this trial.
At the next occurrence of this state, the inhibition from D2
was enough this time to prevent the selection of that action.
Fortunately, the selected action out of the two remaining possible
was the rewarded one. This triggered a burst in the dopaminergic
neurons activity and enabled plasticity in the D1 and RP
pathways. The dopamine burst was noticeably bigger for each of
the first-time rewarded state-action pairings of this new block,

compared both to the subsequent successful selections and to the
last correct trial of the previous block (Figure 2C).

Activity in a specific action coding D1 or D2 MSNs
population produced a decrease or an increase in the firing
rate of the corresponding action coding population in GPi/SNr,
respectively. The activity triggered inmatrisomes by the efference
copy did not affect the selection, as at that point in time, the
selection of the action has already been decided. However, it still
mildly impacted the firing of the GPi/SNr neurons. The action
selected was most likely to be the one with the lowest firing rate
of the action coding populations in GPi/SNr as a result of the
softmax.

It took several trials for the RP weights to settle into a
stationary mode, in contrast to D1 and D2 weights (Figure 3).
This was due to the discrepancy between the initial P trace values
and the actual distribution of activity. Thus, for all the following
statistical analyses and comparisons, we focused on the dynamics
after the first four blocks.

Next, we considered the connection weights from the
striosomes to SNc (Figure 3). The activity of the dopaminergic
neurons was modulated by striosomal input. The delivery of
a reward predicted by the RP pathway triggered little or no
change in the firing rate of the dopaminergic neurons. The
inhibition received from the striosomal sub-population coding
for the relevant state-action pair compensated for the increased
excitatory input brought by the reward on the dopaminergic
neurons. However, the absence of delivery of an expected reward
resulted in a large dip in activity, as the decrease of excitatory
drive to SNc was added to the inhibition from the active
striosomal MSNs. Conversely, the delivery of an unexpected
reward provoked a burst in the dopaminergic neurons activity
(Figure 2C). This burst was larger if the RP pathway had learned
to expect the low activity in SNc, by having failed to obtain a
reward for that specific state-action pair in the recent history.

During phasic dopamine changes, synaptic modification
occurred not only between the active pre- and post-synaptic
populations, but also at synapses where either only the pre-
or post-synaptic population was active. The relative changes in
magnitude taking place between inactive units were very small.
Furthermore, changes in the weights were of opposite signs
for the connections between co-active neurons and connections
where only one end was active. These features led to some degree
of homeostasis of the average weight (Figure 3).

Extinction and learning of a new reward mapping were the
result of both a sharp increase of suppression from the then
incorrect action coding D2 MSNs combined with a subsequent
decrease of promotion by the D1 population coding for that
action. The latter situation happened only once another action
had been associated with the same state. Similarly, a decrease in
the D2 weights of a population coding for an action happened
when another action coding population saw its D2 weights
increased, i.e., when this selected action was followed by a dip
in the firing of the dopaminergic neuron. D2 weights showed the
highest changes at the start of a block but then slowly decayed,
in contrast to the D1 weights. That resulted from the larger RPE
at the beginning of a new block, which was caused by the large
difference between the expected reward associated during the
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FIGURE 1 | Schematic representation of the model with relevant biological substrate. In striatum, two actions A and B are here used as an example. The

population “AD1” thus corresponds to the population of MSNs in the D1 pathway coding for action A. Striosomes and matrisomes are segregated for visual guidance,

but they were intermingled in the model, with striosomes often referred to as “islands” in the matrix. Thalamus and brainstem were not explicitly implemented in the

model but are shown above for completeness.

previous block and the new negative outcome in the current
block. Thus, the negative RPE impacted the D2 pathway initially,
which helped the system to halt selection of the associated action
thereafter. Eventually, inhibition became sufficient to enable the
selection of another action, potentially triggering D1 plasticity in
the case of a good choice. This matches results from the abstract
version of themodel alongwith experimental data (Groman et al.,
2011).

