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Objective: To investigate the ability of a MRI-based radiomics-clinicopathological model

to predict pituitary macroadenoma (PMA) recurrence within 5 years.

Materials and Methods: We recruited 74 recurrent and 94 non-recurrent subjects,

following first surgery with 5-year follow-up data. Univariate and multivariate analyses

were conducted to identify independent clinicopathological risk factors. Two independent

and blinded neuroradiologists used 3D-Slicer software to manually delineate whole

tumors using preoperative axial contrast-enhanced T1WI (CE-T1WI) images. 3D-Slicer

was then used to extract radiomics features from segmented tumors. Dimensionality

reduction was carried out by the least absolute shrinkage and selection operator

(LASSO). Two multilayer perceptron (MLP) models were established, including

independent clinicopathological risk factors (Model 1) and a combination of screened

radiomics features and independent clinicopathological markers (Model 2). The predictive

performance of these models was evaluated by receiver operator characteristic (ROC)

curve analysis.

Results: In total, 1,130 features were identified, and 4 of these were selected by LASSO.

In the test set, the area under the curve (AUC) of Model 2 was superior to Model 1 {0.783,

[95% confidence interval (CI): 0.718—.860] vs. 0.739, (95% CI: 0.665–0.818)}. Model

2 also yielded the higher accuracy (0.808 vs. 0.692), sensitivity (0.826 vs. 0.652), and

specificity (0.793 vs. 0.724) than Model 1.

Conclusions: The integrated classifier was superior to a clinical classifier and may

facilitate the prediction of individualized prognosis and therapy.
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INTRODUCTION

Pituitary adenoma is one of the most prevalent intracranial
masses that can affect adults (1, 2). The varied clinical
manifestations usually result from the endocrine activity, or
volume of tumors. The classification of PA is based on different
criteria, such as size, immunohistochemistry (IHC), invasion,
hormone secretion, and clinical manifestation (1, 3). PAs are
classified into micro, macro, and giant adenomas by the MRI
size. The IHC subtypes of PAs are composed of growth
hormone (GH), prolactin (PRL), adrenocorticotropic hormone
(ACTH), thyroid-stimulating hormone (TSH), and follicle-
stimulating hormone-luteinising hormone (FSH-LH), including
the monohormonal and plurihormonal adenomas. Although
benign in terms of their biological behavior, 30–45% of tumors
invade the cavernous or sphenoid sinus, which can be categorized
into invasive and non-invasive adenomas (1, 3, 4). According to
the clinical classification, PAs consist of functioning and non-
functioning types (1).

The treatment strategy for most tumors is operation. The
postsurgical recurrence rate of pituitary macroadenoma (PMA)
within 5 years is considerably high (5). The tendency to
relapse has been related to many factors, including different
histotypes, tumor remnants, or the extent of invasion into
adjacent anatomical structures (6). Previous research has
demonstrated that many clinicopathological prognostic tools
have potential to predict the recurrence of PMA, consisting of
IHC characteristics, invasion of tumors, genetic expression, and
markers of proliferation (7–11). However, very few attempts
have been made to integrate these risk factors with a machine-
learning approach.

Radiomics is a form of analysis that quantitatively extracts
imaging features from medical data (12). Thus far, radiomics
studies of PA have predominantly focused on two aspects:
presurgical evaluation and subtype classification (13–17). Some
researchers have used radiomics to explore the potential for
relapse in PA. However, these previous models have been
associated with small sample sizes and only cases involving non-
functioning tumors (18, 19).

In the present study, we aimed to establish a
comprehensive classification model that combined independent
clinicopathological risk factors with preoperative radiomics
signatures for the prediction of PMA recurrence within 5 years
of surgery. Our goal was to provide an efficient tool for guiding
clinical management and predicting prognosis.

MATERIALS AND METHODS

Ethics Statement
This retrospective study involved human subjects and was
approved by the Ethics Committee of Beijing Tiantan Hospital.
The requirement for written informed consent was waived.

