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Abstract. Using an autoimmune serum from a patient 
with overlap connective tissue disease we have 
identified by biochemical and immunocytochemical ap- 
proaches an evolutionarily conserved nuclear pore 
complex (NPC) protein with an estimated molecular 
mass of 180 kD and an isoelectric point of •6.2 
which we have designated as nupl80. Extraction of 
isolated nuclear envelopes with 2 M urea and chroma- 
tography of the solubilized proteins on WGA- 
Sepharose demonstrated that nupl80 is a peripheral 
membrane protein and does not react with WGA. 
Affinity-purified antibodies yielded a punctate im- 
munofluorescent pattern of the nuclear surface of 
mammalian cells and stained brightly the nuclear 

envelope of cryosectioned Xenopus oocytes. Nuclei 
reconstituted in vitro in Xenopus egg extract were also 
stained in the characteristic punctate fashion. Im- 
munogold EM localized nupl80 exclusively to the cy- 
toplasmic ring of NPCs and short fibers emanating 
therefrom into the cytoplasm. Antibodies to nupl80 
did not inhibit nuclear protein transport in vivo nor in 
vitro. Despite the apparent lack of involvement in 
NPC assembly or nucleocytoplasmic transport 
processes, the conservation of nupl80 across species 
and its exclusive association with the NPC cytoplas- 
mic ring suggests an important, though currently 
undefined function for this novel NPC protein. 

N 
'UCLEAR pore complexes (NPCs) ~ mediate the trans- 

membrane exchange of macromolecules between 
the two major cell compartments, the nucleus and 

the cytoplasm. Knowledge of NPC structure, composition, 
and molecular organization is a necessary prerequisite to un- 
derstanding the mechanisms of these highly selective and 
energy-requiting bidirectional transport processes (reviewed 
by Goldfarb and Michaud, 1991; Stochaj and Silver, 1992). 
NPCs are large and complex supramolecular assemblies 
with an outer diameter exceeding 0.1/~m and a total mass 
of 2 x 10 -~6 g or 120 x 10 ~ D (Krohne et al., 1978; for a 
more detailed analysis and mass determination of various 
NPC substructures see Reichelt et al., 1990). Their overall 
structural features, in particular their striking eightfold rota- 
tional symmetry, are remarkably similar if not identical in 
all eukaryotic cells, thus attesting to the fundamental impor- 
tance of NPCs in basic cellular activities (for reviews see 
Kessel, 1973; Franke and Scheer, 1974; Maul, 1977; Franke 
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et al., 1981; Scheer et al., 1988; Akey, 1992; Forbes, 1992; 
Stewart, 1992; Newmeyer, 1993). 

By using various methods of sample preparation and EM 
analysis in combination with image analysis, considerable 
progress has recently been made in deciphering the three- 
dimensional architecture of NPCs (Unwin and Milligan, 
1982; Akey, 1989, 1992; Reichelt et al., 1990; Jarnik and 
Aebi, 1991; Hinshaw et al., 1992; Stewart, 1992; Akey and 
Radermacber, 1993; Pant~ and Aebi, 1993). To a first ap- 
proximation, NPCs are tripartite structures composed of a 
flat cylindrical body flanked at the top and bottom by two 
coplanar rings with octagonal symmetry, one attached to the 
cytoplasmic and one to the nucleoplasmic pore margin. Ma- 
jor components of the cylindrical body are a central plug or 
"transporter assembly" (Akey and Goldfarb, 1989) contain- 
ing the functional pore channel through which active 
nucleocytoplasmic transport of macromolecules takes place 
(Feldberr et al., 1984; Dworetzky and Feldherr, 1988) and 
eight radially arranged spoke-like structures at the midplane 
of the NPC. The octagonal spoke assembly connects the cen- 
tral transporter to the nuclear membrane of the pore wall. 
Vertical supports link each of the eight spokes to the cyto- 
plasmic and nucleoplasmic ring, thus creating a highly sym- 
metrical NPC framework (Hinshaw et al., 1992; Akey and 
Radermacher, 1993). Eight granules ("annulus subunits"; 
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Franke and Scheer, 1970) are arranged in striking rotational 
symmetry on top of the cytoplasmic rings. Depending on the 
conditions used in nuclear envelope preparation, in particu- 
lar in low-salt buffers without stabilizing divalent cations, 
these granules tend to unravel into short fibrils projecting 
from the cytoplasmic face of the NPCs (Franke and Scheer, 
1974; Ris, 1991; Jarnik and Aebi, 1991). In addition, 
nucleoplasmic fibrils which, in amphibian oocytes, often 
constitute long cylindrical arrays (Franke and Scheer, 1970, 
1974) or shorter basket-like filamentous assemblies (Ris, 
1991; Jarnik and Aebi, 1991; Goldberg and Allen, 1992) ter- 
minate at the nucleoplasmic face of the NPCs. 

Very little information is presently available on the biochem- 
ical nature of the various gross morphological components 
of the NPCs. Labeling studies with gold or ferritin-tagged 
WGA have shown that the O-linked N-acetylglucosamine 
(GlcNAc) modified nucleoporins (for review see Starr and 
Hanover, 1992) are localized preferentially to the central re- 
gion of the NPC, i.e., to the transporter assembly with an 
overall diameter of •40 nm (Finlay et al., 1987; Hanover et 
al., 1987; Scheer et ai., 1988; Akey and Goldfarb, 1989). 
A similar localization was seen with mAbs against p62, the 
most abundant WGA-binding NPC glycoprotein (Dabauvaile 
et al., 1988a; Akey and Goldfarb, 1989). The topological 
disposition of the GlcNAc-containing nucleoporins suggests 
their having a role in nucleocytoplasmic traffic. In fact, pro- 
tein import and RNA export are inhibited by WGA and mAbs 
recognizing p62, both in living cells after microinjection 
(Yoneda et al., 1987; Featherstone et al., 1988; Dabauvalle 
et al., 1988a,b; Benavente et al., 1989; Bataill6 et al., 1990; 
Dargemont and Kiihn, 1992) and in cell-free systems (Finlay 
et al., 1987; Newmeyer and Forbes, 1988; Dabauvalle et al., 
1990). 