Another observed phenomenon was that the dynamics of the
weight changes were modified in D1 but not in D2 synapses. The
rate of change in D1 got smaller after the initial updates within
a block, whereas it stayed relatively constant in D2. As the RP

pathway learned to correctly predict the reward, both the RPE
and amplitude of the weight change decreased.

The slow decay of the D2 weights after the initial surge at the
beginning of a block resulted from the small variations around
baseline of the dopamine level. Note that it also affected D1
weights, as they gradually increased until the end of a block.

Dopaminergic Neuron Loss
Figure 4 depicts the results from the PD simulations in which
either 16% (PD16) or 66% (PD66) of the dopamine neurons
were deleted. We also ran a test with a 33% decrease, which
showed intermediate results (PD33, not shown). Deleting these
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FIGURE 2 | Raster plot of the model consisting of 3 states and 3 actions, illustrated over 30 s of activity during a change in the reward mapping. In (A),

a single trial is detailed. In (A,B) the states (blue), D1 (green), D2 (red), and GPi/SNr (purple) populations, grouped by representation coding, are shown. The indices of

the states and actions begin from the top. For example, neurons with an ID between 160 and 220 represent the D1 and D2 populations coding for action 1. In (C)

both the raster plot and a histogram of the dopaminergic neurons spiking activity are displayed. The width of the bins is 10 ms. A trial lasts for 1500 ms and starts with

the onset of a new state. The simultaneous higher phasic firing rates in the D1 and D2 populations correspond to the population coding for the selected action

receiving inputs form the efference copy. The vertical orange dashed line signals a change in the reward mapping.
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FIGURE 3 | Evolution of weights in the D1, D2, and RP pathways, as

well as the performance over a simulation of 15 blocks with 40 trials

each. In (A), the three colored lines represent the average weight of the three

action coding populations in D1 and D2 from state 1. (B) represents the color

coded average weights from the nine state-action pairing striosomal

sub-population to the dopaminergic population. (C) displays the moving

average success ratio of the model over the simulation. Vertical dashed gray

lines denote the start of a new block. In (A,B), the black line is the total

average of the plotted weights. Color-coded shaded areas represent standard

deviations.

neurons meant we removed both their incoming and outgoing
connections, which silenced them and removed their effects on
network activity. These deletions occurred at the end of the 8th

block of the simulation. As a result, the tonic dopamine level
settled to a value below the previous baseline, which the RPE
was based on. Therefore, the RPE was negative by default, even
outside of the reward delivery window.

Following deletion, performance immediately deteriorated for
all conditions. The performance of PD33 and PD66 stabilized
well-below the level indicated by the condition featuring only the
D2 pathway (Figure 5) (PD33 mean 0.513 ± 0.061; p < 0.0001,
PD66 mean 0.379 ± 0.035; p < 0.0001, comparisons based on
the last 20 trials of the last seven blocks only). PD16 showed a
relatively limited degradation in the success ratio (PD16 mean
0.749± 0.060).

The weights were also impacted by the dopamine decrease. In
D1, they were updated less frequently and with less amplitude
following the neuronal loss. Conversely, the negatively shifted
RPE led the D2 weights to be updated more frequently and
with larger amplitude. The extent of this asymmetry between
D1 and D2 varied with the proportion of deleted dopaminergic
neurons. For example, in PD66 the D2 weights of the action
associated with the red color were more prominent in order to
counterbalance the inadequate contribution of the D1 pathway
in two out of three blocks. For PD16, however, both the D1 and
D2 weights of the other two actions were diminished compared
to their values before the PD simulation.