Subjects
The recurrence of adenomas was defined as incidence
of enlarged remnant tumors in non-functioning PMAs,

and/or endocrine biochemical recurrence in functioning
PMAs (20, 21).

PMAs referred to adenomas with preoperative size >

10mm by MRI in our study, based on Asioli et al. (20).
PMAs were classified into immunonegative, monohormonal-
including GH-positive, PRL-positive, ACTH-positive, FSH-
LH-positive, TSH-positive, and plurihormonal by the results
of IHC staining (22). The radiological signs of aggressive
tumors were determined according to Knosp and Hardy—
Wilson classifications on preoperative MRI by a blinded and
experienced neuroradiologist. The Knosp and Hardy—Wilson
criteria were used to evaluate the degree of invasion of
cavernous sinus (CS) and suprasella, respectively. Knosp Scores
3 and 4 were described as adenomas extending beyond the
lateral tangents of the cavernous segment of internal carotid
artery (ICA) on coronal MRI and completely involving CS
and ICA. Hardy—Wilson Grades 3 and 4 were represented
as local and extensive invasion of the sellar floor; Stages C
and D and E were characterized as total replacement of the
third ventricle, intracranial adenomas, and invasion of CS
(Supplementary Material 1) (5, 23). The aggressive PMAs were
defined as grade of Knosp 3 or 4, and/or Hardy—Wilson
Grades 3 or 4 (and/or Hardy—Wilson Stage C or D or E),
and/or histological evidence of invasion of cavernous or sphenoid
sinus (1). The patients who experienced subtotal resection were
recognized as cases with residual tumor, and the subjects who
underwent gross- or near-total resection were regarded as cases
without remnants (24, 25).

A total of 168 consecutive postoperative subjects with a
confirmed pathological diagnosis of PMA were acquired from
our institutional medical database between January 2010 and
December 2015. Analysis of medical records showed that
74 of these patients reported recurrent attacks (39 men/35
women); and 94 patients had not experienced recurrence (43
men/51 women). All the patients completed the 5-year follow-
up period. The inclusion criteria were as follows: (1) available
investigation for medical data; (2) underwent surgery; (3)
had preoperative MRI; and (4) followed-up for duration of 5
years since first surgery. The exclusion criteria included (1)
underwent other treatments for PMA before the first surgery
or during the follow-up period; (2) pituitary apoplexy; (3)
multiple intracranial lesions; and (4) poor-quality image or lack
of contrast-enhancement MRI.

MRI Acquisition and the Segmentation of
Tumors
All enrolled subjects underwentMRI of the head prior to surgery,
including several different acquisition protocols [axial T1WI and
T2WI, axial, coronal, and sagittal contrast-enhanced T1WI (CE-
T1WI)]. The contrast agent, dimeglumine gadopentetate, was
injected at a dose of.2 ml/kg, following pre-contrast T1 scanning.
MRI images were obtained from four different MRI scanners
with 3 T (GE Discovery MR 750, n = 59; Siemens MAGNETOM
Trio TimSystem, n = 43; Siemens MAGNETOM Verio, n = 22;
Philips Ingenia, n = 9), and a 1.5 T scanner (GE Medical System
Genesis Signa, n = 35). Supplementary Material 2 shows the
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type of the contrast medium and the parameters used for axial
CE-T1WI for five MRI modalities.

Whole tumors, based on preoperative axial CE-T1WI
images, were identified as the region of interest (ROI).
The manual delineation of each ROI was conducted by a
neuroradiologist with 5 years of experience, using 3D-Slicer
software (version 4.10.2 r28257, National Institutes of Health).
Prior to segmentation, we applied three steps to standardize
different MRI images: N4ITK bias correction, resampling with
resampled voxel sizes of 1, 1, and 1, and Laplacian of Gaussian
(LOG) with LOG kernel sizes being 1.5, 2, and 2.5 by 3D-Slicer.