Patients with systemic autoimmune diseases spontane- 
ously produce antibodies against a variety of nuclear compo- 
nents (Tan, 1989, 1991). These autoantibodies are not only 
of diagnostic relevance, but also represent valuable immuno- 
logical tools in molecular and cellular biology. High titers 
of autoantibodies against major protein components of the 
nuclear envelope such as nuclear lamins, the lamin B recep- 
tor, and the transmembrane NPC glycoprotein gp210 have 
been found in patients with liver and rheumatic autoimmune 
diseases (Sentcal and Raymond, 1992; reviewed by Worman 
and Courvalin, 1991). In addition, NPC-specific antibodies 
were identified in serum from a patient suffering from poly- 
myositis (Dagenais et al., 1988a,b). These autoantibodies 
decorated the cytoplasmic side of NPCs and reacted in im- 
munoblots with polypeptides of 200 and 130 kD. Based on 
their cross reactivity with myosin heavy chain of skeletal 
muscle, it was suggested that the 200-kD NPC protein might 
be a myosin-like protein (Dagenais et al., 1988b). 

In the present study we have used the serum from a patient 
with an overlap connective tissue disease. This serum was 
selected because it produced a distinctly punctate fluores- 
cence pattern of the surface of mammalian cell nuclei which 
is diagnostic for NPC-specific antibodies (e.g., Davis and 
Blobel, 1986; Sen~cal and Raymond, 1991; Worman and 
Courvalin, 1991). Here we present evidence that the antigen, 
an evolutionarily highly conserved protein with an estimated 
molecular mass of 180 kD, forms part of the cytoplasmic 
ring of NPCs and associated fibers. 

Materials and Methods 

Biological Materials 
Xenopus/aev/s were purchased from the South African Snake Farm (Fish 
Hcek, Cape Province, South Africa). Cell lines derived from human (HeLa 
and HEp-2), hamster (BHK-21), rat (RVF-SM), and marsupial (PtK2) tis- 
sues were cultured in DME (GIBCO-BRL, Eggenstein, Germany) sup- 
plemented with 10% FCS (GIBCO-BRL) at 37"C in a 5% CO2 incubator. 

Antibodies 
Autoimmune serum 7217 from patient DGP suffering from an overlap con- 
nective tissue disease was selected for further analysis by its distinct punc- 
tate fluorescence of the nuclear surface of HEp-2 cells. Monoclonal routine 
antibody $49H2 directed against Xenopus lamin Lm was a gift of Dr. G. 
Krolme (Theodor-Boveri-Institute, University of Wiirzburg). Antibodies 
against gp210 were raised in guinea pigs by immunization with a synthetic 
peptide coupled to keyhole limpet hemocyanin. The peptide comprised 
residues 1859-1873 of the predicted amino acid sequence of gp210 (Woz- 
niak et al., 1989). The antibodies stained in immunoblots a 190-kD band 
of rat liver nuclei which also bound the lectin Con A (see Gerace et al., 
1982). The serum ($71) was kindly provided by M. Marzirti (Theodor- 
Boveri-Institute, University of Wfu'zburg). mAb PI1 directed against 
nucleoporin p62 (Dabanvalle et al., 1988a) and mAb 72B9 directed against 
the nucleolar protein fibrillarin (Reimer et al., 1987) have been described. 

Isolation of Nuclei and Nuclear Envelopes 
Nuclei were isolated from cultured cells as described by Krohne et al. (1981) 
with some modifications. Cells grown in monolayer were washed with TKM 
buffer (10 mM Tris-HCl, pH 7.2, 70 mM KC1, 3 mM MgCI2) containing 
1 mM PMSE then scrape harvested with a rubber policeman followed I V 
centrifugation at 1,500 g for 5 min at 4°C. The cell pellet ('~107 cells) was 
resuspended in 10 rnl of 10 mM Tris-HC1, pH 7.2, containing 1 mM PMSE 
incubated for 10 rain at 4"C and lysed in a glass-Teflon homogenizer. Nuclei 
were recovered by centrifugation at 1,000 g for 20 mitt at 4°C. Nuclear enve- 
lopes were prepared from isolated PtK2 nuclei as described by Gerace et 
al. (1984). 

Nuclei were isolated from liver of young rats after the procedure of 
Krohne et al. (1978). Nuclei and nuclear envelopes from Xenopus oocytes 
were manually isolated as described (Krohne and Franke, 1983). 

Extraction and WGA-Sepharose Affinity 
Chromatography of Nupl80 
Peripheral membrane proteins were extracted from nuclear envelopes de- 
rived from 2 x 107 PtK2 nuclei with 2 M urea/1 mM EDTA essentially as 
described (Radu et al., 1993). The TCA-precipitated supernatant was solu- 
bilized by a 5-rain incubation in SDS-buffer at 65"C, loaded onto a 
WGA-Sepharose 6MB column (Pharmacia, Uppsala, Sweden), eluted with 
appropriate sugars and fractionated (for details see Radu et al., 1993). Pro- 
teins of the flow-through and the eluates were precipitated with 10% TCA, 
washed with cold acetone, separated by SDS-PAGE on 12 % acrylamide gels 
and analyzed by immunoblotting (see below). 