Interestingly, performance was rescued in blocks where the
correct action was the last rewarded before the onset of PD
once the number of dopaminergic neurons was decreased. This
effect was more notable in the PD66 conditions (Figure 4F).
Indeed, the contribution from D1 was relevant for the selection
only once every three blocks, which depended upon the reward
mapping. But even in this block, the level of success (mean
0.717 ± 0.041) was still well-below the one achieved before
the simulated depletion of dopaminergic neurons. This resulted
from the RPE not being able to reach a positive value even for
correct selections, therefore inadequately triggering plasticity in
D2. This ultimately caused D2 to hinder the selection of the
action correctly promoted by D1.

However, in the two other blocks the contribution form D1
was erroneous. In such cases, the D2 pathway experienced a
weight increase to that action in order to cancel the effect of
D1. Once the system was able to select a different action than
the one promoted by the D1 pathway, one action remained
to be inhibited. As the D2 weights of the remaining incorrect
action increased, those of the action promoted by D1 decreased,
enabling this action to be incorrectly selected again.

The RP pathway was not sensitive to the sign of the
RPE. Thus, weight updates in this pathway also became more
frequent. As the dynamics of the remaining dopaminergic
neurons were unaffected, the remaining weights between RP
and SNc recovered to their values prior to neuronal loss after
a few blocks of adaptation (Figures 4B,E). This is explained
by the loss of connections to these neurons during deletion,
meaning the remaining connections were those to the unaffected
dopaminergic neurons.

We also tested the impact that the onset of PD had on the
performance within a block. We doubled the number of trials
in a specific block and decreased the number of dopaminergic
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FIGURE 4 | Evolution of weights in the D1, D2, and RP pathways, as well as the performance over a simulation of 15 blocks of 40 trials each. After eight

blocks (black arrow), 16% (left column) or 66% (right column) of the dopaminergic neurons were rendered useless until the end of the simulation. In (A,D), the weights

represented are the average weight to each action coding population in D1 and D2 from state 1. (B) and (E) correspond to the average weights for each state-action

pairing striosomal sub-population to the dopaminergic neuron population. (C,F) display the moving average success ratio of the model over the simulation. Vertical

dashed gray lines denote the start of a new block. In (A,B,D,E), the black line is the total average of the plotted weights. Color-code follows the one in Figure 3 and

shaded areas represent standard deviations.

neurons once reaching half the trials in that block. As this
decrease was interpreted by the system as negative RPE, the
subsequent trials exhibited some errors. However, the system’s

ability to revert to the correct action selection depended on the
extent of the dopaminergic neuron decrease, with larger neuron
deletions causing larger difficulties in the recovery. Additionally,
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FIGURE 5 | Box plot of the mean success ratio and standard deviation of the examined conditions. In (A), the first 20 trials of each block were used whereas

in (B), the analysis was carried out on the last 20 trials. Data from the last seven blocks of the PD conditions were used. All differences are significant (p < 0.0001)

unless stated otherwise (ns, non-significant). The horizontal dotted line represents chance level. For all conditions except PD33, PD66, noD2, and no Efference,

differences within conditions between the first and last 20 trials are significant. NoSF stands for the condition without spontaneous firing of the GPi/SNr output nuclei

and noLI for the condition without lateral inhibition in striatum. PD16, PD33, and PD66 display the results of the seven blocks following the deletion of, respectively, 16,

33, and 66% of the dopaminergic neurons.

the performance of the model benefited from an increase in the
number of trials per block for the subsequent blocks, but only in
PD16 and PD33, that is when the RPE could still become positive.

Overall, these simulations show that under PD conditions, the
model faced great difficulties in learning new reward mappings.
It succeeded in tasks that had already been learned when the
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contribution from the D1 pathway to the selection was adequate
given the reward mapping.

