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A review of our current knowledge of B cell antigen uptake mechanisms, the relevance of
these processes to pathology, and outstanding questions in the field. Specific antigens
induce B cell activation through the B cell receptor (BCR) which initiates downstream
signaling and undergoes endocytosis. While extensive research has shed light on the
signaling pathways in health and disease, the endocytic mechanisms remain largely
uncharacterized. Given the importance of BCR-antigen internalization for antigen
presentation in initiating adaptive immune responses and its role in autoimmunity and
malignancy, understanding the molecular mechanisms represents critical, and largely
untapped, potential therapeutics. In this review, we discuss recent advancements in our
understanding of BCR endocytic mechanisms and the role of the actin cytoskeleton and
post-translational modifications in regulating BCR uptake. We discuss dysregulated BCR
endocytosis in the context of B cell malignancies and autoimmune disorders. Finally, we
pose several outstanding mechanistic questions which will critically advance our
understanding of the coordination between BCR endocytosis and B cell activation.

Keywords: B cell receptor (BCR), endocytosis, antigen uptake, antigen presentation, clathrin, endophilin A2,
caveolae, phagocytosis
INTRODUCTION

The term endocytosis describes the production of intracellular membranes from the cell surface
plasma membrane (PM), a phospholipid bilayer, to internalize extracellular components, such as
cell surface receptors and soluble extracellular factors. Once internalized, the contents can be
recycled back to the PM through recycling pathways or delivered to late endosomes and lysosomes
for cellular degradation. The final destination of internalized cargo is dependent on post-
translational modifications (PTM) and interactions with distinct trafficking adaptors (1).
Endocytosis is a ubiquitous cellular process and cargo includes receptors for iron uptake,
cytokine responses, growth factors, glucose, cholesterol, vitamins (2–4). As such, it plays a
critical role in cell growth and metabolism, cell-cell interactions, adhesion, and migration.

In the immune system, multiple endocytic pathways, including phagocytosis, pinocytosis,
receptor-mediated endocytosis and caveolae, allow the uptake of foreign antigens for processing
and presentation, and subsequent initiation of immune responses. Different antigen presenting cells
rely on distinct endocytic mechanisms; dendritic cells (DC) have the structural and membrane
capacity for dramatic and energetically demanding forms of endocytosis such as macropinocytosis
and phagocytosis of particulate antigen. In contrast, the size and membrane availability in B cells,
together with their requirement to detect specific antigens, limits their antigen uptake capacity to
org April 2022 | Volume 13 | Article 8921691
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receptor-mediated endocytosis. Soluble antigens encountered in
the lymphatics or membrane-bound antigen displayed by
antigen presenting cells (APC) (5), binds to the surface B cell
receptor (BCR), which initiates downstream signaling cascades
for B cell activation and rapid endocytosis to provide material for
antigen presentation. In this review, we will discuss mechanisms
of antigen-BCR endocytosis in B cells, their coordination with
downstream BCR signaling and their dysregulation contributing
to B cell malignancy and autoimmunity.

B Cell Activation
B cells promote clearance of invading pathogens and long-term
immunity through two main cellular processes: antigen
presentation on major histocompatibility complex class II
(MHC-II) molecules to initiate T cell responses (6); and
differentiation into memory or plasma cells for specific
antibody production. Both processes require the coordination
of signaling and endocytosis at the BCR.

The BCR is composed of surface immunoglobulin (Ig) and
non-covalently associated Iga/b heterodimer. Iga and Igb chains
possess a cytoplasmic tail containing immunoreceptor tyrosine-
based activation motifs (ITAMS), which allow signal
transduction. Upon antigen binding, ITAMs can be
phosphorylated to transmit downstream signals through the
action of several enzymes (such as Src family kinase Lyn),
reviewed in detail elsewhere (7).

In addition to signaling, antigen binding triggers BCR
endocytosis and trafficking of the BCR-antigen complex into
antigen-processing compartments, where antigenic peptides are
loaded onto MHC-II. Presentation of antigen-loaded MHC-II
molecules on the B cell surface promotes interaction with
cognate CD4+ T cells, which stimulates B cell activation and
transcriptional changes. Thus, BCR-mediated antigen
internalization and processing determines the number and
repertoire of antigen peptides presented, directly impacting B
cell ability to compete for T cell help during the germinal center
(GC) response (8).