Assessments of Intra- and Interobserver
Reproducibility
Neuroradiologist 1 segmented the ROIs of 60 randomly
selected cases on two occasions separated by an interval
of 2 weeks. Neuroradiologist 2 with 5 years of experience
independently performed the same analyses on one occasion.
Intraclass correlation coefficient (ICC) was then calculated by
R (version 4.0.2, http://www.R-project.org) to compare intra-
and inter-observer reproducibility. The high reproducibility of
these radiomics features was recognized as the ICC score for
Radiologist 1 (on two occasions) or between Radiologists 1 and
2 >.75.

The Extraction of Features and Dimension
Reduction
In total, 1,130 features were extracted from the segmented ROIs
by 3D-Slicer software. These features encompassed eight types:
first-order, shape, gray-level dependence matrix (GLDM), gray-
level co-occurrence matrix (GLCM), gray-level run length matrix
(GLRLM), gray-level size zone matrix (GLSZM), neighboring
gray tone difference matrix (NGTDM), and wavelet-based
features, which were four distinct categories: intensity histogram,
texture, shape, and wavelet. The detailed information for all
features is shown in Supplementary Material 3.

The features with ICC score <0.75 were excluded in the first
stage, because of the poor reproducibility. Then, we performed
the least absolute shrinkage and selection operator (LASSO) in
the R environment to carry out dimensionality reduction in the
training set. The corresponding regularization coefficient (λ) was
obtained by 10-fold cross-validation in LASSO regression based
on the 1-standard error of the minimum criteria (1-SE criteria).

The Establishment and Validation of a
Radiomics-Clinicopathological Model
The z-score was used to normalize all features onto a similar
scale. We randomly separated these subjects into a training set
(including 51 recurrence and 65 non-recurrence subjects) and a
test set (23 cases with relapse and 29 without relapse; based on a
data-partition ratio of 7:3).

Two multilayer perceptron (MLP) classifiers were built
by python (version 3.8.2, http://www.python.org) for the
prediction of recurrence in PMA, including independent
clinicopathological risk factors (Model 1—clinical model) and
a combination of screened radiomics features and independent

clinicopathological markers (Model 2—integrated model).
Receiver operator characteristic (ROC) curves were performed
and used to estimate the predictive performance of the two
models by area under curve (AUC) analysis. This analysis
allowed us to determine the accuracy, specificity, and sensitivity
of each model.

MLP was composed of an input layer, a hidden layer, and an
output layer. In the process of forward propagation, a series of
algorithms were performed to obtain the output of each layer,
which was used to be the input of the next layer. The equation
was as follows:

y = f (wx+ b)

where y represents the outcome of output, x represents the
input vector, w represents the weight, b represents the bias,
and f represents the activation function. Our classifiers included
three hidden layers, for which the numbers of neurons were 64,
512, and 64, respectively. The dropout layer was conducted to
lose 20% of neurons to reduce overfitting. We applied Rectified
Linear Unit (ReLU) and Sigmoid to be activation functions for
the hidden and output layers. The binary cross entropy was
calculated for use as loss function. The weights were tuned by
the back propagation method based on the derivation of the
chain rule. In our study, the training epochs were set to 500.
Before model establishment, the training cohort was shuffled.
The monitoring indicators were accuracy, sensitivity, specificity,
and AUC in the training set. Stochastic gradient descent (SGD)
was used as the optimizer, with an initial learning rate of.1. The
learning rate decay strategy was set to the reduction of 70% if the
accuracy of training cohort did not improve for consecutive 100
epochs. Optimized class weights were obtained according to the
numbers of recurrent and non-recurrent patients in the training
set, and the batch size was default value of 32. The predictive
performance of each model was validated in the test cohort and
evaluated by 5-fold cross-validation. Figure 1 shows the process
used for the analysis of radiomics.

