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Review

Introduction

Septic shock is characterized by profound hemodynamic alter-
ations associated with organ dysfunction. These hemodynamic 
alterations include some degree of hypovolemia and a decrease 
in vascular tone and myocardial depression. Even when systemic 
hemodynamic variables seems to have been corrected and are 
within therapeutic goals, signs of impaired tissue perfusion may 
persist. Recently, alterations in microcirculatory blood flow have 
been identified in severe sepsis1 and the severity of these altera-
tions is associated with a poor outcome.2,3 The impact of thera-
peutic interventions on microcirculatory function is beginning to 
be reported.4-6 In this manuscript, we discuss the pathophysiol-
ogy of the alterations in microvascular perfusion in sepsis, and 
their implications for organ function and for therapy.

Microcirculatory Alterations  
in Sepsis: Where is the Evidence?

Multiple experimental studies have found that sepsis induces 
marked alterations in the microcirculation. Compared with nor-
mal conditions in which there is a dense network of capillaries, 

most of which are perfused, sepsis is associated with a decrease in 
capillary density in association with an increase in heterogeneity 
of perfusion because of the presence of intermittently or not per-
fused capillaries in close proximity to well perfused capillaries.7-10 
Importantly, this is a dynamic process, as capillaries in which 
there is no flow at a given time may be perfused a few minutes 
later. These alterations have been reported after administration of 
endotoxin or live bacteria and during bacterial peritonitis,8,9,11 and 
have been observed in rodents12,13 as well as in large animals.9,11 
In addition, all studied organs have been affected, including the 
skin,14 muscle,12,13 eye,15 tongue,9 gut,9,10 liver,7 heart,16 and even 
the brain.11 Hence, these changes seem to be ubiquitous and to 
have common pathophysiologic mechanisms.

In humans, demonstration of these alterations has been 
longer in coming, mostly because of technical limitations that 
prevented exposure of the human microcirculation. The devel-
opment of new imaging techniques has enabled direct visual-
ization of the human microcirculation with small handheld 
microscopes.17,18 We demonstrated that microcirculatory perfu-
sion is altered in patients with severe sepsis and septic shock.1 An 
example of altered human microcirculation in sepsis is shown in 
Figure 1. These alterations in microvascular perfusion are very 
similar to those occurring in experimental conditions, and are 
characterized by a decrease in vascular density together with 
an increased number of capillaries with stopped or intermittent 
f low. Since this initial study, more than 30 studies have shown 
similar results.

What are the Consequences of These Alterations?

The decreased capillary density results in an increased dif-
fusion distance for oxygen.16 More importantly, microvascular 
blood flow is heterogeneous, with perfused capillaries in close 
vicinity to non-perfused capillaries, leading to alterations in oxy-
gen extraction and hypoxic zones even when total blood flow to 
the organ is preserved.19 Heterogeneity of microvascular perfu-
sion is a crucial aspect. Heterogeneous perfusion leads to more 
severe alterations in tissue oxygenation than does homogenously 
decreased perfusion.20,21 Heterogeneity of perfusion is associated 
with heterogeneity in oxygenation22 but also with altered oxy-
gen extraction capabilities.10,20,21,23,24 During episodes of hypo-
perfusion, the heterogeneity of microvascular perfusion further 
increases in sepsis instead of being minimized as in normal 
conditions.24
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Multiple experimental and human trials have shown that 
microcirculatory alterations are frequent in sepsis. in this 
review, we discuss the various mechanisms that are potentially 
involved in their development and the implications of these 
alterations. endothelial dysfunction, impaired inter-cell com-
munication, altered glycocalyx, adhesion and rolling of white 
blood cells and platelets, and altered red blood cell deform-
ability are the main mechanisms involved in the development 
of these alterations. Microcirculatory alterations increase the 
diffusion distance for oxygen and, due to the heterogeneity 
of microcirculatory perfusion in sepsis, may promote devel-
opment of areas of tissue hypoxia in close vicinity to well-
oxygenated zones. The severity of microvascular alterations is 
associated with organ dysfunction and mortality. At this stage, 
therapies to specifically target the microcirculation are still 
being investigated.
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These alterations play an important role in the development of 
organ dysfunction and are not just an indication of the severity 
of sepsis. Microvascular alterations can lead to cellular injury25 
and reversal of these alterations is associated with improvement 
in lactate5 and NADH26 levels, suggesting that microvascular 
alterations directly impair tissue oxygenation. In addition, sev-
eral trials have demonstrated an association between the severity 
of microvascular dysfunction and the development of organ dys-
function27-29 and mortality.1,2,19,28,30-33