Despite this interconnectivity, little is known about how BCR
signaling and endocytosis are coordinated. Indeed, the two
processes appear to be mutually exclusive for individual BCRs
as the phosphorylation of ITAMs required to initiate signaling, is
incompatible with binding of known endocytic adaptors (9, 10).
Molecular Mechanisms of
BCR Internalization
Clathrin-Mediated Endocytosis
The best characterized mechanism of BCR internalization is
clathrin-mediated endocytosis (CME) (11, 12). Upon antigen
binding to the BCR, clathrin is recruited to BCR-antigen clusters
via its essential adaptor protein-2 (AP-2), which binds ITAM
residues in the cytoplasmic tails of Iga and Igb (10). BCR-
proximal Src family kinases mediate phosphorylation of clathrin
heavy chain, promoting binding to clathrin light chain and
polymerization to induce membrane-curvature and formation
of clathrin-coated pits (CCP) (13–15). Clathrin heavy chain
phosphorylation also promotes association of CCPs with the
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actin cytoskeleton (14, 16). BCR antigen binding also promotes
tyrosine phosphorylation of several CCP-associated proteins,
including Epsin15 and Intersectin2 (17, 18), further cementing
the link between BCR signaling and CME. CCPs invaginate
before scission from the PM mediated by the large GTPase
dynamin. Dynamin forms a helical polymer around the
constricted neck of the CCP and, upon hydrolysis of GTP,
mediates membrane scission producing clathrin-coated vesicles
(CCV). This mechanically demanding process requires actin
polymerization which may be mediated by interaction between
clathrin light chain and its actin-binding partner Hip1R (16, 19).
The specific clathrin adaptors, redundancy, stoichiometry and
dynamics may be altered depending on antigen concentration (20).

Experimental inhibition of CME has revealed significant
plasticity in BCR internalization pathways (21). This may be
particularly striking in GC B cells, which do not polarize several
CME components (e.g. sorting nexins SNX9, SNX18) to the
immunological synapse (22) and appear more reliant on
clathrin-independent endocytosis (23). We discuss current
knowledge of these alternative pathways below (and Figure 1).

Fast Endophilin-Mediated Endocytosis
FEME was described in 2014 as a fast-acting, tubulovesicular,
clathrin-independent endocytic pathway. It mediates ligand-
triggered uptake of several G-protein coupled receptors and
receptor tyrosine kinases in a dynamin-dependent manner
(24). FEME is mediated by BAR domain-containing
endophilin proteins – Endophilin A1, A2 and A3. While
Endophilin A1 and A3 are restricted to tissues such as brain,
kidney, and testes, Endophilin A2 is ubiquitously expressed and
importantly, the only endophilin family member expressed in
B cells.

Endophilin A2 is present in PM patches, priming the
membrane for FEME by sporadically forming and dissolving
clusters. These clusters are highly dynamic, lasting 5-15s, and
rely on production of PI (3, 4)P2 at the membrane (25). Within
these clusters, productive receptor-ligand interactions result in
cargo capture, endophilin-mediated membrane curvature and
rapid endocytosis with subsequent dynamin-dependent scission.
In contrast, in the absence of ligand binding, the membrane
priming complex is dissembled and new endophilin clusters can
form stochastically (26). The molecular mechanisms of FEME,
and known or suspected cargo proteins in other cells have been
extensively reviewed (25). Critically for B cells, unlike other
pathways, FEME is non-constitutive ligand-triggered endocytosis.

Recent work identified the BCR as cargo for FEME. An
unbiased whole-genome screen in a human B cell line
identified a role for Endophilin A2 specifically in ligand-
triggered BCR internalization. Although the stoichiometry and
direct interactors remain to be discovered, recruitment of
Endophilin A2 to the BCR was dependent on Grb2 and BLNK.
Endophilin A2 deletion caused B cell-intrinsic defects resulting
in decreased antigen-specific GC responses and reduced high-
affinity IgG production (23).

Unlike CME, FEME critically requires Cdc42 activity and
actin polymerization, concurrent with observations of BCR-
antigen uptake in B cells. The use of FEME as an additional
April 2022 | Volume 13 | Article 892169
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endocytic mechanism in B cell antigen internalization may
guarantee internalization of phosphorylated BCRs, where
machinery for signaling and clathrin-dependent endocytosis
would normally compete for binding. In the context of other
receptors, endophilin has also been described to interact with the
CIN85-Cbl complex (27, 28), as well as ESCRT (endosomal
sorting complexes required for transport) components ALIX and
Tsg101 (29), which are highly expressed in germinal center B
cells. Investigation of these interactions in B cells will advance
our understanding of the coordination between BCR signaling
and endocytosis. Further mechanistic insights will allow define
the contribution of this pathway to antigen affinity
discrimination, the dynamics and repertoire of antigen
presentation, and its involvement in malignancy, given its
specific requirement in Germinal Center B-cell like (GCB) and
Burkitt lymphomas (23).

