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Abstract

Moraxella catarrhalis causes significant health problems, including 15–20% of otitis media cases in children and ,10% of
respiratory infections in adults with chronic obstructive pulmonary disease. The lack of an efficacious vaccine, the rapid
emergence of antibiotic resistance in clinical isolates, and high carriage rates reported in children are cause for concern. In
addition, the effectiveness of conjugate vaccines at reducing the incidence of otitis media caused by Streptococcus
pneumoniae and nontypeable Haemophilus influenzae suggest that M. catarrhalis infections may become even more
prevalent. Hence, M. catarrhalis is an important and emerging cause of infectious disease for which the development of a
vaccine is highly desirable. Studying the pathogenesis of M. catarrhalis and the testing of vaccine candidates have both
been hindered by the lack of an animal model that mimics human colonization and infection. To address this, we
intranasally infected chinchilla with M. catarrhalis to investigate colonization and examine the efficacy of a protein-based
vaccine. The data reveal that infected chinchillas produce antibodies against antigens known to be major targets of the
immune response in humans, thus establishing immune parallels between chinchillas and humans during M. catarrhalis
infection. Our data also demonstrate that a mutant lacking expression of the adherence proteins MhaB1 and MhaB2 is
impaired in its ability to colonize the chinchilla nasopharynx, and that immunization with a polypeptide shared by MhaB1
and MhaB2 elicits antibodies interfering with colonization. These findings underscore the importance of adherence proteins
in colonization and emphasize the relevance of the chinchilla model to study M. catarrhalis–host interactions.
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Introduction

Moraxella catarrhalis is a leading cause of otitis media worldwide

along with Streptococcus pneumoniae and non-typeable Haemophilus

influenzae (NTHi) [1,2,3,4,5,6,7,8]. More than 80% of infants

experience at least one episode of this disease by the age of three,

and M. catarrhalis is the causative agent in ,20% of these cases.

Likewise, otitis media is the number one reason for which children

are prescribed antibiotics [9,10]. In the U.S., ,25 million visits are

made annually to pediatrician offices for treatment of this painful

infection and of these, 3–5 million are precipitated by M. catarrhalis

[1,2,3,4,5,6,7,8,11,12,13,14,15]. The annual costs associated with

management of otitis media are upwards of $5 billion, and direct

medical care expenditures alone account for $2–3 billion

[1,2,5,15,16,17,18,19]. The disease is a significant source of

distress, as it produces a rapidly expanding middle ear abscess that

exerts pressure on the tympanic membrane and causes acute

stabbing pain. After the onset of otitis media, fluid persists in the

middle ear for weeks to months and interferes with hearing.

Recurring ear infections are prevalent and occur during the

crucial period when a child is developing speech and language

skills. Hence, many children spend most of the first 2–3 years of

life with some hearing impairment because of multiple episodes of

otitis media, which can delay the development of communication

and learning. The WHO has estimated that chronic/recurrent

otitis media occurs in 65–330 million people and is the major

cause of hearing loss in developing countries [20,21]. Clearly, otitis

media is a significant health and economic problem, and M.

catarrhalis contributes substantially to this burden.

Moraxella catarrhalis is also the second most common cause of

respiratory infections in adults with chronic obstructive pulmonary

disease (COPD) [19,22,23,24]. This disease is the fourth leading

cause of death in the U.S., surpassed only by heart attack, cancer

and stroke [25]. Each year ,10 million visits to physicians are

related to COPD, and the costs associated with treatment are

enormous – direct medical care costs alone are greater than $14

billion [26,27,28,29]. Worldwide, COPD ranks as the fourth

leading cause of death, killing more people than TB or HIV/

AIDS, and is predicted to be third by 2030 [30,31]. The course of

this debilitating disease is characterized by intermittent exacerba-

tions, half of which caused by bacterial infections. These

infections, of which M. catarrhalis causes ,10% of cases, contribute

prominently to the progression of COPD by augmenting

inflammation, oxidative stress, and tissue damage in the airways.
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In recent years, M. catarrhalis has also been increasingly associated

with diseases such as bronchitis, conjunctivitis, and sinusitis

[3,6,19,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46]. Long con-

sidered to be a harmless commensal of the respiratory tract, M.

catarrhalis is now recognized as an important cause of infectious

disease and a significant source of morbidity.