Gel Electrophoresis and Immunoblot 

Proteins were resolved by SDS-PAGE (Thomas and Kornberg, 1975) using 
12 % acrylamide. Two-dimensionai gel electrophoresis with 1EF in the first 
dimension was carded out according to O'Farrel (1975). For immtmoblots, 
polypeptides were electrophorcticaily transferred from gels to nitrocellu- 
lose paper (Kyhse-Anderson, 1984). The membrane was blocked by over- 
night incubation with 10% nonfat dry milk in PBS at 4°C, then incubated 
for 2 h at 15"C with either serum 7217 diluted 1:100 with PBS, affinity- 
purified autoimmune antibodies at a concentration of 2/~g/ml or guinea pig 
antiserum against gp210 diluted 1:100. After several washes in PBS, appro- 
priate secondary antibodies coupled to alkaline phosphatase (Dianova, 
Hamburg, Germany) were added at a 1:7,500 dilution in PBS and incubated 
for 1 h at room temperature. After several wash steps, bound antibodies 
were visualized enzymatic.ally using NBT (p-nitroblue tetrazoliumchioride) 
and BCIP (5-bromo-4-chloro indolylphosphate, p-toluidine salt; Biomol, 
Hamburg, Germany). 
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Affinity Purification of Antibodies 
The human 7217 autoantibodies were affinity-purified following the pro- 
tocol of Cordes et ai. (1991) with some modifications. In brief, nuclear pro- 
teins of HEp-2 or PtK2 cells were separated by une-dimensionai SDS-PAGE 
and transferred to nitrocellulose. The filter was stained with Ponceau S and 
the strip containing the 180-kD band was excised, cut into small pieces and 
incubated overnight at 4°C in PBS containing 10% milk. Then the filter 
pieces were incubated with 60 gi serum 7217 diluted in 4.5 ml PBS for 2 h 
at 15°C. After four wash steps of 10 rain each in PBS, bound antibodies 
were eluted from the nitrocellulose by a 30 s incubation with 1 ml glycine 
buffer (10 mM glycine, pH 2.3, 0.5 M NaC1, 0.1 mg/ml BSA). The elution 
buffer was then immediately neutralized by adding 3 ml PBS and 1 ml of 
0.1 M Na2HPO4. The elution procedure was repeated two times. Finally 
the antibodies were concentrated by centrifngation (Centricon 10; Amicon, 
Witten, Germany). 

Nuclear Assembly and Transport In Vitro 
Extract was prepared from activated Xenopus eggs as described (Newport, 
1987; Dabauvalle et al., 1991). Aliquots were frozen in liquid nitrogen and 
stored at -70"C. To initiate nuclear envelope assembly, demembranated 
Xenopus sperm nuclei prepared according to Blow and Laskey (1986) were 
added to the extract (,~1000 nuclei/gl extract) together with an ATP- 
regenerating system. Aliquots were removed after an incubation time of 90 
rnin at 22°C and processed for immunofluorescence microscopy. In some 
experiments, 5 gl of affinity-purified anti-anpl80 antibodies (2 mg/ml) or, 
as a control, purified mAb PI1 directed against p62 (IgM, 4 mg/ml; Dabau- 
valle et ai., 1990) were added to 50/~1 extract before incubation with sperm 
chromatin. Nuclear import was monitored by immunofluorescenee micros- 
copy using mAb 72B9 against the nuclcolar protein fibrillarin (Bell et al., 
1992). 

Analysis of Nuclear Protein Import in 
Xenopns Oocytes 
Mieroinjection experiments and analysis of the nucleocytoplasmic distribu- 
tion of radioactively labeled nuclear proteins were performed as previously 
described (Dabauvalle et al., 1988a). Briefly, affinity-purified anti-nupl80 
antibodies (4 mg/ml) or, as control, nonimmune human IgGs at the same 
concentration were injected into the cytoplasm ofXenopus oocytes followed 
3 h later by metabolically [3SS]methionine-labeled nuclear proteins. After 
an incubation time of 6 h, nuclei and cytoplasmic fractions were manually 
separated and analyzed by two-dimensional gel electophoresis and autoradi- 
ography. 

Immunofluorescence Microscopy 
Small pieces of Xenopus ovary were shock frozen in isopentane cooled by 
liquid nitrogen. Frozen sections 5/~m thick were air dried, incubated in ace- 
tone at -20°C for 10 rnin and air dried again. Cultured cells grown on cov- 
erslips were fixed for 10 rain in -20"C methanol, transferred for 5 rain in 
cold (-20"C) acetone and air dried. Nuclei assembled in egg extract were 
fixed and immobilized on microscope slides as described (Dabauvalle et ai., 
1991). The specimens were then incubated for 20 rain at room temperature 
with the primary antibodies (serum 7217 diluted 1:50 in PBS or afffinity- 
purified antibodies at a concentration of 2 ~g/ml). The lamin Lm-specific 
mAb $49H2 was used as 1:100 diluted ascites fluid. After several wash steps 
in PBS, appropriate Texas red-conjugated secondary antibodies (Dianova, 
Hamburg, Germany; diluted 1:150 in PBS) were added for another 20 rain. 
Specimens were then counterstained for DNA with Hoechst 33258 (5 
tzg/ml), washed in PBS, air dried from ethanol, and mounted in Mowiol 
(Hoechst, Frankfurt). 