Caveolin-Dependent Endocytosis
Caveolin-1 is an integral membrane protein with a hairpin-like
structure containing an internal intramembrane domain and
both C- and N-termini facing the cytosol. Caveolin-1 promotes
PM compartmentalization and the assembly of ordered lipid
domains, such as caveolae - flask-shaped PM invaginations, with
a diameter of 50-100nm, considered a form of lipid rafts. Early
studies reported lack of expression of caveolin-1 in transformed
B cells lines (30); however, subsequent work in primary cells has
shown caveolin-1 expression in mouse and human B cells (31,
Frontiers in Immunology | www.frontiersin.org 3
32). More recently, caveolin-1 was shown to control the
distribution of IgM BCR clusters to ordered lipid domains on
the B cell surface. Caveolin-1 function in BCR organization is
dependent on Tyr14 phosphorylation by Src family kinases. In
caveolin-1-deficient B cells, altered BCR nanoscale organization
resulted in impaired BCR signaling. In immature B cells, loss of
caveolin-1 resulted in defective central tolerance and expression
of autoreactive BCRs leading to autoimmunity in mice (33).
Interestingly, in these studies BCR internalization kinetics
following soluble anti-IgM/IgD stimulation were unchanged in
caveolin-1-deficient B cells. Questions remain regarding the
mechanisms of caveolin-1 class-specific interactions with IgM
or IgD BCR, and the potential role of caveolin-1 in cognate
antigen uptake.

Phagocytosis
Phagocytosis is defined as the receptor-mediated ingestion of
large (≥0.5-mm) particles through local rearrangements of the
actin cytoskeleton. Irrespective of the surface receptor involved,
this type of internalization results in a membrane-bound vacuole
termed a phagosome, which matures through regulated fusion
events, altering its composition and pH, in parallel with other
endocytic pathways (34). Rho family GTPases, as master
regulators of actin dynamics, play an essential role in PM and
cytoskeleton remodeling during particle internalization (35, 36).
The early paradigm dictated that phagocytosis was carried out by
professional phagocytes, such as macrophages and DCs,
FIGURE 1 | Molecular mechanisms of BCR internalization. Clathrin-mediated endocytosis (green). Following BCR antigen binding, clathrin is recruited to BCR-
antigen clusters, binding ITAM residues in the cytoplasmic tails of Iga and Igb. Clathrin polymerization induces membrane-curvature and formation of CCPs. CCPs
invaginate before scission from the PM mediated by dynamin, forming a CCV. CCVs containing BCR-antigen complexes fuse with late endosomes for antigen
processing and subsequent presentation. Phagocytosis (blue). BCR binding to large, particulate antigens can induce local actin rearrangements, driving membrane
protrusion to form a large membrane invagination. Once internalized in phagosomes, the membrane vesicle undergoes fusion events in parallel with other endocytic
processes. Fast endophilin-mediated endocytosis (yellow). Within endophilin-primed membrane patches, BCR antigen binding results in endophilin-mediated
membrane curvature with subsequent dynamin scission to form an intracellular vesicle. This pathway is specific for ligand-triggered, signaling receptors. Caveolin-
dependent endocytosis (pink). Caveolin-1 controls the distribution of surface BCR into lipid rafts. Its role in antigen-mediated BCR internalization requires further investigation.
Created with BioRender.com.
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providing APCs with antigen for presentation to lymphoid cells,
and therefore playing a key role in the initiation of adaptive
immune responses (36). B cells were thought to lack such
phagocytic properties, due to the dramatic membrane and
cytosolic rearrangements required, and have been used as
negative controls in phagocytic assays (37). The discovery of
macrophage-like B cell phagocytosis in a primitive vertebrate
species transformed our understanding of the process (38).
Subsequent studies identified BCR-mediated phagocytosis of
bacteria in human B cells and murine innate-like B1 B cells,
inducing robust antigen presentation and downstream B cell
responses (39–41).

More recently, Martıńez-Riaño et al. demonstrated that
follicular B cell phagocytosis is BCR-driven and dependent on
RhoG GTPase. This phagocytosis was important for development
of a strong GC response and generation of high-affinity class-
switched antibodies. Phagocytosis of antigen complexed to alum
(common immunization adjuvant) provides a mechanism for
initiating a humoral response against particulate antigens (42).
The discovery that B cells phagocytose may play a pivotal role in
vaccine design.
Trogocytosis
Trogocytosis is a process commonly described as cell gnawing, in
which lymphocytes can internalize cellular material, including
transfer of plasma membrane, from conjugated APCs. The
process has been demonstrated in primary B cells and requires
engagement of the BCR (43, 44) though may exhibit distinct
signaling and cytoskeletal requirements from other cell types (45,
46). Most recently, trogocytosis was shown to mediate transfer of
peptide-MHC II complexes from conventional DCs to marginal
zone B cells in a complement receptor-dependent manner (47).
This significantly expands the variety of antigens that marginal
zone B cells can present to T cells, and opens further research
avenues on the mechanisms and dynamics of peptide acquisition.