M. catarrhalis infections are a matter of concern due to the rapid

emergence of antibiotic resistance in clinical isolates, high carriage

rates in children, and the current lack of a vaccine. More than

90% of M. catarrhalis strains are now resistant to b-lactams

[47,48,49,50,51,52,53,54], which are generally the first antibiotics

prescribed to treat otitis media. The genes specifying this

resistance appear to be of Gram-positive origin [55,56], suggesting

that M. catarrhalis can readily acquire genes conferring resistance to

additional antibiotics via horizontal transfer. Carriage rates as high

as 81% have been reported in children [6,57]. In one study, Faden

and colleagues analyzed the nasopharynx of 120 children over a

two-year period and showed that 77% of patients became

colonized with M. catarrhalis [58]. These investigators also observed

a direct relationship between colonization with M. catarrhalis and

development of otitis media. This high carriage rate, coupled with

the emergence of antibiotic resistance, suggests that M. catarrhalis

infections may become more prevalent and difficult to treat,

emphasizing the need to improve our understanding of pathogen-

esis by this understudied bacterium in order to identify targets for

intervention and prevention.

To cause disease, M. catarrhalis must first colonize the

nasopharynx and then spread to distal sites such as the middle

ear and the lower respiratory tract. Hence, one key event that

occurs early in pathogenesis by the organism is adherence to the

mucosal surface of the nasopharynx because it leads to coloniza-

tion. Crucial to this process are afimbrial adherence proteins

(adhesins), which mediate binding of bacteria to host cells

[59,60,61,62,63,64,65]. Moraxella catarrhalis expresses many afim-

brial adhesins including UspA1 [66], UspA2H [66], MhaB1 and

MhaB2 [67], MchA1 and MchA2 [68], Hag/MID [69,70],

OMPCD [71,72], and McaP [73,74]. These molecules were

characterized by demonstrating a decrease in the adherence of

mutant strains to human airway cells in vitro, but their contribution

to nasopharyngeal colonization, or utility as vaccine antigens, has

not been evaluated in vivo. In the present study, we utilized a

chinchilla model to demonstrate that wild-type M. catarrhalis

colonizes the nasopharynx for seven days, a mutant lacking

expression of the adherence proteins MhaB1 and MhaB2 is

impaired in its ability to colonize the nasopharynx, and

immunization with a polypeptide shared by MhaB1 and MhaB2

elicits antibodies impeding nasopharyngeal colonization and

promoting clearance.

Materials and Methods

Plasmids, Bacterial Strains, Growth Conditions, and
Culture of Human Epithelial Cells in vitro

Strains and plasmids are described in Table 1. Wild-type (WT)

M. catarrhalis isolates were routinely cultured using Todd-Hewitt

agar plates (THA, BD Diagnostic Systems). The M. catarrhalis

isogenic mutant strain O35E.B1B2 was propagated on THA

supplemented with 15 mg/mL spectinomycin and 5 mg/mL

zeocin. The hag transposon mutant O35E.TN2, the ompCD mutant

strain O35E.CD1, and the uspA2 serum-sensitive mutant

O35E.2 were cultured using THA containing 20 mg/mL kana-

mycin. For colonization experiments, tissues and nasopharyngeal

lavages collected from infected animals were plated onto THA

supplemented with 5 mg/mL Vancomycin and 2.5 mg/mL Tri-

methoprim to suppress the growth of the chinchilla flora.

Escherichia coli was grown using Luria-Bertani (LB) medium (Fisher

BioReagents) containing 15 mg/mL chloramphenicol or 100 mg/

mL ampicillin. All strains were cultured at 37uC in the presence of

7.5% CO2. The human cell line HEp-2 (laryngeal epithelium;

ATCC CCL-23) was cultured as previously reported [74].

Recombinant DNA Methods, PCR, and Cloning
Standard molecular biology techniques were performed as

described elsewhere [70,72,74,75]. Genomic DNA was obtained

using the Easy-DNATM kit (InvitrogenTM Life TechnologiesTM).