In some experiments cultured cells were rehydrated in PBS after metha- 
nol/acetone fixation for digestion with DNAase I (0.1 mg/ml in 10 mM Tris, 
pH 7.2, 2 mM MgC12) or pancreatic RNAase (0.1 mg/ml in 50 mM NaCI, 
10 mM Tris, pH 7.2). After 10 min at room temperature the cells were 
washed for 5 min in PBS and processed for immunofluorescence micros- 
copy as described above. Photographs were taken with a Zeiss Axiophot 
equipped with epifluorescence optics and the appropriate filter sets (Carl 
Zeiss Obarkochen, Germany). 

Electron Microscopy 
Procedures used for EM immunocytochemistry of isolated nuclear enve- 

lopes from Xenopus oocytes have been described (Dabauvalle et al., 1988a). 
The manually isolated and unfixed nuclear envelopes were incubated with 
affinity-purified anti-nupl80 at a concentration of 20 t~g/ml followed by 
anti-human IgG coupled to 10-nm gold particles (Amersham-Buchler, 
Braunschweig, Germany; diluted 1:10). Alternatively, incubation was per- 
formed with WGA coupled to 10-nm gold particles (diluted 1:10; Medac, 
Hamburg, Germany) for 45 rain, followed by a PBS wash and fixation for 
EM. Immunogold-labeling with the p62-specific mAb PI1 was done as de- 
scribed (Dabauvalle et al., 1988a). Cryostat sections (5 pm) of ovaries from 
young Xenopus were fixed in acetone (5 rain at -20"C), air dried and in- 
cubated with afffinity-purified antibodies for 1 h. The tissue sections were 
then fixed with 2% formaldehyde in PBS (freshly prepared from parafor- 
maidehyde) for 10 rain. After thorough washing with PBS, anti-human IgG 
coupled to 10-nm gold particles was added for 3 h at room temperature. 
Specimens were then washed in PBS, posttixed, and processed for EM as 
described (Benavente et al., 1985). For douhle-immunolocalization experi- 
ments, antibodies against nup180 were applied together with mAb $49H2 
(ascites fluid diluted 1:100 with PBS) followed by a mixture of human- and 
murine-specific secondary antibodies coupled to 12- and 5-nm gold parti- 
cles, respectively. 

Cultured rat (RVF-SM) cells grown on coverslips were fixed with 2% 
formaldehyde in PBS for 5 rain. After several wash steps in PBS, the cells 
were permeabilized by treatment with 0.2% Triton X-100 in PBS for 5 rain 
and washed again. The specimens were then incubated with afffinity-purified 
antibodies followed by secondary gold-coupled antibodies and processed 
for EM as described above for the cryostat sections. 

Results 

Characterization of Autoimmune Serum 7217 
The autoimmune serum 7217 from a patient suffering from 
overlap connective tissue disease was initially selected by 
immunofluorescence microscopy by its distinctly punctate 
nuclear surface staining of human HEp-2 cells. On immuno- 
blots the serum reacted with several polypeptide bands of 
isolated nuclei from HEp-2, HeLa, BHK-21 and PtK2 cells 
including a prominent 180-kD component (not shown). To 
identify the antibodies that produced the characteristic punc- 
tate nuclear surface fluorescence, immunoglobulins were 
afffinity-purified to different regions of nitrocellulose filters 
containing gel electrophoretically separated nuclear proteins 
from HEp-2 or PtK2 cells and probed separately by im- 
munofluorescence microscopy. Only antibodies eluted from 
the 180-kD region yielded the fluorescence pattern indica- 
tive for NPCs. The other eluates were either negative or 
stained the whole nucleoplasm. Since the 180-kD protein 
turned out to be a component of the NPC (see below), we 
designate it nup (for nuclear pore complex protein or 
nucleoporin) 180 in accordance with Davis and Fink (1990). 
All results described below were obtained by using Western 
blot affinity-purified anti-nuplS0 antibodies. 

For immunoblots, nuclear proteins from various mam- 
malian cell lines were separated by one-dimensional SDS- 
PAGE and transferred to nitrocellulose. Affinity-purified 
anti-nupl80 antibodies reacted in all samples selectively 
with a 180-kD band, occasionally in form of a double band 
(Fig. 1, lanes 1"4'). Manual subfractionation ofXenopus oo- 
cyte nuclei revealed that the 180 kD protein remained as- 
sociated with the isolated nuclear envelopes (Fig. 1, lane 5'). 
In addition to nupl80, the antibodies recognized a 260-kD 
polypeptide of nuclear envelopes isolated from Xenopus 
ooeytes (Fig. 1, lane 5'). The electrophoretic mobility of 
nuplS0 was consistently higher than that of myosin heavy 
chain run as molecular weight standard (Fig. 1). It is worth 
mentioning that nupl80 was highly susceptible to degrada- 
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Figure I. Immunoblots with 
affinity-purified anti-nuplSO 
antibodies. Nuclear and nu- 
clear envelope proteins were 
separated by SDS-PAGE and 
stained with Coomassie blue 
(lanes 1-5). Total proteins of 
1 × 106 nuclei from HEp-2 
(lane I ), HeLa (lane 2), BHK- 
21 (lane 3), and PtK2 (lane 4) 
ceils and of 200 manually iso- 
lated nuclear envelopes from 
Xenopus oocytes (lane 5) 
were analyzed. Proteins from 

a gel run in parallel were electrophoretically transferred tO nitrocel- 
lulose and probed with affinity-purified anti-nupl80 antibodies 
(lanes 1"5'). In all samples the antibodies react with a 180-kD band 
(arrows), sometimes in form of a double band (lane 23. An addi- 
tional high molecular weight polypeptide of '~ 260 kD appears in 
the Xenopus nuclear envelope fraction (lane 51. Positions of the 
molecular mass markers are indicated (in kD; from top to bottom 
myosin heavy chain, ~galactosidase, phosphorylase a, BSA, oval- 
bumin). Note that nupl80 migrates faster than myosin heavy chain. 