Endocytosis of Immobilized Antigens Following
Proteolytic Extraction
A distinct mechanism of antigen endocytosis has been
demonstrated for antigens presented on rigid substrates. In this
model, B cell polarization towards the IS results in release of
lysosomal content into the extracellular space (48, 49).
Subsequent studies have revealed a role for Galectin8, a glycan-
binding protein mediating extracellular matrix interactions, in B
cell polarization, lysosome docking at the antigen contact site,
and acidification of the IS space (50). Recent work provided
further insight on lysosomal recruitment mechanisms. First,
proteasome activity can promote actin clearance at the IS and
lysosomal polarization towards immobilized antigens (51, 52).
Second, interaction with surface-tethered high-affinity antigen
induces B cell permeabilization and plasma membrane repair
through calcium-induced lysosome exocytosis (53). Whether the
specific endocytic mechanisms involved in recovery of
proteolytically extracted antigen differ from those described
above remains to be investigated.
Frontiers in Immunology | www.frontiersin.org 4
The Role of Actin in BCR Endocytosis
and Signaling
In B cells, actin plays a crucial role in antigen acquisition in
several distinct stages. First, cortical actin reorganization
coordinates B cell spreading and contraction at the
immunological synapse (54–56). Second, actin modulates
spatial patterning of the surface BCR, regulating the
amplitude/strength and dynamics of clustering and signaling
by the BCR (57–59). Third, actin interacts with endocytic
processes for antigen extraction and internalization. The first
two stages have been extensively reviewed elsewhere (60–62) and
here we will focus on the interaction with endocytosis. Actin foci
have been described at sites of antigen uptake in murine and
human B cells (22, 63, 64) and generate the physical force
required to extract membrane-bound antigen (15). Deletion of
the actin motor protein myosin IIa significantly reduced antigen
uptake in naïve B cells (65), further highlighting the requirement
for mechanical force.

In CME, Lyn-mediated phosphorylation of clathrin heavy
chain promotes interaction with actin (14, 16). Antigen-
induced BCR signaling through Vav, Bam32 and Btk can also
regulate actin polymerization and association with CCPs (66–
68). In addition, several clathrin-interacting proteins (CYFIP1,
Intersectin, Eps15) can promote actin polymerization through
Wiskott-Aldrich Syndrome protein (WASp) family proteins
(69) and B cell deficient in WASp exhibit reduced antigen
uptake (70). Actin is crucially required for antigen extraction by
GC B cells, which apply stronger physical forces and exhibit
distinct synaptic architecture (22, 71, 72). Investigation of
individual clathrin adaptors and actin regulators will likely
reveal further molecular details and differential requirements;
for example, deletion of Itsn2, a Cdc42 guanine nucleotide
exchange factor (GEF), reduced germinal center formation
but did not impact BCR-antigen uptake (73). This highlights
the challenges in investigating direct and indirect effects in
this process.

Actin polymerization is also required for all clathrin-
independent pathways we describe in B cells. In FEME, actin
polymerization drives local membrane deformation and
formation of intracellular bud (25, 74). Molecular details
remain to be investigated but FEME requires all three main
small GTPases (RhoA, Rac1 and Cdc42), with Cdc42 required
for priming and inhibition of RhoA or Rac1 inhibiting FEME
entirely (24). Phagocytosis of larger antigens also requires intense
remodeling of the actin cytoskeleton (42). Whether similar
mechanisms are required for the poorly understood process of
trogocytosis (45) remains to be investigated.

