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Investigating inter-subject heterogeneity (or spatial distribution) of human semen

microbiome diversity is of important significance. Theoretically, the spatial distribution

of biodiversity constitutes the core of microbiome biogeography. Practically, the

inter-subject heterogeneity is crucial for understanding the normal (healthy) flora of

semen microbiotas as well as their possible changes associated with abnormal fertility.

In this article, we analyze the scaling (changes) of semen microbiome diversity across

individuals with DAR (diversity-area relationship) analysis, a recent extension to classic

SAR (species-area relationship) law in biogeography and ecology. Specifically, the unit

of “area” is individual subject, and the microbial diversity in seminal fluid of an individual

(area) is assessed via metagenomic DNA sequencing technique and measured in the

Hill numbers. The DAR models were then fitted to the accrued diversity across different

number of individuals (area size). We further tested the difference in DAR parameters

among the healthy, subnormal, and abnormal microbiome samples in terms of their

fertility status based on a cross-sectional study of a Chinese cohort. Given that no

statistically significant differences in the DAR parameters were detected among the three

groups, we built unified DAR models for semen microbiome by combining the healthy,

subnormal, and abnormal groups. The model parameters were used to (i) estimate the

microbiome diversity scaling in a population (cohort), and construct the so-termed DAR

profile; (ii) predict/construct the maximal accrual diversity (MAD) profile in a population; (iii)

estimate the pair-wise diversity overlap (PDO) between two individuals and construct the

PDO profile; (iv) assess the ratio of individual diversity to population (RIP) accrual diversity.

The last item (RIP) is a new concept we propose in this study, which is essentially a ratio of

local diversity to regional or global diversity (LRD/LGD), applicable to general biodiversity

investigation beyond human microbiome.

Keywords: semenmicrobiome, biogeography, inter-subject heterogeneity, DAR (diversity-area relationship), beta-

diversity, RIP (ratio of individual to population accrual diversity), LRD/LGD (ratio of local to regional/global

diversity)
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INTRODUCTION

Similar to other humanmicrobiome habitats such as gut, vaginal,
or breast milk, human seminal fluid also hosts a microbiome
including several hundreds of bacterial species per individual
with various levels of abundances (Kiessling et al., 2008; Moretti
et al., 2009; De Francesco et al., 2011; Hou et al., 2013; Weng
et al., 2014). The seminal microbiome, just like other human
microbiomes, is highly personalized. If we considered a cohort
or population of men, their semen microbiomes are independent
in ecological time in general, and each individual is not unlike
an island available for microbes to invade and/or inhabit. Similar
scenarios have been investigated extensively in macro-ecology
of plants and animals since the 1960s, started with MacArthur
and Wilson’s (1967) island biogeography. The biogeography
studies the spatial and/or temporal distribution of biodiversity
and is a foundation of the modern conservation biology and
biodiversity conservation in large. It has been widely recognized
that seminal microbiome is implicated, at least in some of the
male infertilities (Kiessling et al., 2008; Moretti et al., 2009; De
Francesco et al., 2011; Domes et al., 2012; Hou et al., 2013;
Weng et al., 2014). Therefore, investigating the biogeography or
spatial distribution of seminal microbiome diversity is necessary
for deep understanding the seminal microbiome as well as their
implications for male infertility.

Prior to recent large-scale DNA sequencing studies of seminal

microbiome samples (e.g., Hou et al., 2013; Weng et al., 2014),
most studies on seminal microbes were focused on acute and
chronic microbial infections, either based on PCR, microscopic
or artificially culture-based methods (Keck et al., 1998; Henkel
et al., 2006; Kiessling et al., 2008; Lbadin and Ibeh, 2008;
Ochsendorf, 2008; Moretti et al., 2009; Akutsu et al., 2012; Domes
et al., 2012), and majority of the early studies were conducted to
explore the relationship between infections and male infertility.

It was reported that infectious etiologies cause about 15% of
male infertility cases (Diemer et al., 2003; Weng et al., 2014).
The adoption of NGS (next generation sequencing) technologies

have lead to significant advances in understanding the semen
microbiome, because it greatly expanded our capability to detect
virtually all bacteria in seminal fluid with rather low cost. Since
the cataloging the semen microbes is not limited to infectious or
opportunistically infectious microbes anymore, the NGS-based
metagenomic technology and associated bioinformatics analyses
have made the examination of the whole seminal microbiome
from ecological perspective a routine research technique. For
example, Weng et al. (2014) showed that the most abundant
genera among the semen samples of 96 Chinese individuals were
Lactobacillus (19.9%), Pseudomonas (9.85%), Prevotella (8.51%),
and Gardnerella (4.21%). They further found that the seminal
bacterial communities were clustered (through unsupervised
clustering analysis) into three major types, dominated by
Lactobacillus, Pseudomonas, and Prevotella, respectively. They
also investigated the association between seminal microbial
community and semen quality. In spite of the significant
advances made in the existing studies, to the best of our
knowledge, no studies with biogeography approaches to seminal
fluid microbiome have ever been performed. As mentioned

previously, biogeography approaches offer applicable theory and
ideal techniques for analyzing the spatial distribution patterns
of seminal microbiome diversity in a human population or
cohort, and insights from the biogeography approaches such as
heterogeneities of the seminal microbiome among individuals
and the population-level characteristics should certainly be rather
useful for personalized fertility research and public health.