Statistical Analysis
The normality test of the data was performed by Shapiro—Wilk.
Two-sided independent sample t-test and Mann—Whitney U-
test were conducted to compare the differences in continuous
variates, and Pearson’s χ2 test and Fisher’s precision probability
test were used to investigate the differences in categorical variates
in the training and test sets. Univariate and multivariable logistic
regression were used to identify independent clinicopathological
risk factors for the recurrence of PMA in the training set.
The differences of extracted radiomics features between groups
of recurrence and non-recurrence in the training set were
determined by Mann—Whitney U-test; these analyses were
carried out with SPSS (version 23.0, IBM), and a p of < 0.05 was
considered to be statistically significant.

RESULTS

Clinical Characteristics of the Study Cohort
The baseline investigation of the study patients is shown
in Table 1. The differences with regard to clinical
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FIGURE 1 | The process used for the analysis of radiomics. Radiomics features were extracted from the preoperative axial CE-T1WI images by 3D slicer. Dimension

reductions were performed two times by ICC and LASSO. The MLP was used to build two predictive models. Model 1 included independent clinicopathological risk

factors. Model 2 included the combination of radiomics features and independent risk factors.

characteristics between training and test cohorts were not
statistically significant.

Univariate analysis demonstrated that age {p = 0.034; OR,
0.967 [95% confidence interval (CI), 0.937–0.997]}, height
[p = 0.007; OR, 1.068 (95% CI, 1.018–1.120)], residual tumor
[p = 0.009; OR, 2.963 (95% CI, 1.319–6.659)], and invasion
[p = 0.009; OR, 3.359 (95% CI, 1.359–8.305)] were significant
risk factors for relapse. Multivariate analysis identified two
independent risk factors for the recurrence of PMA: age
[p = 0.035; OR, 0.963 (95% CI, 0.930–0.997)] and residual
tumor [p = 0.047; OR, 2.393 (95% CI, 1.011–5.667)] (Table 2).
Our study included four clinicopathological features: age, height,
residual tumor, and invasion in Models 1 and 2 based on
univariate and multivariate analyses.

Intra- and Interobserver Analyses
The mean ICC scores for intra- (Neuroradiologist 1 on
two occasions) and interobserver (Neuroradiologists 1 and 2)
agreements were 0.913 ± 0.129 and 0.903 ± 0.127, respectively,
for all selected patients, which showed the high agreement of
these features.

Comparing the Predictive Performance of
the Two Models
Of the 1,130 features, 138 with unsatisfactory agreement were
excluded by the first round, and four of these radiomics features
were then identified by LASSO regression, consisting of one
shape feature, one LOG, and two wavelet features. All of four
selected signatures showed statistically significant differences (p
< 0.05) in the training set (Figure 2).

The ROC curves in the training and test sets are shown in
Figure 3; the AUCs, accuracy, sensitivity, and specificity of the
two models are presented in Table 3. In the test set, the AUC
of Model 2 was superior to Model 1 [0.783, (95% CI: 0.718–
0860) vs. 0.739, (95% CI: 0.665–0.818)]. Model 2 also yielded the
higher accuracy (0.808 vs. 0.692), sensitivity (0.826 vs. 0.652), and
specificity (0.793 vs. 0.724) than Model 1.

DISCUSSION

In this study, we constructed a diagnostic classification strategy
based on the presurgical MRI to predict the recurrence risk of
PMA within 5 years. This comprehensive classifier incorporates
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TABLE 1 | Clinical characteristics of PMA subjects in the training and test sets.