In a large series of 252 patients with septic shock, microvas-
cular perfusion was an independent factor associated with sur-
vival.3 Of note this is not an on-and-off but rather a progressive 
phenomenon. Dividing the population into quartiles of propor-
tions of perfused capillaries, mortality rates markedly increased 
with alterations in the microcirculation (Fig. 2).3 Looking at 
which variables differed between survivors and non-survivors, 
the proportion of perfused capillaries was the strongest predictor 
of outcome. Vascular density, and especially vascular density of 
perfused capillaries, have been associated with outcome,1,3,19 as 
well as the heterogeneity index,3,19 but not the velocity in per-
fused capillaries.19 More importantly, evolution over time of these 
alterations also differs in patients with good or poor outcomes,2,33 
rapidly improving in survivors but remaining disturbed in non-
survivors, whether these patients die from acute circulatory fail-
ure or from organ failure after resolution of shock.2 In children 
with septic shock, the microcirculation improved from day 1 
to day 2 in survivors but remained altered in non-survivors.33 
Interestingly, the severity of microvascular alterations was an 
independent factor associated with outcome in the early and later 
phases of sepsis, but the cut-off value separating survivors from 
non-survivors was lower in the early phase.3

Although one may consider that the microcirculation is just 
adapting to direct cellular alterations, several factors suggest 
that microcirculatory alterations are the primary event leading 

to cellular dysfunction. First, microcirculatory alterations are co-
localized with low PO

2
, production of hypoxia-inducible factor16 

or redox potential26 in experimental conditions. Second, oxygen 
saturation at the capillary end of well-perfused capillaries is low, 
not elevated, suggesting that the tissues are using the delivered 
oxygen.23 Third, the tissue to arterial PCO

2
 gradient, the PCO

2
 

gap, is increased in sepsis.34-38 In addition, there is an inverse rela-
tionship between sublingual microvascular perfusion and the 
PCO

2
 gap.35 A similar inverse relationship was found between 

ileal mucosal perfusion and ileal to arterial PCO
2
 gap.38 If flow 

were just matching metabolism, CO
2
 production would be low 

because the primary alteration is the decrease in metabolism, and 
PCO

2
 gap would be normal, even at low flows. Fourth, perfu-

sion abnormalities precede alterations in organ function.39 Fifth, 
improvement in the sublingual microcirculation in response to 
initial resuscitation procedures was associated with an improve-
ment of organ function 24 h later.29 Finally, the decrease in lactate 
levels is proportional to the improvement of the microcirculation 
during dobutamine administration.5

Admittedly, microcirculatory alterations are not the sole 
mechanism contributing to organ dysfunction in sepsis. Cellular 
metabolic alterations and in particular mitochondrial dysfunc-
tion may also contribute. Discussion of these factors is beyond the 
scope of this review. Importantly, there is an interplay between 
hypoxia and inflammation and mitochondrial dysfunction.40 
Limiting perfusion abnormalities is associated with reduced 
expression of inflammatory molecules, caspases, and mitochon-
drial abnormalities.41,42

What Mechanisms Could Be Involved  
in the Development of These Alterations?