Functional Relevance of Different
Pathways
Inactivating a pathway proved to be a significant performance
handicap, as all the conditions performed worse than the intact
model with the exception of the noRP condition. Multiple
comparisons were run with a one-way ANOVA. Figure 5 exhibits
a representation of means, standard deviations and significance
of the various conditions. In order to better capture the differing
functional involvements during the learning process, we split the
analysis in two based on the stage of the learning. We assumed
that there would be an evolution between the initial transition
phase relying mainly on the D2 pathway (first 20 trials of a block
of 40 trials), and the later phase (last 20 trials of a block) where
the D1 pathway would be critical in consistently singling out
the appropriate action. Considering the different conditions, the
success ratio was notably more severely affected without the D2
pathway (noD2) than without the D1 pathway (noD1). Both the
former condition and the condition without the efference copy
(noEfference) performed at chance level for the first and last
stages of the block. This indicates that the efference copy was
critical for this model.

This was also the case for the D2 pathway, but the selection
pattern revealed that the system got stuck constantly selecting the
same action: the one that was initially associated with the reward.
Therefore, without the D2 pathway, and because of the absence
of plasticity in D1 when the RPE is negative, the system did
not change its selection and showed extreme perseveration. This
critical role for the D2 pathway in changing the selection was also
shown experimentally, where mice with D2 receptor knock-out
(D2R-KO) performed significantly worse both in trial duration
and success ratio compared to D1R-KO mice in a dynamic and
uncertain environment (Kwak et al., 2014). In the model, the D1
weights were still updated every three blocks when the action
selected was again the correct one. In the other two blocks, the
RP pathway learned to expect a negative reward similar to the
dynamics previously described for the intact model.

All of the conditions improved between the first and second
halves of a block except the PD33, PD66, noD2 and noEfference
ones. The removal of RP (noRP) resulted in a slower learning of
the correct action after a change of reward mapping, as seen in
the lower success ratio over the first 20 block trials. However, it
eventually ended with the same success ratio average as the intact
model over the last 20 trials. This underscores the beneficial role
of the RP pathway in the early stages of a new acquisition. Even
if the conditions without spontaneous firing of GPi/SNr (noSF),
or without lateral inhibition between matrisomes (noLI) or noD1
improved during the second half of a block, they did not reach the
same level as the intact and noRP conditions, which emphasizes
a functional disorder not restricted to a specific learning stage.
This held especially for the PD66 condition, as it was the one
with the most limited improvements. In order to discard the
slower learning capabilities of the model in these conditions, we
tested them with extended lengths of blocks of 40 to 80 trials

per block, and did not notice any improvement over subsequent
trials, except for the PD33 condition (PD33 average success of the
last 20 trials of a 40 trials block: 0.51 ± 0.06; last 20 trials of a 80
trials block: 0.64± 0.07).

Of noteworthy importance is that the PD33 and the noD1
conditions had relatively similar performances over the first
half (i.e., the transition phase) of the 40 trials blocks. The
noD1 improved, whereas the PD33 condition, which seemed to
functionally rely only on the D2 pathway, did not. Even more
dysfunctional was the PD66 condition, seemingly stuck to a low
success ratio (0.379 ± 0.046). The results of the PD16 and of the
noSF conditions were similar in that they both failed to improve
as much as the intact condition, even though they had equivalent
levels of performance over the first 20 trials of a block. The
common feature of PD16 and of noSF was the reduced impact
of D1 on the selection, through a reduced plasticity on D1 MSNs
for the former and due to a direct lack of representation of the D1
inputs in the selection for the latter.

Surprisingly, the condition without lateral inhibition also
performed almost as well as the intact model, showing quick
transitions following a change in the reward mapping. However,
the absence of the lateral inhibition provoked an increase in the
baseline firing rate of the MSNs in the matrisomes, to around 15
Hz instead of <1Hz in the intact condition.

The condition without the RP pathway constrained the model
so that an absolute reward had to be used instead of the RPE.
Thus, the dopamine level changes depended only on the obtained
reward. This was also a secondary effect of removing the efference
copy. As the striosomal RP coding MSNs require simultaneous
inputs from the relevant cortical neurons and efference copy to be
active, the ablation of the latter rendered them silent. Therefore,
in the noEfference condition, the model had to do without the
efference copy and the RPE as well. The latter condition fared
significantly worse than the condition without the RP pathway
(p < 0.0001), and performed at chance level.