Microbial biogeography is charged with the mission
of understanding the spatial and/or temporal distribution
of microbial diversities on regional or global scales. The
classic species-area relationship (SAR), which quantitatively
characterizes the relationship between the number of species
(formally known as species richness, which is a rough measure
of biodiversity) and the geographic area species distributed as
a power-law function, is regarded as one of few classic laws in
ecology and biogeography. The first documentation of the SAR
relationship can be traced back to British botanist (Watson’s,
1835) study of the distribution of plants. Since then, numerous
theoretical and field studies have been performed (Watson, 1835;
Preston, 1960; Connor and McCoy, 1979; Rosenzweig, 1995;
Harte et al., 1999; Lomolino, 2000; Drakare et al., 2006; Tjørve
and Tjørve, 2008; Tjørve, 2009; He and Hubbell, 2011; Sizling
et al., 2011; Storch et al., 2012; Triantis et al., 2012; Whittaker
and Triantis, 2012; Helmus et al., 2014). In the 1960’s, the SAR
theory inspired (MacArthur andWilson’s, 1967) establishment of
their island biogeography theory, and the theory not only greatly
enriched the principles and methods of general biogeography,
but also was essential in shifting the focus of ecological research
from population to community and in advancing community
ecology in the 1970s and after. Today, much of the ecological
theories and analysis techniques applied to microbiome research
come from community ecology.

Recently, taking advantage of the big metagenomic datasets
from the human microbiome project (HMP) and related studies,
Ma, 2018a,b extended the classic SAR to general DAR (diversity-
area relationship) by replacing the “species richness” in the classic
SAR with general “diversity.” As mentioned previously, species
richness or the number of species in a community, region or area,
is rather rough as a measure of biodiversity because it ignores the
fact that not all species are born equally abundant on the planet.
Some species like panda are on one extreme and others such as
flies are another extreme. The classic SAR is therefore somewhat
flawed when the relationship is used to characterize the spatial
distribution of biodiversity thanks to the simplified measure
of biodiversity with species numbers. The DAR overcomes the
flaw of traditional SAR by using more scientific metrics for
biodiversity measures. Specifically, to construct DAR models,
Ma, 2018a,b utilized Renyi’s entropy based Hill numbers, which
included some of the most widely used diversity indexes such as
Shannon diversity and Simpson diversity indexes as its special
cases. The adoption of Hill numbers for building DAR models
also overcomes an issue of selecting diversity index frommany of
the choices, which often confuses non-ecologists unnecessarily.

The present article aims to apply the recent extended DAR
modeling approach to discovering the important patterns of
biogeography of seminal microbiome. We build the DAR
models and compute these metrics by using the metagenomic
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sequencing data originally reported by Weng et al. (2014), and
we also explore whether or not those metrics are related to
the sperm quality. Specifically, we build DAR models for alpha-
diversity and beta-diversity, respectively, and further derive
some critical parameters including diversity scaling parameter—
measuring the change rates of diversity across individuals
(the size of microbial habitat area), pair-wise diversity overlap
(similarity) (PDO)—measuring the average proportion of shared
diversity or similarity between two individuals,maximum accrual
diversity (MAD) in a population or cohort, and the ratio of
individual to population diversity (RIP), a newly introduced
metric that measures the ratio of individual microbial diversity
to population-level microbial diversity. In terms of more general
biogeography terms beyond the human microbiome, the concept
of RIP can be generalized as the ratio of local to regional diversity
(LRD) or ratio of local to global diversity (LGD), which can be
applied to general biodiversity research in any other ecosystems.

MATERIALS AND METHODS

Datasets Description
The 16S-rRNA OTU (operational taxonomic unit) tables of
the semen microbiome at genus and species taxonomic levels,
respectively, which we used to perform the DAR analysis, were
originally reported by Weng et al. (2014). The OTU tables
were generated from DNA-sequencing the semen microbiome
samples, collected from 96 individuals including 35 with normal
fertility, 28 with sub-normal fertility, and 33 with abnormal
fertility, and the consequent bioinformatics analysis. From the
96 samples, Weng et al. (2014) obtained a total of 8,337,766
sequence reads, that is 80,424 reads per participant sample, a
sufficiently large sample size for consequent statistical analyses.
They detected an average number of 135 genera and 569 species
from those samples.

Since the objective of Weng et al. (2014) study was to
investigate the relationship between sperm quality and seminal
microbiome, the original study included three treatments
(groups), i.e., the normal, sub-normal, and abnormal as
mentioned previously. The study design, of course, has no issue
at all with its original objectives. To harness the data for our
DAR analysis in this study, we first build DAR models for each
treatment separately, and then perform statistical tests to see if
there are any differences in the DAR parameters among the three
treatments. If there is any significant difference, we keep the
results and further investigate the implications of the difference
to the status of treatments (fertility status). If there is not any
significant difference, we then combine all 96 samples from the
three treatments, build a single set of DAR models with the
combined datasets, and further use the DAR models to explore
the general biogeography properties of the seminal microbiome.