Figure 2. Biochemical charac- 
terization of nupl80. Periph- 
eral membrane proteins were 
extracted from isolated PtK2 
nuclear envelopes by 2 M ure~ 
and fractionated by WGA- 
Sepharose affinity chromatog- 
raphy (a). Proteins that 
did not bind to WGA (flow- 
through, lane 1) and bound 
proteins (lane 2) were re- 
solved by SDS-PAGE, trans- 
ferred to nitrocellulose and 
probed with antibodies to 
nup180. Nup180 appears ex- 
clusively in the flow-through 

fraction (lane 1, the lower reactive band of 74 kD represents the ma- 
jor degradation product of nupl80). (b) Proteins of rat liver nuclei 
were separated by SDS-PAGE and either stained with Coomassie 
blue (lane 1) or transferred to nitrocellulose and probed with 
affinity-purified anti-nupl80 (lane 2) or guinea pig antiserum to 
gp210 (lane 3). Note that nup180 runs faster than gp210, which has 
a mobility corresponding to 190 kD. Position of the molecular mass 
markers are indicated in kD. 

tion, even during storage of isolated nuclei at -20°C. The 
most prominent degradation product was a 74-kD poly- 
peptide. 

To determine the isoelectric point of nupl80 we separated 
nuclear proteins of PtK2 cells by two-dimensional gel elec- 
trophoresis using IEF in the first dimension, followed by im- 
munoblotting. Under these conditions nuplS0 displayed an 
isoelectric point which spread between pH 6.2 and pH 6.6 
(not shown). Since nup180 was detectable neither in Coo- 
massie blue nor silver stained gels it obviously represents 
only a minor component of total nuclear proteins. 

To clarify whether nup180 is a peripheral or integral mem- 
brane protein, and whether or not it belongs to the GlcNAc- 
bearing nucleoporin family, we extracted nuclear envelopes 
of PtK2 ceils with 2M urea/1 mM EDTA, i.e., conditions 
known to solubilize nucleoporins (Radu et al., 1993). The 
solubilized proteins were then fractlonated by WGA-Sepha- 
rose chromatography and analyzed by SDS-PAGE and im- 
munoblotting. As shown in Fig. 2, nuplS0 was extractable 
from the nuclear envelopes under these conditions, but did 
not bind to WGA (Fig. 2 a, lane 1 ). In control experiments, 
IRi2 was detected in the WGA-binding fraction whereas gp- 
210, a transmembrane glycoprotein associated with NPCs, 
was not extractable and remained in the nuclear envelope 
pellet (data not shown; see also Radu et al., 1993). 

Some human autoimmune sera have been reported to con- 
tain antibodies directed against gp210 (Worman and Courva- 
lin, 1991). In SDS-PAGE this protein has an apparent molec- 
ular mass of 190 kD (Gerace et al., 1982). To compare 
nupl80 with gp210, proteins of isolated rat liver nuclei were 
separated by one-dimensional SDS-PAGE, blotted and 
probed with antibodies against nupl80 and gp210. As illus- 
trated in Fig. 2 b, nuplS0 clearly differed from gp210 by its 
higher mobility in SDS-PAGE. Furthermore, nupl80 did not 
bind the lectin Con A in contrast to gp210 (data not shown). 
From these experiments we conclude that nup180 is a periph- 
eral nuclear membrane protein, is not a member of the 

WGA-binding nucleoporin family, and is different from 
gp210. 

Purified anti-nup180 antibodies did not react in immuno- 
blots with rabbit myosin heavy chain, even when 10 #g 
purified myosin was applied to a single gel lane. This result 
together with the above mentioned finding that nupl80 
migrated faster in SDS-PAGE than myosin heavy chain (Fig. 
1) speaks against a relationship between both proteins. 

Light Microscopic Immunolocalization 

When human HEp-2 cells were labeled with afffinity-purified 
antibodies to nupl80 for immunofluorescence microscopy, 
optical sections of the nuclei revealed a prominent nuclear 
"rim" staining (Fig. 3 a'). When focused on the top surface 
of nuclei, a punctate pattern characteristic for NPC proteins 
could be discerned as illustrated for rat kangaroo PtK2 cells 
(Fig. 3 bt). Essentially the same fluorescent pattern was seen 
with other mammalian cell lines such as HeLa and BHK. 
During mitosis, fluorescence was no longer restricted to the 
nuclear periphery but became dispersed throughout the ceil 
with no detectable enrichment at the chromosome surfaces 
(Fig. 3 a', arrows). Analogous changes of the fluorescence 
pattern during mitosis have been observed with antibodies 
against GlcNAc-modified nucleoporins (e.g., Davis and 
Blobel, 1986; Park et al., 1987; Snow et al., 1987; Bena- 
vente et al,, 1989), a nucleoporin lacking GlcNAc residues 
(nup155; Radu et al., 1993) and the integral membrane gly- 
coprotein gp210 (Gerace et al., 1982). After treatment of 
ceils with DNAase or RNAase before incubation with anti- 
nuplS0, the fluorescence was essentially unaltered. 