Training set (n = 116) Test set (n = 52) Whole set (n = 168) p

Age, mean (SD), y 45.59 (12.38) 44.96 (11.63) 45.39 (12.12) 0.758†

Sex, No. (%) 0.899§

Male 57 (49.14) 25 (48.08) 82 (48.81)

Female 59 (50.86) 27 (51.92) 86 (51.19)

Endocrine level, No. (%) 0.214§

Non-functioning 71 (61.21) 37 (71.15) 108 (64.29)

Functioning 45 (38.79) 15 (28.85) 60 (35.71)

Height, median (IQR), mm 30.73 (20.42-41.04) 31.82 (19.21-44.43) 30.96 (25.81-36.93) 0.284‡

Residual tumor, No. (%) 0.584§

Without 43 (37.07) 17 (32.69) 60 (35.71)

With 73 (62.93) 35 (67.31) 108 (64.29)

Invasion, No. (%) 0.578§

No 33 (28.45) 17 (32.69) 50 (29.76)

Yes 83 (71.55) 35 (67.31) 118 (70.24)

Surgical methods, No. (%) 0.686§

Craniotomy 29 (25.00) 12 (23.08) 41 (24.40)

Trans-sphenoidal 59 (50.86) 30 (57.69) 89 (52.98)

Endoscopic 28 (24.14) 10 (19.23) 38 (22.62)

The IHC subtypes, No. (%) 0.906&

Immunonegative 48 (41.38) 25 (48.08) 73 (43.45)

GH-positive 6 (5.17) 1 (1.92) 7 (4.17)

PRL-positive 5 (4.31) 3 (5.77) 8 (4.76)

ACTH-positive 11 (9.48) 3 (5.77) 14 (8.33)

FSH-LH-positive 22 (18.97) 8 (15.38) 30 (17.86)

TSH-positive 2 (1.72) 1 (1.92) 3 (1.79)

Plurihormonal 22 (18.97) 11 (21.15) 33 (19.64)

ACTH, adrenocorticotropic hormone; FSH, follicle-stimulating hormone; GH, growth hormone; IHC, immunohistochemistry; IQR, interquartile range; LH, luteinizing hormone; No, number;

PRL, prolactin; SD, standard deviation; TSH, thyroid-stimulating hormone.
†Two-sided independent sample t-test.
‡Mann—Whitney U-test.
§Pearson’s χ2 test.
&Fisher’s precision probability test.

clinicopathological and radiomics features and can accurately
predict the recurrence of PMA.

Various factors are known to be associated with a higher
risk of PMA recurrence, which remains a significant problem
for both clinicians and patients. Very few previous reports have
attempted to combine clinicopathology analysis with radiomics
for the prediction of PMA. MRI radiomics approaches have
been described in previous literature. For example, Zhang et al.
(18) and Machado et al. (19) used this method to explore
the recurrence of non-functioning PA. Compared with these
previous results, the Model 2 in our study presented with
relative low diagnostic accuracy. This is probably because we
built the test set using an independent set of subjects rather
than the training group. Moreover, our study simultaneously
included functioning and non-functioning PMAs. The study
cohorts and enrollment criteria may lead to the different
predictive performances. However, our Model 2, which had
a relatively large sample size and incorporated comprehensive
markers, showed a better level of classification performance than
Model 1. This improved predictive efficiency demonstrates that

the combination of clinicopathological data and imaging may
provide more practical information and guidance for developing
a treatment and prognosis strategy than clinical analysis alone.

MLP model is a feed-forward artificial neural network (ANN)
model that is applicable to a non-linear inseparable issue;
Almubark et al. demonstrated the predictive value of this
approach in their previous study (26). The generalization and
efficacy of this method have been widely confirmed in several
papers (27–29). Given these characteristics, we also established
an MLP classifier for the recurrence of PMA and achieved
satisfactory levels of predictive performance in a test cohort.
These data indicate that this deep learning algorithm is a
reproducible and robust technique for classification.

Many risk factors are associated with the recurrence of PMA.
In the present study, we incorporated some of the primary
predictors that have been described in previous literature (30).
Four clinicopathological risk factors—age, height, invasion, and
residual tumor—were finally included in our comprehensive
model; these factors were identified by a combination of
univariate and multivariate analyses. We found that the patients
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TABLE 2 | Univariate and multivariate analysis of clinical characteristics to identify risk factors in the recurrence of PMA in the training set.