The Diversity-Area Relationship (DAR)
The process of constructing DARmodels for microbes consists of
the following three steps: (i) bioinformatics analysis of 16S-rRNA
reads to get OUT tables (Schloss et al., 2009; Caporaso et al., 2010;
Bokulich et al., 2018); (ii) computing species or OTU diversities

measured with the Hill numbers (Chao et al., 2012, 2014; Ma,
2017); (iii) building the DAR models (Ma, 2018a,b).

Diversity Measured in Hill Numbers
The Hill numbers are a form of Renyi’s entropy (Renyi, 1961).
It was initially introduced as an evenness index from economics
by Hill (1973) and later reintroduced into ecology by Jost (2007)
and Chao et al. (2012) who further clarified Hill’s numbers for
measuring alpha diversity as:

qD =

(

S
∑

i=1

p
q
i

)1/(1−q)

(1)

where S is the number of species, pi is the relative abundance of
species i, q is the order number of diversity.

The Hill number is undefined when q = 1, but its limit as q
approaches to 1 exists in the following form:

1D = lim
q→1

qD = exp

(

−

s
∑

i=1

pi log(p1)

)

(2)

The parameter q controls the sensitivity of the Hill number to
the relative frequencies of species abundances. When q = 0, the
species abundances do not weigh at all and 0D = S, i.e., species
richness. When q = 1, 1D equal the exponential of Shannon
entropy, and is interpreted as the number of typical or common
species in the community because 1D is weighted proportionally
by species abundances. When q = 2, 2D equal the reciprocal of
Simpson index, i.e.,

2D = (1/

S
∑

i=1

p2i ) (3)

which is interpreted as the number of dominant or very abundant
species in the community (Chao et al., 2012) because 2D
is weighted in favor of more abundant species. The general
interpretation of qD is that the community has a diversity of order
q, which is equivalent to the diversity of a community with qD =

x equally abundant species.
A recent consensus suggested that, with the Hill numbers,

the multiplicatively defined beta-diversity, rather than additively
defined, by partitioning gamma diversity into the product of
alpha and beta, should be used to define beta-diversity, in which
both alpha and gamma diversities are measured with the Hill
numbers.

qDβ =
qDγ /qDα (4)

This beta diversity derived from the above partition takes the
value of 1 if all communities are identical, the value of N
(the number of communities) when all the communities are
completely different from each other (there are no shared
species). With Jost (2007) words, this beta diversity measures “the
effective number of completely distinct communities.” In this study,
we compute diversities until q = 3, i.e., to the third order. Note
that a series of the Hill numbers at different order q is termed
diversity profile (Jost, 2007; Chao et al., 2012, 2014).
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The DAR (Diversity-Area Relationship) Models
Based on the fact that all Hill numbers are in the units of species
or species equivalents such as OTUs, and on the intuition that
Hill numbers should follow the same or similar pattern of the
classic SAR (species area relationship), Ma (2018a) extended SAR
to general DAR (diversity-area relationship), in which diversity is
measured with Hill numbers.

The basic power function, known as the power law (PL)
species scaling law widely adopted in SAR study, is extended to
describe the general diversity-area relationship (DAR):

qD = cAz (5)

where qD is diversity measured in the q-th order Hill numbers, A
is area, and c and z are parameters.

A slightly modified PL model, the power law with exponential
cutoff (PLEC) model, originally introduced to SAR modeling by
Plotkin et al. (2000) and Ulrich and Buszko (2003), respectively
(also see Tjørve, 2009), can also be utilized for DAR modeling.
The PLEC model is:

qD = cAz exp(dA), (6)

where d is a third parameter and should be negative in DAR
scaling models, and exp(dA) is the exponential decay term that
eventually overwhelms the power law behavior at very large value
of A.

The following log-linear transformed equations (7, 8) can
be used to estimate the model parameters of Equations (5, 6),
respectively:

ln(D) = ln(c)+ z ln(A) (7)

ln(D) = ln(c)+ z ln(A)+ dA (8)

Both linear correlation coefficient (R) and p-value can be used
to judge the goodness of the model fitting. In fact, either of
them should be sufficient to judge the suitability of the models to
data. Three advantages are associated with the linear-transformed
fitting: (i) simplicity in computation, (ii) parameter z is scale-
invariant with Equation (7), (iii) the ecological interpretation of
scaling parameter is preserved with Equation (8). The scaling
parameter z is also termed the slope of the DAR power-law,
because z represents the slope of the linearized function in log–log
space.

The relationship between DAR model parameter (z) of the
DAR PL model and the diversity order (q), or z-q trend, was
defined as the DAR profile (Ma, 2018a). It describes the change
of diversity scaling parameter (z) with the diversity order (q),
comprehensively. Obviously, the DAR profile is an extension of
the diversity profile concept Chao et al. (2012, 2014) proposed,
which is the diversity in the Hill numbers at the q-th order.

In macro-ecology, there are usually natural spatial orders for
the “areas,” which is generally lacking in human microbiome
because human residences are little relevant to the accrual
of diversities for DAR modeling. To avoid the potential bias
from an arbitrary order of the human microbiome samples, we
totally permutated the orders of all the microbiome samples

under investigation, and then randomly chose 100 orders of
the microbiome samples generated from the total permutations.
That is, rather than taking a single arbitrary order for accruing
microbiome samples in one-time fitting to the DAR model, we
repeatedly perform the DARmodel-fitting 100 times with the 100
randomly chosen permutation orders. Finally, the averages of the
model parameters from the 100 times of DAR fittings are adopted
as the model parameters of the DAR for the set of microbiome
samples under investigation. An additional advantage of this re-
sampling from total permutations is that the procedure makes
the parameter c of the DAR-PL model being able to represent
an average individual in the population (cohort) from which the
individual comes from.