Fluorescent dot-like structures were also seen in the 
cytoplasm of HEp-2 cells, though in variable amounts from 
cell to cell (Fig. 3 a'). By using immunogold EM we have 
recently obtained evidence that these fluorescent cytoplas- 
mic bodies represent annulate lamellae (Ewald, A., J. L. 
Sen6cal, U. Scheer, and M.-C. Dabauvalle, manuscript in 
preparation). 
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Figure 3. Localization of nuplS0 in cultured human HEp-2 cells (a3, rat kangaroo PtK2 cells (b'), and on a frozen section of a Xenopus 
oocyte (c") by immunofluorescence microscopy. The corresponding phase contrast images are shown (a-c). Depending on the focal plane, 
nuclei reveal either a prominent "rim" staining (a~ or the characteristic punctate surface fluorescence (b~. The fluorescent dots seen in 
the cytoplasm of HEp-2 ceils most likely reflect the presence of annulate lamellae. During mitosis, nuplS0 is dispersed throughout the 
cytoplasm (arrows in a~. A previteUogenic Xenopus oocyte with its surrounding follicle cell layer is shown in phase contrast (c, the position 
of the nuclear envelope is indicated by arrows) and after DNA staining with Hoechst (c'). Hoechst fluorescence reveals the nuclei of the 
follicle cells. Anti-nupl80 antibodies stain strongly the nuclear envelope of the oocyte and, though weaker, the nuclear periphery of the 
follicle ceils (c"). Some fluorescent dots, probably reflecting annulate lamellae, are observed in the oocyte cytoplasm (arrow in c"). N, 
nucleus. Bars, (a and b) 20 #m; (c) 50 #m. 

Immunofluorescence microscopy on frozen sections 
through Xenopus ovary showed strong and specific staining 
of the nuclear envelope of oocytes (Fig. 3 c"). The fluores- 
cence pattern was not punctate but rather uniform, most 
likely due to the high pore density in this material (a continu- 
ous labeling of the nuclear periphery ofXenopus oocytes has 
also been observed with antibodies against p62; Dabauvalle 

et al., 1988a). In addition to the nuclear envelope staining, 
some fluorescent dot-like structures occurred in the cyto- 
plasm of the oocytes (Fig. 3 c", arrow), probably reflecting 
the presence of annulate lamellae. Comparable cytoplasmic 
fluorescent dots have also been observed in Xenopus oocytes 
after staining with antibodies to p62 (Dabauvalle et al., 
1991). 
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Figure 4. Preembedding immunogold EM localization of nupl80. Cryosections of Xenopus oocytes (a-c), manually isolated nuclear enve- 
lopes from Xenopus oocytes (d and e) and Tdton-permeabilized rat RVF-SM cells (f) were incubated with afffinity-purified anti-nnpl80 
followed by secondary gold-conjugated antibodies. The outer (cytoplasmic) face of NPCs is selectively labeled as seen in transversely sec- 
tioned nuclear envelopes (a-c). The outer nuclear membrane (ONM) often forms blebs (arrow in a; INM, inner nuclear membrane). Gold 
particles decorate the cytoplasmic NPC rings or short fibrils projecting therefrom (b and c, some NPCs are denoted by arrows). The 
nncleoplasmic side of the nuclear envelope is identified in c by double label immunogold EM using a mAb against Xenopus lamin Lm 
(small gold; the larger gold particles reveal the distribution of anti-nupl80). Tangential sections reveal labeling of cytoplasmic pore rings 
(d and e) and associated fibers (arrows in e). Gold particles also decorate the cytoplasmic face of NPCs in rat cells (f, NPCs are denoted 
by arrows). Ch, chromatin. Bars, 0.1 /zm. 

Figure 5. Comparison of NPC labeling with anti-nnpl80 (a-c), gold-conjugated WGA (d and e) and anti-p62 (fand g). Nuclear envelopes 
were isolated manually from Xenopus oocytes, incubated with the antibodies or WGA and processed for EM. Shown are representative 
examples of transversely and tangentially sectioned nuclear envelopes. The cytoplasmic side of all cross-sectioned nuclear envelopes faces 
the top of the figure. Fibrils projecting from the nucleoplasmic NPC ring are indicated (g, arrows). Bar, 0.1 ~tm. 
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Electron Microscopic Immunolocalization 

To localiTe nupl80 at the ultrastructural level, we used 
preembedding immunoelectron microscopy. Manually iso- 
lated nuclear envelopes ofXenopus oocytes or, alternatively, 
frozen sections (5 #m thick) of previtellogenic Xenopus 
oocytes were incubated with affinity-purified anti-nuplS0 
followed by 10-nm gold-conjugated anti-human IgG. Strik- 
ingly, the gold particles exclusively decorated the cyto- 
plasmic side of transversely sectioned nuclear envelopes, 
and were concentrated at the NPCs (Fig. 4, a and b). At 
higher magnification the gold particles were seen to decorate 
the cytoplasmic ring of the NPCs as well as short fibrils 
projecting therefrom (Figs. 4 b and 5, b and c). 