Returning to the noRP condition, we examined another
metric to better comprehend the distinction with the intact
model. We compared the average absolute amplitude change
of the weights between the two conditions by measuring
synaptic modifications. The average weight change between
two consecutive trials was reduced in D1 and increased in D2
when the RP pathway was used (D1: mean 1.583 ± 1.662;
D2: mean 0.861 ± 1.159) compared to the condition when
it wasn’t used but was instead based on the absolute reward
value (D1: mean 3.535 ± 4.411, p < 0.0001; D2: mean 0.762
± 1.074; p < 0.05). Based only on the reward value, cortico-
striatal connection strengths onto D1MSNs increased every time
a response was correct, thus making the weights grow larger
even though the correct mapping has been learned. As the RPE
decreased because the RP pathway improved its predictions,
the amplitude of the weight change was reduced. However, for
D2, the amplitude was larger because the system expected the
reward, and therefore the discrepancy was bigger when the
outcome was negative e.g., at the beginning of a new block.
Moreover, as this occurred only at the beginning of each block
until the correct action was selected (and therefore the plasticity
switched on to D1), the average change was larger than under the
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condition without RP, where the amplitude remained relatively
constant.

Interestingly, the better results of the condition without
spontaneous firing of GPi/SNr over the one without the D1
pathway imply some usefulness of the D1 pathway in the
former condition. This can only happen in situations where the
D2 pathway simultaneously tries to suppress the same action,
i.e., disinhibiting the associated GPi/SNr population, thereby
enabling inhibition from the D1 pathway to have a noticeable
effect on the selection.

DISCUSSION

The presented model combines spiking neurons and biological
data with a probabilistic learning rule. It uses reinforcement
learning to select the correct action given a state and the
associated expected reward value, implementing an efference
copy mechanism as the critical way to control the localization
of plastic changes. The dynamics and performance in a multiple
choice task were quite similar to those achieved in a previous
abstract model (Berthet et al., 2012). Furthermore, the activity
of the model neurons coding the RPE during the various phases
of learning, and the underlying mechanisms were congruent
with theoretical and biological data on reinforcement learning,
dopaminergic neuron activity and RPE (Schultz et al., 1997;
Sutton and Barto, 1998; Pagnoni et al., 2002; Suri, 2002; Samejima
et al., 2005; Groman et al., 2011). Dopaminergic neurons show
a burst of activity for unexpected rewards, whereas the reward
does not lead to any burst once fully expected. A dip in the
dopaminergic neuron activity occurs when an expected reward is
not obtained. These deviations from baseline control the plastic
changes in the system.

The firing rates observed in the model, in populations with
plastic synapses, are comparable with experimental data. In
striatum, D1 and D2 MSNs’ firing rate ranged from almost
silent to around 30 Hz (Samejima et al., 2005; Kravitz et al.,
2010). Additionally, the activity in both the D1 and D2 pathways
increased during the selection phase due to co-activation of the
two populations of MSNs, as reported in mice experiments (Cui
et al., 2013; Tecuapetla et al., 2014) and computational models
(Gurney et al., 2015). During the efference copy, only one action
coding population was activated significantly while the other
matrisomes were silent. With the inputs from the striosomes, the
range of the firing rate of the dopaminergic neurons was extended
to 1–18 Hz (Robinson et al., 2004; Bayer and Glimcher, 2005).
Impacted by the activity in matrisomes, GPi/SNr neurons had a
firing rate ranging from 0 to 80Hz.