Predicting MAD (Maximal Accrual Diversity) With

DAR-PLEC Models
Ma (2018a) derived the maximal accrual diversity (MAD) in a
cohort (or population) based on the PLEC model [Equations (6,
8)] as follows:

Max(qD) = qDmax = c(−
z

d
)
z
exp(−z) = cAz

max exp(−z) (9)

and the number of individuals (Amax) needed to reach the
maximum can be estimated by

Amax = −z/d (10)

where all parameters are the same as Equations (6,8).
Similar to the previous definition for DAR profile (z-q

pattern), the MAD profile (Dmax-q pattern), was defined as a
series of Dmax values corresponding to different diversity order
(q) (Ma, 2018a).

Pair-Wise Diversity Overlap (PDO) Profile
The pair-wise diversity overlap (g) of two bordering areas of the
same size (i.e., the proportion of the new diversity in the second
area) is (Ma, 2018a):

g = 2− 2z (11)

where z is the scaling parameter of DAR-PL model [Equations
(5, 7)]. If z = 1, then g = 0, there is no overlap (similarity); if z
= 0, then g = 1, totally overlap. In reality, g should be between 0
and 1.

Since the equal size of area assumption is largely true in
the case of sampling human microbiome, the parameter z of
the DAR-PL can be utilized to estimate the pair-wise diversity
overlap (PDO), i.e., the diversity overlap (similarity) between two
individuals, in the human microbiome with Equation (11).

Similar to previous definitions for DAR profile (z-q pattern)
and MAD profile (Dmax-q pattern), the PDO profile (g-q pattern)
was defined as a series of PDO-g values at different diversity order
(q) (Ma, 2018a).

A Summary on the Interpretations of Important DAR

Parameters
We summarize the ecological interpretations from PL/PLEC as
follows to facilitate the discussion of the results from fitting DAR
models with semen microbiome datasets.
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z: The slope of the DAR-PL model or scaling parameter, and it
is the ratio of diversity accrual rate to area increase rate. TheDAR
profile is a series of z-q values, corresponding to different diversity
order (q).

c: Theoretically, by setting A = 1, S0=cAz
=c, hence c is the

Hill numbers (i.e., the number of species or species equivalents
of diversity) in one unit of area, but not per unit of area because
the scaling is non-linear. However, since we used 100 times of
re-sampling to get the DAR parameters as explained previously,
plus that the area size in human microbiome sampling can be
considered as approximately equal, we argue that, in practice, the
parameter c of the DAR-PLmodel can be treated as an estimate of
the individual-level diversity in Hill numbers, or of the diversity
of an averaged individual in the cohort (or population) he or she
belongs to.

g: The pair-wise diversity overlap (PDO) parameter. It
measures the pair-wise diversity similarity between two
neighboring areas of the same size, i.e., between two individuals
in a cohort (or population). The PDO profile is a series of g-q
values, corresponding to different diversity order (q).

Dmax: The maximal accrual diversity (MAD) parameter.
It estimates the maximal accrual diversity across individuals.
Theoretically, it should be specific to the microbiome type (e.g.,
the gut microbiome or semen microbiome). TheMAD profile is a
series ofDmax-q values, corresponding to different diversity order
(q).

RIP (the Ratio of Individual Diversity to Population

Accrual Diversity)—A New Definition
We define the RIP (Ratio of Individual diversity to Population
accrual diversity) as:

qRIP =
qc/qD (12)

where qc is the DAR-PL parameter at diversity order of q, and qD
is the estimated accrual diversity of the population (cohort) with
DAR-PL model at diversity order of q.

We further define qRIP-q series (there is a RIP for each
diversity order q) as RIP profile, similar to the previously defined
DAR-, PDO-, and MAD-profiles.

According to the above RIP definition, a RIP profile can be
constructed with population (cohort) of any size. However, in
practice, using qDmax in place of qD should be more convenient,
that is:

qRIP =
qc/qDmax (13)

The RIP parameter measures the average level of an individual
can represent a population (or cohort) from which the
individual comes from. As argued previously, parameter c is
an approximated value of individual diversity (or diversity
per individual). The approximation is contingent on two
implicit assumptions: (i) the sizes of areas are equal, which
is generally true in the case of human microbiome; (ii) the
start of area accrual won’t exert significant influence on the
estimation of parameter c. This appears to be satisfied given
that assumption (i) is largely true for the human microbiome.

However, given the well-known inter-individual heterogeneity of
the human microbiome, the choice of starting area (individual)
to accrue diversity may indeed have a significant impact on
the estimate of parameter c. To deal with the issue associated
with assumption (ii), we adopt the previously introduced the re-
sampling approach from total permutations of the microbiome
samples, and use the average parameters from certain times
(usually 100 should be enough) of repeatedly DAR model-fitting
from the re-sampling.