To unequivocally identify the topology of the nuclear 
envelopes, we performed double immunogold labeling using 
anti-nupl80 and a mAb directed against a protein of the nu- 
clear lamina. The result clearly demonstrated that nupl80 
was located at the cytoplasmic side of the NPCs (Fig. 4 c) 
and, further, that the nucleoplasmic face of the nuclear enve- 
lope was accessible to antibodies under the incubation condi- 
tions. The topology of the nuclear envelope could also be in- 
ferred from the tendency of the outer nuclear membrane to 
locally disintegrate by bleb formation, probably due to the 
absence of a stabilizing lamina layer (Fig. 4 a, arrow). In 
sections glancing the outer surface of nuclear envelopes, the 
association of gold particles with the cytoplasmic ring of the 
NPCs was especially evident (Figs. 4, d and e and 5 a). Not 
infrequently, short fibrils radiating from the cytoplasmic 
NPC ring were also labeled (Fig. 4 e, arrows). It is interest- 
ing to note that the amount of labeling was generally lower 
when isolated oocyte nuclear envelopes were used as op- 
posed to frozen sections of oocytes. This may indicate that 
the antigen is partially lost from the NPCs during the isola- 
tion procedure due to connections with cytoplasmic struc- 
tures. 

When cultured rat cells were labeled with anti-nupl80, 
gold particles were also found exclusively at the cytoplasmic 
face of the NPCs (Fig. 4 f ) .  

The distribution of nuplS0 within the substructures of the 
NPC clearly differed from that of the GlcNAc-modified 
nucleoporins. Fig. 5 presents a panel of representative NPCs 
in transverse and tangential views after labeling with anti- 
nuplS0, WGA and anti-p62 (mAb PI1). With anti-nupl80, 
immunogold decoration was found exclusively on the cyto- 
plasmic ring of the NPCs or short fibers projecting into the 
cytoplasm (Fig. 5, a-c). In contrast, WGA-gold labeled 
preferentially the central pore region, i.e., the site of the 
transporter assembly (Fig. 5, d and e; for a quantitative 
evaluation of WGA binding sites, see Akey and Goldfarb, 
1989). The most abundant member of the GlcNAc-bearing 
nucleoporins, p62, localized close to the central pore axis, 
with some preference for the cytoplasmic side (Fig. 5, f 
and g). 

Antibodies to Nupl80 Do Not Interfere with 
Nuclear Import 

Recently we have shown that injection of the p62-specific 
mAb PI1 into the cytoplasm of Xenopus oocytes effectively 
inhibited nuclear protein import (Dabauvalle et al., 1988a; 
Benavente et al., 1989). In striking contrast, nuclear protein 

transport was not affected after injection of anti-nupl80 anti- 
bodies (data not shown). 

Extract prepared from activated Xenopus eggs is capable 
of reconstituting nuclear envelopes around exogenously 
added chromatin or DNA. The resulting nuclei contain a 
large number of NPCs which are morphologically indistin- 
guishable from those of normal nuclei, and are functionally 
active since they transport karyophilic proteins in a signal se- 
quence and ATP-dependent manner (reviewed in Lohka, 
1988; Laskey and Leno, 1990; Forbes, 1992). When probed 

Figure 6. Nuclei assembled from sperm chromatin in Xenopus egg 
extract show a ptmetate surface fluorescence after reaction with 
anti-nupl80 (a"). When the nuclei are allowed to form in the pres- 
ence of afffinity-purified anti-nup180 antibodies, nuclear protein up- 
take is not inhibited. This is shown by immunofluorescence of the 
newly assembled nuclei with antibodies to the nucleolar protein 
fibrillarin which stain numerous intranuclear dot-like structures 
(b"; see Bell et al., 1992). In contrast, in the presence of antibodies 
to p62 the in vitro nuclei are unable to take up proteins and are thus 
devoid of the fluorescent dots (c"). The corresponding phase con- 
trast images (a-c) and Hoechst fluorescence (a-d) are shown. Bar, 
20 tan. 
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with anti-nuplS0, the in vitro reconstituted nuclei revealed 
a distinctly punctate fluorescence pattern on their outer sur- 
faces (Fig. 6 a'), indicating that nupl80 is a component of 
the newly formed NPCs. 

As antibodies to p62 have been shown to inhibit active 
transport of karyophilic proteins into nuclei assembled in 
Xenopus egg extract (Dabauvalle et al., 1990), we have ana- 
lyzed the effect of antibodies to nupl80 on nuclear transport 
with this experimental system. After addition of attinlty 
purified anti-nup180 antibodies to the extract, nuclei formed 
normally from sperm chromatin and were perfectly capable 
of accumulating karyophilic proteins as demonstrated by the 
emergence of numerous fibrillarin-containing aggregates 
(Fig. 6 b~; see also Bell et al., 1992). When NPC-mediated 
transport was inhibited by addition of anti-p62 (mAb PI1) to 
the extract, the dense aggregates did not form (Fig. 6 c"). In 
conclusion, antibodies to nupl80 did not interfere with nu- 
clear protein transport, neither in vivo nor in vitro. 

Discussion 

In the present study we have identified an evolutionarily con- 
served NPC protein which we have designated nup180 (for 
nuclear pore complex protein or nucleoporin) with a molec- 
ular mass of 180 kD as estimated from its mobility in SDS- 
PAGE and an isoelectric point at a pH of ,,06.2. On the basis 
of its extractability from isolated nuclear envelopes with 2 
M urea/1 mM EDTA we classify nupl80 as a peripheral 
membrane protein (Radu et al., 1993). Nup180 is not reac- 
tive with WGA and hence does not belong to the family of 
GlcNAc-containlng pore proteins. Another nucleoporin 
lacking GlcNAc sugar moieties has recently been described 
in rat liver (nup155) with an apparent molecular mass of 140 
kD as determined by SDS-PAGE, which localizes to the 
nucleoplasmic and cytoplasmic sides of the NPCs (Radu et 
al., 1993). 