Univariate analysis Multivariate analysis

OR (95%CI) p OR (95%CI) p

Age, y 0.967 (0.937–0.997) 0.034* 0.963 (0.930–0.997) 0.035*

Sex

Male (ref.) 1

Female 1.008 (0.484–2.100) 0.982

Endocrine level

Non-functioning (ref.) 1

Functioning 1.196 (0.564–2.535) 0.641

Height, mm 1.068 (1.018–1.120) 0.007* 1.045 (0.992–1.100) 0.097

Residual tumor

Without (ref.) 1

With 2.963 (1.319–6.659) 0.009* 2.393 (1.011–5.667) 0.047*

Invasion

No (ref.) 1

Yes 3.359 (1.359–8.305) 0.009* 2.746 (0.994–7.585) 0.051

Surgical methods

Transcranial (ref.) 1

Trans-sphenoidal 0.904 (0.371–2.202) 0.824

Endoscopic 0.595 (0.206–1.722) 0.338

The IHC subtypes

Immunonegative (ref.) 1

Monohormonal 0.821 (0.358–1.881) 0.640

Plurihormonal 2.450 (0.865–6.939) 0.092

CI, confidence interval; IHC, immunohistochemistry; OR, odds ratio.

*p < 0.05.

in the recurrence group tended to be younger. We believe that
this is because there is a greater risk of gene disorders in younger
age groups (31). In a previous study, Trott concluded that
young patients express elevated levels of ki-67 in non-functioning
pituitary adenoma, and that this is strongly associated with
relapse (32). Moreover, some ultrastructural types of PMA
resulted in regrowth, such as sparsely granulated somatotroph
adenoma, and are more likely to affect younger patients. The
aggressive growth pattern of PMA is one of the main reasons
concerned with the prognosis (33). The invasive tumors usually
exhibit more rapid growth, a higher proliferative index, and
larger size. Thus, the severe erosion of surrounding structures
(e.g., cavernous sinus and sellar floor) and great extension of
the supra- and para-sellar lead to increased rates of recurrence
(34). Similar results in the present literature provide support
to our conclusion that tumor remnant is also known to be
significantly correlated with PMA behavior, especially the higher
incidence of larger extra-sellar residuals (5, 6, 34). Height is
another recognized predictive candidate. It is evident that the
tumors with higher height may result in incomplete resection
and invasive behavior, which consequently raise the likelihood
of regrowth. These findings are consistent with previous reports
(5, 6, 35). This suggests that the clinical characteristics described
above are useful and reliable tools for predicting the prognosis of
patients with PMA.

The tumor classification involving the transcription factor
or ultrastructure showed that the presence of giant lactotroph,
sparsely granulated somatotroph, crooke’s cell, or silent
corticotroph adenomas tends to present the recurrence nature
(5, 36, 37). Our study focused on the proposed IHC subtypes
that are also important and potential indicators related to the
progression. The study reported by Asioli et al. showed that
PRL, ACHT, and FSH-LH subunits had relapse risk with high
probability (20). These indices were not statistically significant
when compared between the two groups in our study; it is
possible that this was owing to the small sample size compared
with the previous study. Although the rate of TSH adenoma
was the lowest among all cases, the trend of incidence is in line
with tangible clinical practice. The morbidity of this type is low
based on the demographic investigation, comprising <3% of all
tumors (38). We included the plurihormonal adenoma in our
study. The most common type is the co-secretion of GH and
PRL (39). But the combination of different hormones tends to be
more complicated. Little is known with regard to the correlation
between recurrence and plurihormonal tumors.