In general biogeography terms beyond human microbiome,
the previous definitions for RIP can be generalized as LRD (ratio
of local to regional diversity) (Equation 14) or as LGD (ratio of
local to global diversity (Equation 15). Both can be applied to
measure the relationship between the local and regional/global
biodiversities in any ecosystems. LRD & LGD are defined as:

qLRD =
qc/qD (14)

qLGD =
qc/qDmax (15)

where the symbols (parameters) in the right have the same
interpretations as in Equations (13,14).

RESULTS AND DISCUSSION

Test the Differences in Semen DAR
Parameters Among the Three Groups
We aimed to test whether or not there are significant differences
among the three groups (normal, sub-normal and abnormal)
in their DAR parameters. To perform this test, we built DAR
models (including both alpha-DAR and beta-DAR models) for
each group separately and then performed the randomization
tests for the parameters of those DAR models. The parameters
of the alpha-DAR models and beta-DAR models for the three
different groups were listed in Tables S1, S2 of the online
supplementary information (OSI), respectively. The results from
the randomization test for the model parameters were listed in
Table S3 (for alpha-DAR parameters) and Table S4 (for beta-
DAR parameters), respectively. It turned out that there were
no significant differences in any of the major DAR parameters
between the groups, as revealed by the p-values (p > 0.05) in the
last column of Tables S3, S4.

Biogeography Analysis of the Semen
Microbiome With DAR Modeling
Alpha-DAR Modeling
Tables 1, 2 listed the alpha-DAR parameters for the human
semen microbiome at the genus and species level, respectively.
The leftmost column in both the tables listed the diversity order
(q = 0, 1, 2, 3) and, and the parameters for DAR-PL models
and DAR-PLEC models were listed in the left and right side,
respectively. From Tables 1, 2, we summarize the following
findings:

(i) The DAR models fitted to the semen microbiome diversity
in the Hill numbers at both genus and species levels
statistically significant (p < 0.05 in 6 cases and p < 0.1 in
two cases). Judged from the success rates among 100 times
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TABLE 1 | The parameters of alpha-DAR (alpha-diversity-area relationship) computed with 100 times of re-sampling at genus level for the human semen microbiome.

Diversity order

and statistics

Power law (PL) PL with exponential cutoff (PLEC)

z ln(c) R p-value g N* z d ln(c) R p-value N Amax Dmax

q = 0 Mean 0.277 5.148 0.984 0.000 0.788 100 0.344 −0.002 5.027 0.993 0.000 100 139 590.8

Std. Err. 0.031 0.129 0.012 0.000 0.026 0.065 0.002 0.181 0.006 0.000

Min 0.211 4.812 0.936 0.000 0.718 0.218 −0.006 4.533 0.963 0.000

Max 0.359 5.444 0.998 0.000 0.843 0.514 0.000 5.384 0.999 0.000

q = 1 Mean 0.100 3.176 0.668 0.039 0.927 94 0.154 −0.002 3.078 0.761 0.022 95 77 36.3

Std. Err. 0.076 0.318 0.250 0.168 0.056 0.131 0.003 0.377 0.215 0.112

Min −0.049 2.303 0.008 0.000 0.774 −0.230 −0.010 2.005 0.061 0.000

Max 0.294 3.832 0.975 0.940 1.034 0.546 0.010 4.051 0.987 0.839

q = 2 Mean 0.075 2.308 0.514 0.061 0.944 89 0.125 −0.002 2.217 0.667 0.013 97 67 13.7

Std. Err. 0.107 0.463 0.250 0.208 0.080 0.170 0.005 0.490 0.200 0.084

Min −0.133 1.013 0.003 0.000 0.721 −0.365 −0.011 0.723 0.069 0.000

Max 0.355 3.171 0.937 0.976 1.088 0.639 0.017 3.342 0.968 0.799

q = 3 Mean 0.055 1.998 0.455 0.093 0.958 76 0.102 −0.002 1.914 0.629 0.030 92 59 9.3

Std. Err. 0.111 0.483 0.268 0.208 0.082 0.172 0.005 0.489 0.216 0.123

Min −0.161 0.719 0.000 0.000 0.744 −0.385 −0.012 0.439 0.073 0.000

Max 0.329 2.877 0.942 0.999 1.105 0.602 0.017 2.943 0.959 0.780

N*, the number of successful fitting to DAR model from 100 times of random re-sampling of the individual orders.

TABLE 2 | The parameters of alpha-DAR (alpha-diversity-area relationship) computed with 100 times of re-sampling at species level for the human semen microbiome.

Diversity order

and statistics

Power law (PL) PL with exponential cutoff (PLEC)

z ln(c) R p-value g N* z d ln(c) R p-value N Amax Dmax

q = 0 Mean 0.507 6.627 0.984 0.000 0.577 100 0.637 −0.005 6.393 0.993 0.000 100 132 7099.5

Std. Err. 0.061 0.247 0.012 0.000 0.060 0.127 0.003 0.354 0.006 0.000

Min 0.341 5.937 0.937 0.000 0.400 0.334 −0.012 5.357 0.962 0.000

Max 0.678 7.347 0.998 0.000 0.734 1.000 0.002 7.213 0.999 0.000

q = 1 Mean 0.158 4.570 0.681 0.019 0.881 93 0.231 −0.003 4.438 0.790 0.004 98 85 187.6