By immunogold EM performed on isolated nuclear enve- 
lopes and cryosections of Xenopus oocytes, human autoim- 
mune antibodies against nuplS0 resulted in a striking asym- 
metric labeling of NPCs. Gold particles occurred almost 
exclusively at the cytoplasmic face of the NPCs and 
specifically decorated the cytoplasmic rings and the short 
fibrils projecting from the rings into the cytoplasm. The 
topological disposition of nuplS0 was clearly different from 
that of the WGA-binding nucleoporins (a comparison of the 
NPC labeling patterns with anti-nupl80, WGA, and anti-p62 
is shown in Fig. 5). Thus, gold-tagged WGA did not label 
the cytoplasmic rings, but rather the central regions of the 
NPCs where nucleocytoplasmic transport processes are 
known to take place (for a detailed mapping of the WGA 
binding sites see Akey and Goldfarb, 1989). A similar label- 
ing pattern was obtained with mAb PI1 against p62, the pre- 
dominant member of the WGA-binding nucleoporin family. 

Nup 180 is distinct from other previously identified NPC 
proteins. Among the GlcNAc-modified nucleoporins is a 
protein with an apparent molecular mass of 180 kD (p180; 
Snow et al., 1987). Using a monospecific mAb (antibody 
RLll), these authors detected p180 exclusively at the 
nucleoplasmic side of the NPC. With the help of another 
mAb, termed rnAb 322, Sukegawa and Blobel (1993) have 
identified a WGA-binding NPC protein which appears to be 
identical with p180. Just as for p180, it is also located on the 

nucleoplasmic side of the NPC (Sukegawa and Blobel, 
1993). This protein (now termed nup153) has been se- 
quenced and found to contain zinc finger motifs characteris- 
tic for DNA-binding proteins. Taken together, the absence of 
WGA reactivity, and the localization to the NPC cytoplasmic 
ring and associated fibers clearly distinguishes nupl80 from 
plS0/nup153. 

Nup180 is also distinct from a transmembrane NPC glyco- 
protein of an apparent molecular mass of 190 kD on 
SDS-polyacrylamide gels (Gerace et al., 1982) that, based 
on its predicted molecular mass, was renamed gp210 (Woz- 
niak et al., 1989). First, nuplS0 is solubilized from nuclear 
membranes with 2 M urea whereas gp210 resists such ex- 
traction conditions; second, nupl80 migrates faster on 
SDS-polyacrylamide gels than gp210; third, nuplS0 does 
not react with Con A unlike gp210; and fourth, the topology 
of nupl80 in the NPC differs from that of gp210 (Gerace et 
al., 1982; Greber et al., 1990). 

Nupl80 is also distinct from myosin heavy chain. Apart 
from the clearly different gel electrophoretic mobilities of 
both proteins, antibodies to nuplS0 react neither in immuno- 
blot nor immunocytochemical analyses with myosin. Fur- 
ther, the symmetrical labeling of NPCs with anti-myosin an- 
tibodies (Berrios et al., 1991) clearly differs from the 
asymmetric pattern obtained in the present study with the 
nupl80 antibodies. 

From EM studies it is well known that short fibrils extend 
from the cytoplasmic NPC ring and/or the eight attached an- 
nulus granules into the cytoplasm (Kessel, 1973; Franke and 
Scheer, 1974; Maul, 1977; Scheer et al., 1988; Ris, 1991; 
Jarnik and Aebi, 1991; Forbes, 1992; Pant~ and Aebi, 1993). 
We found immunogold decoration on these fibers as well as 
the cytoplasmic ring proper, indicating that nupl80 is part 
of both structures. Since it has been shown that the cytoplas- 
mic rings and the fibers projecting from them bind 
karyophilic proteins before their translocation through the 
NPC (Richardson et al., 1988; Newmeyer and Forbes, 1988) 
we assessed the effect of anti-nup180 antibodies on nuclear 
protein transport. Microinjection of the antibodies into the 
cytoplasm of Xenopus oocytes as well as their addition to a 
cell-free system did not affect nuclear protein transport to 
any noticeable extent. Similarly, injection of the antibodies 
into the cytoplasm or nucleus ofXenopus oocytes did not in- 
hibit RNA export (A. Jarrnolowski; European Molecular Bi- 
ology Laboratory, Heidelberg, unpublished observations). 
Thus, at the moment we have no positive evidence that 
nuplS0 is directly involved in nucleocytoplasmic transport 
processes as this is the case for the WGA-binding nucleopo- 
rins (for references see introduction). 

A number of electron microscopic studies have suggested 
connections of cytoplasmic intermediate filaments to the nu- 
clear envelope (for reviews see French et al., 1989; Carmo- 
Fonseca and David-Ferreira, 1990; Hansen and Ingber, 
1992). It is tempting to speculate that nupl80 may be in- 
volved in establishing a structural link between the nucleo- 
plasmic face of the NPCs and the cell cytoskeleton. In fact, 
short 5-nm-thick filaments which morphologically resemble 
the fibrils emanating from the cytoplasmic NPC ring have 
been described to link bundles of intermediate filaments to 
NPCs (Carmo-Fonseca et al., 1987). It is conceivable that 
NPCs not only provide the gateways for nucleocytoplasmic 
exchange of macromolecules, but also provide a physical 
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connection between the genome via the DNA-binding 
nucleoporin nup153 (Sukegawa and Blobel, 1993) and the 
cytoskeleton via the cytoplasmically exposed NPC protein 
nupl80 described in the present study. 
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