Although originally described to promote CME (14), lipid
rafts (cholesterol-rich microdomains) have been shown to drive
BCR internalization independently of clathrin (21). This uptake
requires the immunoglobulin cytoplasmic domain (75) and is
strongly dependent on intact actin remodeling (21). Caveolae are
closely associated with actin filaments, through potential
interactions with filaminA and Intersectin2L (76, 77).
Dissociation of lipid rafts from the underlying cortical actin,
through ezrin dephosphorylation and release, is critical for
April 2022 | Volume 13 | Article 892169
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antigen-induced lipid raft coalescence and eventual uptake (78).
Rapid cholesterol-mediated BCR uptake may explain uncoupled
BCR signaling in anergic B cells (79). Whether this is related to
reduced NFkB signaling observed in GC B cells (71) and, more
broadly, the role of lipid rafts in GC antigen uptake requires
further investigation. How lipid order in these microdomains
directs protein interactions and whether rafts play a role in force-
dependent affinity discrimination is unclear.
Post-Translational Modifications of BCR-
Associated Endocytic Proteins
Common PTMs downstream of BCR engagement include
phosphorylation and ubiquitination. As described above,
phosphorylation by proximal kinases not only initiates
downstream signaling cascades but is required for interaction
with numerous endocytic regulators (70). Its involvement in
several pathways is not well understood, for example, Endophilin
A2 is itself phosphorylated at serine 288 and the level of
modification is marginally increased upon antigen challenge
(18), however, the significance of this for FEME or CME
is unknown.

Activated BCRs have also been shown to associate with c-Cbl/
Cbl-b E3-ubiquitin ligases, which results in the ubiquitination of
Iga and Igb (80, 81). This is likely to play a role in both BCR-
antigen complex internalization and downstream intracellular
trafficking (82). Cbl-mediated ubiquitination can promote BCR
uptake in an actin-dependent mechanism (83), providing a
Frontiers in Immunology | www.frontiersin.org 5
potential mechanism to resolve the binding competition
between signaling and endocytic regulators. The molecular
mechanisms of ubiquitin-driven BCR endocytosis remain
uncharacterized. Recent proteomic analysis by Satpathy et al.
confirmed PTM changes in numerous CCP components and
actin regulators following BCR ligation (PICALM, SWAP70,
DOCK8, EPS15, EPN2, WASH complex) (18). Additionally,
several endocytic accessory proteins, including epsins and
Eps15R, contain ubiquitin-binding domains which may
mediate interaction with ubiquitinated BCR. Depletion of
CIN85 or Cbl, whose role in BCR signaling is clear (84, 85),
also inhibits FEME (24) and reduces Endophilin A2 recruitment
to the BCR (23).

Cbl and Cbl-b promote antigen uptake in naïve but not GC B
cells, despite their high expression in the latter (86). This may
reflect the requirement for naïve B cells to efficiently internalize
antigen irrespective of its affinity for the BCR (71) and future
insight into the molecular mechanisms will be exciting.

Altered BCR-Antigen Endocytosis in
Malignant B Cells
The crucial interplay between BCR endocytosis and signaling is
illustrated by the number of B cell malignancies that display
altered antigen receptor endocytosis or trafficking (Figure 2). Igb
ITAM residues modulate ligand-induced signaling by regulating
BCR internalization and are therefore essential for normal levels
of cell surface BCR expression. Mutations in Igb resulted in
reduced BCR internalization and enhanced signaling in primary
FIGURE 2 | Altered BCR-antigen endocytosis, trafficking and presentation in B cell autoimmunity and malignancy. Autoimmunity. BCR-mediated self-antigen uptake
can increase presentation of relevant peptides and drive disease progression. B cells in many autoimmune disorders exhibit increased surface MHC-II expression,
though the repertoire of presented peptides has not been addressed. Malignancy. Following antigen binding to the BCR, a signaling cascade is initiated through
phosphorylation of Iga/b ITAMs residues. Downstream activation of ERK and AKT mediates many metabolic changes and survival signaling, which are dysregulated
in B cell malignancies due to localization and trafficking dynamics of the BCR. Created with BioRender.com.
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B cells, specifically Akt and Erk activation, which can promote
cell survival and metabolic changes (87). Specific mutations in
the first ITAM residue in Igb have been observed in activated B
cell-like (ABC) diffuse large B cell lymphoma (DLBCL). These
increase surface BCR expression by attenuating Lyn kinase
activity and reducing internalization, leading to chronic active
BCR signaling as a pathogenic mechanism in ABC DLBCL (88).

Interestingly, in chronic lymphocytic leukemia (CLL), anergic
cells exhibit reduced BCR signaling and increased internalization
when compared to non-anergic counterparts (89). The specific
signaling pathways and endocytic regulators were not addressed
but the model supports mutually exclusive signaling and
internalization functions and highlights changes in
internalization dynamics in B cell malignancy. Understanding
the dependency of different leukemias and lymphomas on
distinct endocytic processes and how these may alter cell
signaling can reveal novel disease mechanisms and therapeutic
targets, specifically in our move towards precision medicine.