Std. Err. 0.115 0.491 0.234 0.084 0.091 0.215 0.006 0.590 0.185 0.037

Min −0.156 3.180 0.068 0.000 0.613 −0.343 −0.020 2.785 0.147 0.000

Max 0.472 5.949 0.983 0.508 1.102 0.917 0.013 5.817 0.988 0.362

q = 2 Mean 0.035 3.313 0.417 0.124 0.969 73 0.079 −0.002 3.235 0.663 0.005 96 49 32.0

Std. Err. 0.157 0.683 0.273 0.239 0.116 0.306 0.009 0.770 0.196 0.022

Min −0.322 1.548 0.015 0.000 0.645 −0.786 −0.022 1.217 0.208 0.000

Max 0.439 4.965 0.951 0.888 1.200 0.902 0.024 4.866 0.959 0.129

q = 3 Mean −0.022 2.893 0.453 0.072 1.009 81 0.010 −0.001 2.836 0.667 0.008 98 8 17.3

Std. Err. 0.158 0.693 0.258 0.181 0.112 0.306 0.010 0.762 0.191 0.062

Min −0.388 1.144 0.020 0.000 0.690 −0.803 −0.024 0.945 0.101 0.000

Max 0.389 4.489 0.944 0.846 1.236 0.768 0.023 4.422 0.948 0.619

N*, the number of successful fitting to DAR model from 100 times of random re-sampling of the individual orders.

of random re-sampling, the PLECmodel performed slightly
better than the PL model, and species-level modeling
slightly better than genus level. Therefore, the PLEC model
at the species level performed best among four categories of
the models.

(ii) At both genus and species levels, the DAR scaling parameter
z decreased monotonically with diversity order q, and the
species level parameters are generally larger than their

genus level counterparts. In the case of scaling parameter
z, larger z-value indicates larger PL slope or fast change
rates of diversity per unit accrual of area. This result
should be expected obviously because the differences among
individual subjects should be smaller at higher taxonomic
level (genus) than lower level (species). In other words,
the resolution of higher (genus) taxonomic level is rougher
than that of the lower (species) taxonomic level. Figure 1
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FIGURE 1 | The alpha-DAR profile scaling parameter (z-q series) for the

semen microbiome alpha-diversity at the genus level, for normal, sub-normal,

abnormal, and combined groups.

FIGURE 2 | The alpha-PDO profile (g-q series) for the semen microbiome

alpha-diversity at the genus level for normal, sub-normal, abnormal, and

combined groups, respectively.

exemplified the DAR profiles of the alpha-diversity at the
genus level, for the normal, sub-normal, abnormal, and
combined groups, respectively.

(iii) At both genus and species levels, the PDO (pair-wise
diversity overlap) parameter (g) showed a monotonically
increasing trend, which is opposite with that of the scaling
parameter (z) as expected. The PDO parameter confirmed
the previous finding that semen microbiome has higher
similarity (overlap) at genus level than at species level,
indicated by higher g-value. Figure 2 exemplified the PDO
profiles of the alpha-diversity at the genus level, for the
normal, sub-normal, abnormal, and combined groups,
respectively.

(iv) The negative d-values of all PLEC models at both genus
and species levels, indicated the existence of asymptote
lines and the necessity of introducing more sophisticated
PLEC model, which also made the prediction of MAD
(maximal accrual diversity) or Dmax possible. The MAD
(Dmax) decreased with the increase of diversity order
(q), as determined by the nature (definition) of the Hill

FIGURE 3 | The alpha-MAD profile (Dmax-q series) for the semen microbiome

alpha-diversity at the genus level, for normal, sub-normal, abnormal, and

combined groups, respectively.

numbers. The MAD at q = 0, or 0Dmax which is simply
the maximal accrual of microbial species (genus) richness
of the population of individuals. Figure 3 exemplified the
MAD profiles of the alpha-diversity at the genus level, for
the normal, sub-normal, abnormal, and combined groups,
respectively.

(v) Table 5 further computed the RIP [Ratio of Individual
diversity to Population maximal accrual diversity: Equation
(12b)] for all DAR models listed in Tables 1–4. The left side
is the RIP computed from alpha-DAR parameters, and the
right side is that computed from beta-DAR parameters. The
RIP parameter measures the average level of an individual
can represent a population from which he or she comes
from. For example, at diversity order q = 0, i.e., species
(genus) richness level, the alpha-diversity of an individual,
on average, contains approximately 10.6% (species level)
or 29.1% (genus-level) of the diversity accrued by the
population. When the diversity order (q) increases, the RIP
percentage is also increased, as indicated by Table 5. Note
that since RIP is defined in terms of an averaged individual,
it may be a poor representative for a specific individual,
especially when the inter-subject heterogeneity of diversity
is high. Figure 4 exemplified the RIP profiles of the alpha-
diversity at the genus level, for the normal, sub-normal,
abnormal, and combined groups, respectively.

Beta-DAR Modeling
Tables 3, 4 listed the beta-DAR parameters for the human
semen microbiome at the genus and species level, respectively.
The leftmost column in both the tables are the diversity order
(q= 0, 1, 2, 3) and, and the parameters for beta-DAR PL models
and beta-DAR PLEC models were listed in the left and right side,
respectively. From both the tables, we observed the following
findings:

(i) The beta-DARmodels fitted to the semenmicrobiome beta-
diversity data at both genus and species levels statistically
significant (p < 0.05 in 7 cases and p < 0.1 in 1 case).
Judged from the success rates among 100 times of random
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TABLE 3 | The parameters of beta-DAR (beta-diversity area relationship) computed with 100 times of re-sampling at genus level.