We have also lesioned the different pathways of the model.
Compared to results from our previous abstract model, it might
be surprising that the noD1 and noD2 conditions gave opposite
rankings. In the work presented here, the best performance out
of the two was obtained for the noD1 condition, whereas the
noD2 condition resulted in a slightly superior success ratio in the
abstract model. The learning rule was the same in both versions
of the model. However, in the abstract model, the weights were
updated in all pathways without restriction from the sign of
the RPE. This meant that a negative RPE would decrease the
cortico-striatal weights from the active state to the D1 population

coding for the unrewarded selected action. This enabled the D1
pathway to unlearn an incorrect association without having to
first rely on the relevant D2 suppression. This allowed the noD2
condition to perform relatively well, and even better than the
condition without the D1 pathway (Berthet et al., 2012).

Using the RPE instead of the reward value improved the
stability of the model without sacrificing plasticity, and would
furthermore enable the system to remember rarely occurring
stimulus-response events. Reward value based learning would
trigger plasticity regardless of what was expected, and thus
the traces of rare events would disappear entirely, and would
furthermore overlearn frequent associations. Interestingly, with
the use of the RPE, traces of events could only disappear if
many remappings of unrelated states and actions occurred.
Moreover, RPE also implied a reduced energy requirement since
modifications of the synaptic weights do not occur all the time, as
is the case when the plasticity depends only on the reward value.

Implementation of the RP Pathway
With regard to the RP pathway and considering its
implementation, plasticity could occur between RP neurons and
dopaminergic neurons in the model. Additionally, the global
activity in RP, and not the one of specific state-action coding
striosomal sub-population, could in principle code for the RPE.
The information regarding current state and selected action
would be provided by the active input populations, and synaptic
plasticity of these connections would allow learning of the reward
prediction for different combinations of states and actions. This
would place some constraints on ensuring that neurons in RP
fire because the weights of both incoming connections would be
plastic. It is also possible that the prediction relies only on the
state information, at least in a first phase, and could be refined
once the action is considered or selected.

We see three different interdependent design options that
can support both experimental evidence and the functional
requirements stressed by our model as to how the RP pathway
could be set. There is no indication that D1 and D2 receptors
would be specific to matrisomes (Friedman et al., 2015; Fujiyama
et al., 2015). However, only striosomes sends connections to SNc
(Lévesque and Parent, 2005; Amemori et al., 2011; Fujiyama
et al., 2011). Furthermore, some striosomal MSNs project to
GPi/SNr (Crittenden and Graybiel, 2011). Therefore, assuming
an antagonistic role for the D1 and D2 striosomes, a first
option could be that an additional pathway, within RP, could
code specifically for negative reward or pain. Such a pathway
could go via GPi or SNr onto SNc (Fujiyama et al., 2011),
essentially constituting an indirect striosomo-nigral pathway
originating in striosomal D2 MSNs. This could represent the
biological substrate of the negative RP weights. Inputs from LH
or periaqueductal gray have also been shown to be critical in
negative learning and in pain learning, respectively, indicating
they could be involved in coding negative reward prediction
(Matsumoto and Hikosaka, 2007; Bromberg-Martin et al., 2010;
Roy et al., 2014).

Secondly, we had suggested that projections from striosomes
could convey information about the expected reward value to the
selection process (Berthet et al., 2012). This information might
be valuable when comparing options associated with various
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expected reward values or probabilities. It would be similar to
an involvement of the critic during action selection in the Actor-
Critic framework. Commonly associated with this representation
is a ventro-dorsal distinction of the striatum (O’Doherty et al.,
2004; Voorn et al., 2004; Atallah et al., 2007; Humphries and
Prescott, 2010). We suggest a unification of the ventro-dorsal
and striosomo-matrisomal distinction. Matrisomes would be
involved in action selection based on sensori-motor information
and would code action values. Dorsal striosomes would also
participate in the selection by supplying information about the
expected outcome. Finally, ventral striosomes would be engaged
in coding the expected reward as part of the RPE computation
and would not be directly engaged in the selection.