Endothelial dysfunction is one of the key mechanisms under-
lying these alterations. We have seen earlier that endothelial reac-
tivity to vasoconstrictive and vasodilating substances is decreased 
in sepsis, and both constriction and dilation are important for the 
regulation of microvascular blood flow. This aspect of endothe-
lial involvement is illustrated by the alteration in post-ischemic 
hyperemic response, which is blunted in patients with sep-
sis.27,32,43-47 Furthermore, alterations in the descending (oxygen 
consumption) or ascending slope are associated with develop-
ment of organ failure.27,32 In addition, and perhaps more impor-
tantly, communication between endothelial cells may be altered. 
In normal conditions, matching of tissue perfusion with metabo-
lism is obtained by backward communication through perivas-
cular nerves but also by transmission of information between 
endothelial cells. Indeed, the stimulation of endothelial cells in 
a given area results in a change in membrane potential which is 
transmitted to contiguous cells, resulting in transmission of the 
information to upstream arterioles up to a distance of 1000 μm.48 
During endotoxic conditions, the communication rate between 
microvessels 500 microns apart is markedly impaired, but this 
phenomenon is transient and fully reversible after recovery from 
endotoxin exposure.49 The interaction between the endothelial 
surface and circulating cells is also impaired in sepsis. In particu-
lar, the glycocalyx is altered in sepsis. The glycocalyx is a thin 

Figure 1. Sublingual microcirculation in sepsis. Photograph of the sub-
lingual microcirculation in a patient with septic shock using a sidestream 
dark field (SDF) imaging device. The white arrow shows a perfused capil-
lary, the black arrows identify a stopped flow capillary.
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layer of glucosaminoglycans that covers the endothelial surface 
and in which various substances, such as superoxide dismutase 
and antithrombin, are embedded. The glycocalyx facilitates the 
flow of red blood cells and limits adhesion of white blood cells 
and platelets to the endothelium. The size of the glycocalyx is 
markedly decreased in sepsis50-52 and byproducts of its degrada-
tion are found in the blood.50,53 In addition, the glycocalyx is 
made more permeable to labeled substances.51 Alteration in the 
glycocalyx layer promotes leukocyte rolling and adhesion to the 
endothelium.51,54 Administration of hyaluronidase, which par-
tially destroys the glycocalyx layer, mimics sepsis-induced altera-
tions in microcirculatory perfusion.55

Activation of coagulation may also play a key role in the 
pathogenesis of microcirculatory alterations8,56 even though 
microthrombi formation is rarely documented in experimental 
sepsis.7 In mice challenged with endotoxin, fibrin deposition 
occurred in a significant proportion of capillaries; the addition of 
antithrombin decreased the number of non-perfused capillaries, 
whereas this number was increased after addition of FeCl

3
, a fac-

tor locally activating coagulation.8

Finally, circulating cells also play a key role in these altera-
tions. Leukocyte and platelet rolling and adhesion to the endo-
thelial surface is increased in sepsis,7,8 which may impair the 
circulation of other cells. Red blood cells also may play a role, 
with alterations in red blood cell deformability,57 impaired 
release of nitric oxide (NO), and/or adhesion of red blood cells 
to the endothelium.58 Altogether, these data suggest that multiple 
mechanisms are involved in the development of microvascular 
dysfunction, and that it is unlikely that an intervention focused 
on a single pathway would be effective. As an example, chemo-
therapy-induced neutropenia and thrombopenia does not prevent 
microcirculatory alterations from occurring,59 which nicely illus-
trates that this mechanism in isolation is not enough to generate 
microvascular alterations.

In septic patients who have severe microvascular alterations, 
we demonstrated that topical administration of a large dose of 
acetylcholine, an endothelium-dependent vasodilating agent, 
restored the microcirculation to a state similar to that of healthy 
volunteers and non-septic ICU patients.1 This observation has 
profound implications. First, sepsis-associated microcirculatory 
alterations are functional and can be totally reversed. Complete 
obstruction of microvessels by clots is thus unlikely. Second, the 
endothelium, although dysfunctional, is still able to respond to a 
supraphysiological stimulation. These observations suggest that 
therapeutic interventions could be used to try to reverse these 
alterations.

The mechanisms involved in microvascular alterations differ 
from those involved in the development of systemic hemodynamic 
alterations. Accordingly, it is expected that microcirculatory 
derangements may be present even when systemic hemodynam-
ics are within acceptable limits.