Diversity order &

statistics

Power law (PL) PL with exponential cutoff (PLEC)

z ln(c) R p-value g N* z d ln(c) R p-value N Amax Dmax

q = 0 Mean 0.266 0.294 0.990 0.000 0.797 100 0.338 −0.002 0.152 0.997 0.000 100 140 4.4

Std. Err. 0.014 0.059 0.005 0.000 0.012 0.025 0.001 0.067 0.002 0.000

Min 0.235 0.160 0.975 0.000 0.773 0.272 −0.004 0.023 0.988 0.000

Max 0.296 0.424 0.999 0.000 0.823 0.395 −0.001 0.341 0.999 0.000

q = 1 Mean 0.160 0.483 0.800 0.004 0.882 99 0.277 −0.004 0.252 0.895 0.000 100 70 3.2

Std. Err. 0.061 0.273 0.165 0.045 0.047 0.107 0.004 0.255 0.092 0.000

Min −0.010 −0.103 0.079 0.000 0.772 0.010 −0.012 −0.339 0.483 0.000

Max 0.296 1.225 0.982 0.448 1.007 0.556 0.005 0.943 0.984 0.000

q = 2 Mean 0.225 0.595 0.782 0.008 0.829 99 0.393 −0.006 0.264 0.872 0.000 100 69 4.6

Std. Err. 0.084 0.364 0.166 0.083 0.068 0.171 0.005 0.401 0.107 0.000

Min −0.005 −0.321 0.022 0.000 0.623 −0.066 −0.018 −0.886 0.470 0.000

Max 0.462 1.564 0.977 0.829 1.003 0.864 0.009 1.112 0.983 0.000

q = 3 Mean 0.273 0.586 0.804 0.002 0.789 99 0.441 −0.006 0.252 0.874 0.000 100 77 5.6

Std. Err. 0.092 0.385 0.143 0.015 0.077 0.207 0.006 0.463 0.106 0.000

Min 0.033 −0.430 0.150 0.000 0.541 −0.070 −0.022 −1.080 0.509 0.000

Max 0.545 1.541 0.980 0.148 0.977 1.016 0.011 1.178 0.985 0.000

N*, the number of successful fitting to DAR model from 100 times of random re–sampling of the individual orders.

TABLE 4 | The parameters of beta-DAR (beta-diversity area relationship) computed with 100 times of re-sampling at species level.

Diversity order &

statistics

Power law (PL) PL with exponential cutoff (PLEC)

z ln(c) R p-value g N* z d ln(c) R p-value N Amax Dmax

q = 0 Mean 0.480 0.389 0.994 0.000 0.605 100 0.588 −0.004 0.174 0.999 0.000 100 161 13.1

Std. Err. 0.012 0.052 0.003 0.000 0.011 0.028 0.001 0.064 0.001 0.000

Min 0.453 0.222 0.985 0.000 0.568 0.534 −0.006 0.003 0.996 0.000

Max 0.518 0.506 0.998 0.000 0.631 0.666 −0.002 0.323 1.000 0.000

q = 1 Mean 0.226 0.572 0.884 0.000 0.830 100 0.366 −0.005 0.294 0.944 0.000 100 77 4.6

Std. Err. 0.051 0.236 0.090 0.000 0.041 0.107 0.004 0.230 0.042 0.000

Min 0.090 0.004 0.577 0.000 0.736 0.086 −0.016 −0.241 0.743 0.000

Max 0.338 1.205 0.983 0.000 0.935 0.670 0.005 0.816 0.989 0.000

q = 2 Mean 0.235 0.732 0.781 0.000 0.821 100 0.405 −0.006 0.396 0.876 0.000 100 71 5.6

Std. Err. 0.083 0.377 0.146 0.000 0.068 0.173 0.006 0.360 0.084 0.000

Min 0.074 −0.121 0.358 0.000 0.648 −0.028 −0.024 −0.392 0.623 0.000

Max 0.435 1.452 0.961 0.000 0.947 0.855 0.011 1.099 0.979 0.000

q = 3 Mean 0.276 0.676 0.765 0.000 0.786 100 0.378 −0.003 0.474 0.838 0.000 100 109 6.5

Std. Err. 0.103 0.438 0.143 0.002 0.088 0.228 0.008 0.430 0.124 0.001

Min 0.057 −0.294 0.248 0.000 0.574 −0.181 −0.024 −0.602 0.317 0.000

Max 0.512 1.478 0.945 0.016 0.959 0.868 0.019 1.353 0.980 0.008

N*, the number of successful fitting to DAR model from 100 times of random re-sampling of the individual orders.

re-sampling, the beta-PLECmodel performed slightly better
than beta-PL model, and species-level modeling slightly
better than the genus-level. Therefore, the beta-PLECmodel
at the species level performed best among four categories of
the models.

(ii) At both genus and species levels, the beta-DAR scaling
parameter z exhibited a valley-shaped pattern with diversity
order (q), and the species level parameters are generally

larger than their genus level counterparts. In the case of
scaling parameter z, larger z-value indicates larger slope
or faster change rates of diversity per unit change of area
accrual. This result should be expected obviously because
the differences among individual subjects should be smaller
at higher taxonomic level (genus) than lower level (species).