A third possibility is that the joint state-action reward
prediction, here coded by the striosomes, could be obtained
through this describedmore complex network. Striosomes would
thus code only for a state related reward prediction. Knowledge
about the action would be received by the dopaminergic neurons
from GPi and SNr, a circuit that has been described in biology
but the function of which remains unknown (Joel and Weiner,
2000; Crittenden and Graybiel, 2011). The integration of state
and action information would therefore take place directly within
the dopaminergic nuclei (Cohen et al., 2012).

A caveat to our model is its lack of external expectation,
or drive, onto the RP pathway. This would enable the system
to escape situations where it expects a bad outcome, and as
it eventually obtains it, not to change anything since the RPE
would be zero. The model requires a mechanism, e.g., a drive that
would set superordinate goals, which would prevent it constantly
pushing the system to avoid settling for nothing.

Implications for Parkinson’s Disease
The PD simulations did not show the kind of catastrophic
performance present in the noD2 condition, even though it was
the D2 pathway that was most involved. Our results indicate
a differential involvement of the D1 and D2 pathways in PD
associated dysfunctions. Furthermore, our model suggests that
restoring the ability of cortico-striatal connections ontoD1MSNs
to be plastic in Parkinsonian patients might prove to significantly
increase learning and action selection performance. In patients,
symptoms are usually not observed before the degeneration of a
large part of the dopaminergic population (Whone et al., 2003).
We see three reasons that could explain the relatively early
occurrence of trouble in action selection of ourmodel. First, some
homeostatic processes could be involved, delaying the onset of
symptoms. Secondly, even though we used a filtered trace of the
dopaminergic neurons activity, a small variation from baseline
triggered some plasticity in the relevant pathways. We suggest
that there might be some thresholding of the dopamine level,
preventing minor fluctuations of the weights. Thirdly, our model
does not differentiate between VTA and SNc dopaminergic
neurons and the simulated cell degeneration causes the same
change in baseline dopamine level for all the pathways. However,
in PD, the loss of neurons occurs mostly in SNc, which projects
mainly to the dorsal striatumwhereas VTA projects to the ventral
striatum (DeLong, 1990; Alberico et al., 2015). It is therefore
possible that the RP system might be less affected than the D1
and D2 pathways during PD.

With respect to the over-sensitivity observed in D2 MSNs
in PD patients (Bamford et al., 2004), our model shows that
removing the irrelevant input from the D1 pathway in the
two most severe PD conditions could drive performance up to
the level of the noD1 condition. This condition has a better
average success ratio than the two PD conditions at the end of
a block. Interestingly, the quantity of D1 receptors is believed to
decrease in PD, but the remaining ones are thought to become
hypersensitive. This could be the reason for the dyskinesia
observed in PD patients treated with L-dopa (Gerfen, 2003).
This drug, which alleviates motor symptoms in PD, could rescue
the D1 MSN dynamics by raising the tonic level of dopamine,
thereby unlocking the D1 weights by restoring the ability of RPE
to become positive again.

Additionally, it has been reported that PD patients exhibit
better learning from negative than from positive outcomes. This
could boil down to the fact that only the D2 pathway can
have a beneficial impact on selection because of low dopamine
levels. Therefore, it is more valuable since it is impacted by
negative RPE (Frank et al., 2004; Cox et al., 2015). Our model
supports observations indicating that dopaminergic medication
in mild PD patients impaired reversal learning when reversals
were signaled by unexpected punishment (Swainson et al., 2000),
and that dopamine level in striatum could predict a more
pronounced sensibility toward either unexpected rewards or
unexpected punishments in a similar task (Cools et al., 2006,
2009). Phasic dopamine dips, coding for a negative RPE and
critical for learning the suppression of the selection of an
action, are vulnerable to excessive dopamine levels resulting
from dopaminergic medication (Frank, 2005). Moreover, for
the PD16 and PD33 conditions, an increase of the number of
trials within a block proved to be beneficial, suggesting that
learning is still possible but hindered by a low learning rate,
which seems to be supported by experimental data (Shohamy
et al., 2008; Peterson et al., 2009). Even though PD33 did not
show a significant difference in performance between the first
and the last trials of a block of 40 trials, it did improve when
the total number of trials in a block was set to 80. This suggests
that the slow change of the D1 weights requires a lot more trials
for the population coding for the correct action to overcome the
lateral inhibition it receives from the dominant D1 action coding
population.