B Cell Antigen Trafficking and
Presentation in Autoimmunity
Antigen presentation by B cells has been associated with the
development and progression of various autoimmune disorders.
An antigen presentation role for B cells, independent of
autoantibody production, has been established in multiple
sclerosis (MS) (90). Indeed, surface MHC-II expression was
increased in B cells from relapsing MS patients (91), and this
increase may be mechanistically linked to Epstein-Barr virus
(EBV) infection (92). In animal models, B cell antigen
presentation was sufficient to drive neuro-inflammation (93). B
cell antigen presentation is also implicated in the development
and progression of type-1 diabetes, irrespective of their ability to
produce secreted antibodies (94), as well as asthma (95) and
celiac disease (96). Most recently, single cell sequencing of B cells
from patients with Parkinson’s disease also revealed increased
expression of MHC-II genes (97); while transient B cell depletion
significantly reduced Alzheimer’s disease progression in murine
models (98). While these studies do not address the dynamics or
specificity, they highlight an increased capacity for antigen-
presentation in disease-associated B cells. Understanding
antigen trafficking and presentation would provide exciting
opportunities for B-cell targeted therapeutics in these pathologies.
Frontiers in Immunology | www.frontiersin.org 6
Unanswered Questions and
Future Milestones
How are BCR antigen internalization and signaling coordinated?

What is the fate of BCR-antigen complexes endocytosed by
distinct mechanisms? How are these altered in malignancy, and
can they promote progression?

How are actin and proteasome remodeling processes
coordinated with endocytic mechanisms?

How are BCR uptake processes altered with ageing, and do
they contribute to reduced B cell responses?

What is the role of ubiquitination in BCR antigen
internalization? What is the relationship between different
post-translational modifications and how do they interact with
endocytic regulators?
CONCLUDING REMARKS

Antigen-induced B cell activation plays a key role in the adaptive
immune response by regulating BCR signaling capacity and
antigen availability for presentation. Many questions remain
and the field will benefit from advances in imaging, genetic
and proteomics techniques. A better understanding of these
processes could provide the tools to modulate the process with
direct implications for vaccine design, and potential for novel targeted
therapeutics in B cell malignancies and autoimmune diseases.
AUTHOR CONTRIBUTIONS

DM and ANMS wrote and edited the manuscript. All authors
contributed to the article and approved the submitted version.
FUNDING

We would like to acknowledge funding from the NI Department
for the Economy (ANMS), QUB Patrick G Johnston fellowship
(DM), Royal Society (RGS\R2\212016) (DM) and Medical
Research Council (MR/W025868/1) (DM).
REFERENCES

1. Doherty GJ, McMahon HT. Mechanisms of Endocytosis. Annu Rev Biochem
(2009) 78:857–902. doi: 10.1146/annurev.biochem.78.081307.110540

2. Wang J, Pantopoulos K. Regulation of Cellular Iron Metabolism. Biochem J
(2011) 434(3):365–81. doi: 10.1042/BJ20101825

3. Foley K, Boguslavsky S, Klip A. Endocytosis, Recycling, and Regulated
Exocytosis of Glucose Transporter 4. Biochemistry (2011) 50(15):3048–61.
doi: 10.1021/bi2000356

4. Orth JD, Krueger EW, Weller SG, McNiven MA. A Novel Endocytic
Mechanism of Epidermal Growth Factor Receptor Sequestration and
Internalization. Cancer Res (2006) 66(7):3603–10. doi: 10.1158/0008-
5472.CAN-05-2916
5. Carrasco YR, Batista FD. B Cells Acquire Particulate Antigen in a
Macrophage-Rich Area at the Boundary Between the Follicle and the
Subcapsular Sinus of the Lymph Node. Immunity (2007) 27(1):160–71. doi:
10.1016/j.immuni.2007.06.007

6. Lanzavecchia A. Receptor-Mediated Antigen Uptake and its Effect on
Antigen Presentation to Class II-Restricted T Lymphocytes. Annu Rev
Immunol (1990) 8(1):773–93. doi: 10.1146/annurev.iy.08.040190.004013

7. Rickert RC. New Insights Into Pre-BCR and BCR Signalling With Relevance
to B Cell Malignancies. Nat Rev Immunol (2013) 13(8):578–91. doi: 10.1038/
nri3487