It should be noted that many of the mechanisms involved in 
microcirculatory dysfunction are probably mandatory for the 
control of infection. Activation of inflammation and coagula-
tion are important for compartmentalization of infection; rolling 
and adhesion of white blood cells and increased permeability are 

needed to allow these cells to enter the tissue and kill bacteria; 
intravascular neutrophil extracellular traps (NETs) bind circulat-
ing bacteria and are useful for bacterial clearance even though 
they may impair circulation of blood cells.60 Hence, totally inhib-
iting the factors responsible for the activations of these processes 
does not seem to be a rational approach, rather it should be mod-
ulated, to maintain a limited, beneficial level.

Therapeutic Interventions Targeted 
at the Microcirculation

Given the heterogeneous nature of the microvascular altera-
tions, it is more important to recruit the microcirculation than to 
increase total flow to the organ. Ideally, the intervention should 
affect one or several of the mechanisms involved in the devel-
opment of these microvascular alterations. Nevertheless, most 
interventions that are currently used for their impact on systemic 
hemodynamics may also influence the microcirculation to some 
degree.

Fluids and vasoactive agents are key components of hemo-
dynamic resuscitation, given with the aim of improving tissue 
perfusion. However, improved cellular oxygen supply implies an 
improvement in microvascular perfusion. Two recent trials have 
demonstrated that fluids can improve microvascular perfusion, 
increasing the proportion of perfused capillaries and decreasing 
perfusion heterogeneity.4,61 Importantly, in both trials the micro-
circulatory effects were relatively independent of the systemic 
effects. The microcirculatory effects of fluids seem to be mostly 
present in the early phase of sepsis (within 24 h of diagnosis) 
whereas later (after 48 h) fluid administration failed to improve 
the microcirculation even when cardiac output increased.4 
Whether different types of fluid are associated with different 
microvascular responses is still debated. In some experimental 
conditions, colloids may increase microcirculatory perfusion 

Figure  2. Relationship between sublingual microcirculation and iCU 
mortality in patients with severe sepsis. in this series of 252 patients 
with severe sepsis, the sublingual microcirculation was assessed either 
with an orthogonal polarization spectral (OPS) or a sidestream dark field 
(SDF) imaging device. The patients were grouped into quartiles of pro-
portion of perfused capillaries. From reference 3 with permission.
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more than crystalloids,62 but this difference has not been con-
firmed in septic patients.4 The mechanisms by which fluids may 
improve the microcirculation are not well understood, but may 
be related to a decrease in viscosity, a decrease in white blood cell 
adhesion and rolling, or, indirectly, to a decrease in endogenous 
vasoconstrictive substances. Whether the effects of fluids, when 
observed, will persist or be transient, and also whether this effect 
can be “saturated”, i.e., only the initial effects would be beneficial 
and further administration of fluids would have minimal effect, 
requires further study. This “saturable” effect is suggested by the 
observations of Pottecher et al.61 who reported that the first bolus 
of fluids improved microvascular perfusion but the second had 
no effect even though cardiac output increased further.

The effects of red blood cell transfusions are variable and may 
depend on the severity of underlying microcirculatory altera-
tions. In patients with sepsis, transfusions failed to improve the 
microcirculation in the entire population; however, transfusions 
did improve microvascular perfusion in patients with the most 
severely altered microcirculation at baseline and even worsened 
the microcirculation in patients with microcirculation closer to 
normal values.63

Beta-adrenergic agents have been shown to improve micro-
vascular perfusion, increasing not only convective but also dif-
fusive transport.5,64 These effects were dissociated from the 
systemic effects of these agents.5 Similar effects were observed 
with milrinone65 but the effects of levosimendan may be even 
more pronounced.6,65

Vasopressor agents also have variable effects. Correction of 
severe hypotension does not impair and may even improve micro-
vascular perfusion,66,67 probably through the restoration of organ 
perfusion by restoring a minimal perfusion pressure. However, 
increasing blood pressure further (mean arterial pressure from 65 
to 75 and 85 mmHg) may not improve microvascular perfusion. 
Of note, these data were obtained in small cohorts of patients 
and there was large inter-individual variability.68-70 Interestingly, 
the increase in arterial pressure impaired the sublingual micro-
circulation in patients with close to normal microcirculation at 
baseline, whereas it was beneficial in the most severe cases.69