A condition with relatively mild dopaminergic neuron loss
might fail to be noticed without a rigorous examination. Results
from our model in a condition with low dopaminergic neuron
loss (see the PD16 results in Figure 5) suggest that even though
the performance during learning are similar to the intact model
for the first part of a block, they then fail to improve as much
during the second phase.

There is an absence of consensus on the role of theD1MSNs in
PD and on the modifications they may undergo. We suggest that
PD could affect D1 MSN dynamics, but since the contribution of
D1 in the selection seems to be much smaller relative to D2, the
effect might be difficult to detect experimentally or clinically.

Action Selection Implementation
Concerning action selection, we assumed that it is actually
done at the level of GPi/SNr but obviously depends on the
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activity in D1 and D2 MSNs (Lo and Wang, 2006). There is
also a need to integrate the contributions from a habit learning
pathway (Jog et al., 1999; Yin and Knowlton, 2006). Studies
on the activation of the D1 and D2 pathways in rat BG seem
to support the idea that action selection occurs at this level.
Indeed, an increase in the activity of striatal neurons in both
the D1 and D2 pathways has been observed during spontaneous
movements in mice (Tecuapetla et al., 2014). This indicates
the absence of a strict winner-take-all process at this early
stage. Additionally, an activity related to a stop signal in SNr
has been reported only in the case of successful cancelation
(Schmidt et al., 2013).

It has been suggested that exploratory behaviors could be
the consequence of a non-uniform initialization of the action
values and their expected reward (Kakade and Dayan, 2002).
As this unexpected activity is observed for new states, it could
offer a way to enforce exploration by biasing it with a negative
reward prediction, thus increasing the firing of the dopaminergic
neurons. In the tests used here, the diversity of situations
does not allow us to assess such hypotheses, but we have
nonetheless drawn the initial values of the D1, D2, and RP
pathways from a Gaussian distribution. We suggest that the
gain of different connections or processes, such as the softmax
selection, might rely on neuromodulators such as acetylcholine
(Threlfell and Cragg, 2011; Cachope and Cheer, 2014; Nelson
et al., 2014), serotonin or noradrenaline. This would imply even
a five factor-learning rule: pre- and post-synaptic activity, neuro-
modulator A (dopamine), neuro-modulator B, and receptor type.
Noradrenaline has been suggested to be involved in modifying
the exploration—exploitation ratio of the selection process, in
agreement with a gain regulation of our softmax operation (Doya,
2002).

Besides this, an absence of lateral inhibition between
matrisomes coding for different actions could be inconvenient
if the reaction time depends on the contrast in activity between
D1 and D2 MSNs (Lo and Wang, 2006; Collins and Frank, 2014;
Bahuguna et al., 2015). Additionally, the increased mean firing
rate in this condition to a level well-above what has been observed
in biology, further discredits its relevance. We believe that the
low number of states and actions along with the simple test setup
might be particularly well-suited for the condition without lateral
inhibition, but such a condition would fail to perform as well in
more complex situations.

CONCLUSION

Through analysis of the dynamics and performance of the model,
primarily the change of the weights during learning in the

various pathways, we were able to formulate new hypotheses
regarding the function and organization of different BG network
components. Notably, we suggest that some PD symptoms
could result from a dysfunctional D1 pathway, whereas the
D2 pathway would still be functionally adequate although itself
also affected by the reduced dopamine level. Furthermore, we
discussed the implementation of the network and detailed the
relevant other options, which could be tested experimentally

with a specific focus on the integration of the state and action
information in BG and with the localization of plasticity in the RP
pathway.
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