The trans-sphenoidal and endoscopic surgical methods are
extensively applied to dealing with PMA (40–42). Our study
did not show the correlation between operative approaches
and recurrence. According to current studies, tumor size and
invasive extension were decisive factors in extent of resection.
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FIGURE 2 | Violin plots showing the differences of 4 selected radiomics features, Shape_Sphericity (A), LOG_GLDM_LDHGLE (B), Wavelet_GLSZM_GLNU (C), and

Wavelet_GLSZM_ZE (D) between groups of recurrence and non-recurrence in the training set by Mann—Whitney U-test. GLDM, gray-level dependence matrix; GLNU,

gray-level non-uniformity; GLSZM, gray-level size zone matrix; LDHGLE, large dependence high-gray-level emphasis; LOG, laplacian of gaussian; ZE, zone entropy.

FIGURE 3 | The receiver-operating characteristic (ROC) curve for Models 1 and 2 in the training (A) and test sets (B), respectively. Model 1 included independent

clinicopathological risk factors and Model 2 included both radiomics features and independent clinicopathological risk factors.
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TABLE 3 | Predictive performance of Models 1 and 2 in the training and test set.

Training set (n = 116) Test set (n = 52)

AUC (95% CI) ACC SEN SPE AUC (95% CI) ACC SEN SPE

Model 1 0.749 (0.702–0.804) 0.724 0.706 0.738 0.739 (0.665–0.818) 0.692 0.652 0.724

Model 2 0.800 (0.759–0.845) 0.776 0.725 0.815 0.783 (0.718–0.860) 0.808 0.826 0.793

Model 1 included independent clinicopathological markers and Model 2 included both radiomic features and clinicopathological markers.

AUC, area under the curve; ACC, accuracy; CI, confidence interval; SEN, sensitivity; SPE, specificity.

The macro or giant adenomas and extensive invasion tended
to be difficult to achieve grossly complete resection, although
the trans-sphenoidal or endoscopic resection was used (43–45).
The residual tumor is likely to be the crucial factor that affects
the prognosis, suggesting that the surgical resection may be
more likely to associate with intrinsic biological characteristics
of tumors, compared with an operative procedure. Patients who
received total resection still have the possibility of relapse (5).
This indicates that surgery alone may not enable to decrease the
recurrence rate. It is also important and beneficial to combine
radiotherapy or other methods (46).

The consistency of adenomas probably influences the
prognostic outcomes. A study showed that texture was
correlated with tumor profiles, complications, and surgical
resection. The hard adenomas were at higher risk of large and
aggressive behavior and subtotal removal (47). This suggests
that consistency is potential to predict the recurrence of PMAs.
Rui et al. confirmed the utility of the radiomics method for
determining the texture of PMAs (13). Future PA studies may
pay more attention to the relationship between the stiffness and
recurrence by radiomics.

The proliferative biomarkers of ki-67, p53, and mitosis play
an important role in tumor prognosis. Although there remains
the controversy of arguments, the changes of these proliferation
indices are often associated with aggressive PAs. The prognoses
of the patients tended to be recurrent or poorer in the presence
of ki-67 ≥3, mitoses >2, and p53 overexpression based on the
study by Raverot and European Society of Endocrinology (48).
Above all, the most effective and useful predictive strategies are
incorporating the predictors of different fields, such as clinical,
imaging, and immunohistochemical examination.

LIMITATIONS

First, the proliferations, transcription factors, ultrastructural
subtypes, along with expression profiles of certain genes, were
not considered in this study but may improve the performance
of our classifier. Second, the pituitary scanning sequence with
smaller slice thickness and interval was not applied in the study,
because the protocol is not clinical routine examination; it may
be considered in future studies. Third, microadenoma is another
common subgroup of pituitary tumor; radiomic studies of this
form of tumor are very rare. We did not include this type

of tumor in the present study due to a limited sample size.
Finally, this study was based in a single center and lacks external
validation in multiple centers.

CONCLUSION

The combination of clinicopathological characteristics and
imaging is useful for predicting the recurrence of PMA within 5
years. The integrated classifier was superior to a clinical classifier
and may facilitate the prediction of individualized prognosis
and therapy.
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