Vasodilating substances may have a role in manipulation 
of the microcirculation because local constriction–dilation is 
involved in the regulation of flow and capillary recruitment and 
decreased vascular density and stopped-flow capillaries may be 
the result of excessive vasoconstriction. We demonstrated that 
topical administration of a large dose of acetylcholine (10−2 M 
directly on the sublingual area) reversed microvascular altera-
tions in patients with severe sepsis.1 In a small series of patients, 
Spronk et al.71 reported in a research letter that nitroglycerin 
administration rapidly improved the microcirculation. These 
results have been challenged. In an experimental trial in endo-
toxic sheep, nitroglycerin administration at a fixed rate of 0.2 
μg/kg.min did not improve gut mucosal microcirculation or gut 
mucosal PCO

2
.72 A randomized trial that included 70 patients 

with septic shock showed no effect of nitroglycerin on the micro-
circulation.73 Does this second trial close the issue? Probably not, 
because important differences exist between the studies. In par-
ticular, Spronk et al.71 assessed the microcirculation 2 min after 

administration of a bolus dose of 0.5 mg nitroglycerin whereas 
Boerma et al.73 evaluated the microcirculation 30 min after 
initiation of a continuous infusion of 4 mg/h (0.07 mg/min). 
Dosing may be crucial, as illustrated in cardiogenic shock.74 In 
the first trial,71 the bolus dose of nitroglycerin was associated 
with marked hypotension and fluid boluses were administered 
rapidly. Importantly, the microcirculation was minimally altered 
at baseline in the trial by Boerma et al.,73 because the propor-
tion of perfused capillaries was already normal (98%), leaving no 
room for further improvement. Other vasodilating agents have 
been used, especially in experimental models. Salgado et al.75 
recently evaluated the effects of angiotensin converting enzyme 
inhibition in an ovine model of septic shock. The sublingual 
microcirculation was slightly less severely altered in treated ani-
mals compared with controls but these effects were not accom-
panied by an improvement in organ function. Administration of 
other vasodilatory agents, such as magnesium sulfate, also failed 
to improve the microcirculation.76 Accordingly, at this stage, 
the use of vasodilating agents cannot be recommended. One of 
the reasons for this relative failure is the lack of selectivity of 
these agents, which dilate both perfused and non-perfused ves-
sels, thus leading to luxury perfusion of some areas and diverting 
flow from areas that require it most.

The variability in the response to fluids, red blood cell transfu-
sions, inotropic, and vasopressor agents suggests that systematic 
use of these agents cannot be recommended and that a patient 
centered approach with evaluation of the impact of each interven-
tion on the microcirculation should be preferred. Vasodilating 
agents cannot be recommended at this stage.

Modulation of endothelial NO synthase (eNOS) appears 
attractive. eNOS is actively involved in the control of blood 
flow at the microcirculatory level, its stimulation leading to an 
increase in perfusion in the concerned vessels. In sepsis, eNOS 
may be dysfunctional, which results not only in impaired per-
fusion and endothelial reactivity but also in overproduction of 
reactive oxygen species, including peroxynitrite.77 Modulation 
of eNOS, enabling NOS to locally produce NO could thus be 
beneficial for tissue perfusion but also for cellular function. 
Tetrahydrobiopterin (BH4) is an important cofactor of endothe-
lial NOS and the ratio of BH4 to dihydrobiopterin determines 
production of NO rather than superoxide and peroxynitrite pro-
duction.78 In human healthy volunteers challenged by low doses 
of endotoxin, BH4 administration restored the forearm blood 
flow response to acetylcholine. This property of BH4 to restore 
endothelial function has been observed in various models, includ-
ing acute hyperglycemia79 and ischemia–reperfusion injury.80 In a 
rodent model of septic shock, BH4 improved microvascular per-
fusion,81 and this effect was not observed in endothelial NOS 
knockout mice, demonstrating the involvement of eNOS in this 
effect. In a sheep model of septic shock induced by fecal peri-
tonitis, BH4 administered 4 and 12 h after the onset of sepsis 
blunted the decrease in proportion of perfused capillaries and in 
functional capillary density, and limited the increase in hetero-
geneity in capillary perfusion.82 There was also indirect evidence 
of blunted increased microvascular permeability in this model. 
More importantly, BH4 administration was associated with an 
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