8. Allen CDC, Okada T, Cyster JG. Germinal-Center Organization and Cellular
Dynamics. Immunity (2007) 27(2):190–202. doi: 10.1016/j.immuni.
2007.07.009
April 2022 | Volume 13 | Article 892169

https://doi.org/10.1146/annurev.biochem.78.081307.110540
https://doi.org/10.1042/BJ20101825
https://doi.org/10.1021/bi2000356
https://doi.org/10.1158/0008-5472.CAN-05-2916
https://doi.org/10.1158/0008-5472.CAN-05-2916
https://doi.org/10.1016/j.immuni.2007.06.007
https://doi.org/10.1146/annurev.iy.08.040190.004013
https://doi.org/10.1038/nri3487
https://doi.org/10.1038/nri3487
https://doi.org/10.1016/j.immuni.2007.07.009
https://doi.org/10.1016/j.immuni.2007.07.009
https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


McShane and Malinova BCR Endocytosis
9. Hou P, Araujo E, Zhao T, Zhang M, Massenburg D, Veselits M, et al. B
Cell Antigen Receptor Signaling and Internalization are Mutually
Exc lus ive Events . PloS Bio l (2006) 4(7) :e200 . doi : 10 .1371/
journal.pbio.0040200

10. Busman-Sahay K, Drake L, Sitaram A, Marks M, Drake JR. Cis and Trans
Regulatory Mechanisms Control AP2-Mediated B Cell Receptor Endocytosis
via Select Tyrosine-Based Motifs. PloS One (2013) 8(1):e54938. doi: 10.1371/
journal.pone.0054938

11. Salisbury JL, Condeelis JS, Satir P. Role of Coated Vesicles, Microfilaments,
and Calmodulin in Receptor-Mediated Endocytosis by Cultured B
Lymphoblastoid Cells. J Cell Biol (1980) 87(1):132–41. doi: 10.1083/
jcb.87.1.132

12. Guagliardi LE, Koppelman B, Blum JS, Marks MS, Cresswell P, Brodsky FM.
Co-Localization of Molecules Involved in Antigen Processing and
Presentation in an Early Endocytic Compartment. Nature (1990) 343
(6254):133–9. doi: 10.1038/343133a0

13. Caballero A, Katkere B, Wen X-Y, Drake L, Nashar TO, Drake JR. Functional
and Structural Requirements for the Internalization of Distinct BCR-Ligand
Complexes. Eur J Immunol (2006) 36(12):3131–45. doi: 10.1002/
eji.200636447

14. Stoddart A, Dykstra ML, Brown BK, Song W, Pierce SK, Brodsky FM. Lipid
Rafts Unite Signaling Cascades With Clathrin to Regulate BCR
Internalization. Immunity (2002) 17(4):451–62. doi: 10.1016/S1074-7613
(02)00416-8

15. Natkanski E, Lee W-Y, Mistry B, Casal A, Molloy JE, Tolar P. B Cells Use
Mechanical Energy to Discriminate Antigen Affinities. Sci (New York NY)
(2013) 340(6140):1587–90. doi: 10.1126/science.1237572

16. Bonazzi M, Vasudevan L, Mallet A, Sachse M, Sartori A, Prevost M-C, et al.
Clathrin Phosphorylation is Required for Actin Recruitment at Sites of
Bacterial Adhesion and Internalization. J Cell Biol (2011) 195(3):525–36.
doi: 10.1083/jcb.201105152

17. Matsumoto M, Oyamada K, Takahashi H, Sato T, Hatakeyama S,
Nakayama KI . Large-Sca le Proteomic Analys i s of Tyros ine-
Phosphorylation Induced by T-Cell Receptor or B-Cell Receptor
Activation Reveals New Signaling Pathways. Proteomics (2009) 9
(13):3549–63. doi: 10.1002/pmic.200900011

18. Satpathy S, Wagner SA, Beli P, Gupta R, Kristiansen TA, Malinova D, et al.
Systems-Wide Analysis of BCR Signalosomes and Downstream
Phosphorylation and Ubiquitylation. Mol Syst Biol (2015) 11(6):810. doi:
10.15252/msb.20145880

19. Chaturvedi A, Martz R, Dorward D, Waisberg M, Pierce SK. Endocytosed
BCRs Sequentially Regulate MAPK and Akt Signaling Pathways From
Intracellular Compartments. Nat Immunol (2011) 12(11):1119–26. doi:
10.1038/ni.2116

20. Roberts AD, Davenport TM, Dickey AM, Ahn R, Sochacki KA, Taraska JW.
Structurally Distinct Endocytic Pathways for B Cell Receptors in B
Lymphocytes. Mol Biol Cell (2020) 31(25):2826–40. doi: 10.1091/mbc.E20-
08-0532

21. Stoddart A, Jackson AP, Brodsky FM. Plasticity of B Cell Receptor
Internalization Upon Conditional Depletion of Clathrin. Mol Biol Cell
(2005) 16(5):2339–48. doi: 10.1091/mbc.e05-01-0025