(iii) At both genus and species levels, the beta-PDO parameter
(g) showed a mountain-shaped trend, which is opposite
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TABLE 5 | RIP (ratio of individual diversity to population maximal accrual diversity).

Diversity

order (q)

Alpha-RIP (%) Beta-RIP (%)

Genus-level Species-level Genus-level Species-level

q = 0 29.1 10.6 30.5 11.3

q = 1 66.0 51.5 50.7 38.5

q = 2 73.4 85.8 39.4 37.1

q = 3 79.3 100 23.5 39.2

with that of the scaling parameter (z) as expected. The beta-
PDO parameter confirmed previous finding that semen
microbiome has higher level of similarity at genus level than
at species level, indicated by higher g-value, which measures
the pair-wise diversity overlap (similarity).

(iv) The negative d-values of all beta-PLECmodels at both genus
and species levels, indicated the existence of asymptote lines
and the necessity for introducing the more sophisticated
beta-PLEC model, which also made the prediction of beta-
Dmax (beta-MAD) possible. The beta-MAD-q or beta-Dmax-
q, or beta-MAD profile, exhibited a valley-shaped trend,
which is consistent with the z-q series or DAR profile. The
beta-MAD or at q = 0, 0Dmax, which is simply the species
(genus) richness or the number of species (genus) in the
cohort (or population).

(v) Table 5 listed the RIP profile, i.e., the ratio of individual
diversity to population maximal accrual diversity (Equation
12b), at different diversity order (q), for all DAR models
listed in Tables 1–4. The two right columns were computed
for beta-DAR models from Tables 3, 4 (the left side for
alpha-DAR). The RIP parameter (profile) measures the
average level of an individual can represent a population
from which he or she comes from. For example, when q
= 0 (species or genus richness level), beta-RIP = 11.3%
at species level, and beta-RIP = 30.5% at genus level. This
suggested that beta-diversity of an individual, on average,
contains ∼11.3% (at the species level) and 30.5% (at the
genus level) of the diversity accrued at the population
level. When the diversity order (q) increases, the RIP also
increased accordingly.

An interesting observation is that alpha-RIP profile and beta-RIP
profile exhibited different patterns: the former is monotonically
increasing, but the latter is mountain-shaped. This pattern is clear
from comparing of the left side and right side of Table 5.

DISCUSSION

The results of DAR analysis presented above revealed that
fertility status (normal, subnormal, abnormal) did not have a
significant influence on biogeography of semen microbiome,
specifically, on the inter-subject (spatial) heterogeneity in terms
of either alpha-diversity or beta-diversity. Previous studies have
suggested changes in semenmicrobiome diversity associated with
fertility health (Hou et al., 2013; Weng et al., 2014), although
no rigorous statistical tests were performed with the published

FIGURE 4 | The RIP-profile (RIP-q series) for the semen microbiome diversity

(alpha and beta diversity, respectively) at the genus level, for the normal,

sub-normal, abnormal, and combined groups, respectively.

studies. Furthermore, the diversity of a microbiome sample per
se and the diversity scaling (or spatial heterogeneity changes,
a topic of this study) within a population are very different
concepts. Logically, the change of individual diversity does not
necessary lead to changes of the diversity heterogeneity among
individuals. Therefore, the lack of differences in the diversity
scaling parameter (z) and other DAR parameters, among three
groups with different fertility status do not contradict the
published studies on the human semen microbiome.

The lack of significant differences among various fertility
groups actually simplified our study, enabled us to build the DAR
models for a general Chinese population. Using the DARmodels,
we were able to (i) estimate the diversity changes of semen
microbiome in a human cohort (population) or DAR profile;
(ii) predict the maximal accrual diversity (MAD) of semen
microbiome in a human cohort (population) or the MAD profile;
(iii) estimate the PDO (pair-wise diversity overlap or similarity)
between two individuals or the PDO profile; (iv) assess the RIP
profile (i.e., the ratio of individual diversity to population accrual
diversity), which measures the level an individual can represent
a population which he belongs to. The “profiles” provide series
of key parameter associated with different diversity order (q),
which weights diversity differently: from species richness (q
= 0), where all species are weighted equally, to q = 3, where
dominant species were weighted for more and rare species
were weighted for less. These parameters sketched out the
biogeography “maps” of the human semen microbiome in terms
of the four profiles: the DAR-, PDO-, MAD-, and RIP profiles.
Together, the four profiles (maps) comprehensively sketched out
the biogeography of semen microbiome—the spatial distribution
or inter-subject heterogeneity of semen microbiome diversity
at different diversity orders (q). The different biogeography
maps are similar to different geography maps, each may with
different utilization (e.g., rainfall map vs. biodiversity map,
both of different utilizations). Using another analogy, maps at
different diversity order (q) are similar to the maps with different
scales or resolutions.

Hence, similar to the obvious significance of geographic
maps, our biogeographic maps for the human semen
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microbiome diversity distribution should be rather important
for further investigating the spatial distribution (or inter-
subject heterogeneity) of the semen microbiome and their
biomedical implications. A limitation of this study is that the
datasets we used were limited to a Chinese population. We
hope that future studies will include datasets from other ethnic
groups.
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