22. Kwak K, Quizon N, Sohn H, Saniee A, Manzella-Lapeira J, Holla P, et al.
Intrinsic Properties of Human Germinal Center B Cells Set Antigen Affinity
Thresholds. Sci Immunol (2018) 3(29):eaau6598. doi: 10.1126/
sciimmunol.aau6598

23. Malinova D, Wasim L, Newman R, Martinez-Riano A, Engels N, Tolar P.
Endophilin A2 Regulates B-Cell Endocytosis and is Required for Germinal
Center and Humoral Responses. EMBO Rep (2021) 22:e51328. doi: 10.15252/
embr.202051328

24. Boucrot E, Ferreira APA, Almeida-Souza L, Debard S, Vallis Y, Howard G,
et al. Endophilin Marks and Controls a Clathrin-Independent Endocytic
Pathway. Nature (2015) 517(7535):460–5. doi: 10.1038/nature14067

25. Casamento A, Boucrot E. Molecular Mechanism of Fast Endophilin-Mediated
Endocytosis. Biochem J (2020) 477(12):2327–45. doi: 10.1042/BCJ20190342

26. Hak LCW, Khan S, Di Meglio I, Law AL, Hasler SLA, Quintaneiro LM, et al.
FBP17 and CIP4 Recruit SHIP2 and Lamellipodin to Prime the Plasma
Membrane for Fast Endophilin-Mediated Endocytosis. Nat Cell Biol (2018)
20(9):1023. doi: 10.1038/s41556-018-0146-8
Frontiers in Immunology | www.frontiersin.org 7
27. Soubeyran P, Kowanetz K, Szymkiewicz I, Langdon WY, Dikic I. Cbl-CIN85-
Endophilin Complex Mediates Ligand-Induced Downregulation of EGF
Receptors. Nature (2002) 416(6877):183–7. doi: 10.1038/416183a

28. Petrelli A, Gilestro GF, Lanzardo S, Comoglio PM, Migone N, Giordano S.
The Endophilin-CIN85-Cbl Complex Mediates Ligand-Dependent
Downregulation of C-Met. Nature (2002) 416(6877):187–90. doi: 10.1038/
416187a

29. Mercier V, Laporte MH, Destaing O, Blot B, Blouin CM, Pernet-Gallay K,
et al. ALG-2 Interacting Protein-X (Alix) Is Essential for Clathrin-
Independent Endocytosis and Signaling. Sci Rep (2016) 6(1):26986–15. doi:
10.1038/srep26986

30. Fra AM, Williamson E, Simons K, Parton RG. Detergent-Insoluble Glycolipid
Microdomains in Lymphocytes in the Absence of Caveolae. J Biol Chem
(1994) 269(49):30745–8. doi: 10.1016/S0021-9258(18)47340-1

31. Medina FA, Williams TM, Sotgia F, Tanowitz HB, Lisanti MP. A Novel Role
for Caveolin-1 in B Lymphocyte Function and the Development of Thymus-
Independent Immune Responses. Cell Cycle (2006) 5(16):1865–71. doi:
10.4161/cc.5.16.3132

32. Vargas L, Nore BF, Berglof A, Heinonen JE, Mattsson PT, Smith CIE, et al.
Functional Interaction of Caveolin-1 With Bruton's Tyrosine Kinase and
Bmx. J Biol Chem (2002) 277(11):9351–7. doi: 10.1074/jbc.M108537200

33. Minguet S, Kläsener K, Schaffer A-M, Fiala GJ, Osteso-Ibánez T, Raute K, et al.
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GLOSSARY

APC antigen presentation cell
BCR B cell receptor
CCP clathrin-coated pit
CCV clathrin-coated vesicle
CLL chronic lymphocytic leukemia
CME clathrin-mediated endocytosis
DC dendritic cell
DLBCL diffuse large B cell lymphoma
EAE experimental autoimmune encephalomyelitis
EBV Esptein-Barr Virus
ESCRT endosomal sorting complexes required for transport
FEME fast endophilin-mediated endocytosis
GC germinal center
GEF guanine nucleotide exchange factor
GTP guanosine triphosphate
HLA human leukocyte antigen
ITAM immunoreceptor tyrosine-based activation motif
MHC major histocompatibility complex
MS multiple sclerosis
NFkB nuclear factor kappa B
NOD non-obese diabetic
PICALM phosphatidylinositol binding clathrin assembly protein
PM plasma membrane
PTM post-translational modification
SNX sorting nexin
WASH Wiskott-Aldrich Syndrome protein and scar homologue complex
WASp Wiskott-Aldrich Syndrome protein
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