Platinum Pfx DNA Polymerase was used in cloning experiments

per the manufacturer’s recommendations (InvitrogenTM Life

TechnologiesTM). A 1-kb amplicon encompassing amino acids

(aa) 72–399 of the M. catarrhalis strain O35E MhaB1 protein was

generated with primers P1 (59-CGG GAT CCG TTA TTT CTG

ACA GTC AAG CA- 39; BamHI site underlined) and P2 (59-CGC

TCG AGT ATT ACC TTG CAA GTT GGC AGT- 39; XhoI site

underlined). This DNA fragment was excised from an agarose gel,

purified with the High Pure PCR Product Purification Kit (Roche

Applied Science), restricted with the endonucleases BamHI and

XhoI (New England BiolabsH Inc.), and ligated into the BamHI and

XhoI sites of the vector pGEX4T-2 (GE Healthcare Life Sciences),

yielding plasmid pGEX-MhaB. This plasmid was sequenced to

verify that no mutations were introduced during PCR and to

confirm that the protein expressed from pGEX-MhaB corre-

sponds to residue 72–399 of M. catarrhalis O35E MhaB1 fused to

an N-terminal Glutathione-S-transferase (GST) tag. Plasmid DNA

used as template in sequencing reactions was obtained with the

QIAprep Spin Miniprep Kit (Qiagen). A similar approach was

used to obtain the plasmid pGEX-McaP, which expresses residues

51–333 of M. catarrhalis O35E McaP joined to GST. The PCR

product cloned into pGEX-McaP was amplified with primers P3

(59-CGG GAT CCC AAG AAT TTA GCC AAA CCG TA-39;

BamHI site underlined) and P4 (59-CGC TCG AGT CCC TGA

AGG GTG AAT TTT ATC AGC -39; XhoI site underlined).

M. catarrhalis O35E genomic DNA was used as the template in all

PCR-based cloning experiments.

Nucleotide Sequence Analysis
Plasmids were sequenced at the University of Michigan

sequencing core (http://seqcore.brcf.med.umich.edu/. Accessed

2013 Jun 4). Chromatograms were analyzed and assembled with

the Sequencher software (Gene Codes Corporation). Sequence

analysis was performed using Vector NTI (InvitrogenTM Life

TechnologiesTM).

Protein Preparation
Outer membrane proteins were obtained from M. catarrhalis

strains using the EDTA procedure of Murphy and Loeb [76]. The

method used to prepare whole-cell lysates is described elsewhere

[77,78]. The His-tagged recombinant protein His-MhaB was

obtained as previously outlined by Balder et al [67]. The plasmids

pGEX-MhaB and pGEX-McaP were introduced in the E. coli

strain TUNERTM (EMD Millipore) for the purpose of overex-

pressing and purifying the recombinant proteins GST-MhaB and

GST-McaP, respectively. Expression was induced by adding

isopropyl-b-D-thiogalactopyranoside (IPTG, final concentration

of 1 mM) to broth cultures and incubating for 5 hours at 37uC
with agitation (200-rpm). Bacteria were pelleted, followed by

treatment with the BugBusterH HT protein extraction reagent

(EMD Millipore) supplemented with rLysozymeTM (EMD Milli-

pore) under the recommended conditions. Recombinant proteins

were then purified using a GST Spin Purification Kit (Thermo

M. catarrhalis Vaccine Studies in Chinchillas
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Scientific Pierce) per the manufacturer’s instructions. Protein

concentrations were determined with a bicinchoninic acid (BCA)

Protein assay kit (Thermo Scientific Pierce).

Analysis of Selected Antigens
Equivalent protein amounts were resolved by sodium dodecyl

sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and pro-

teins were visualized by staining gels with the ProtoBlueTM Safe

reagent (National Diagnostics). Alternatively, the resolved proteins

were transferred to a polyvinylidene difluoride (PVDF) membrane

(EMD Millipore) for western blot analysis. After transfer, the

PVDF membranes were submersed in StartingBlockTM T20

(Thermo Scientific) and incubated for 1 hour at room tempera-

ture. The membranes were then probed overnight at 4uC with

primary antibodies (Abs) diluted in StartingBlockTM T20. After

this incubation, the membranes were washed with Phosphate-

Buffered Saline (PBS) supplemented with 0.05% (vol/vol) Tween

20, followed by 1 hour incubation at room temperature with

secondary Abs conjugated to Horse Radish Peroxidase (HRP)

diluted in StartingBlockTM T20. After washing off the excess

secondary Abs with PBS+0.05% Tween 20, protein bands were

visualized by chemiluminescence using the LuminataTM Crescen-

do Western HRP substrate (EMD Millipore) and a Foto/Analyst

Luminary/FX imaging system (Fotodyne Inc.).

For ELISA, duplicate wells of ImmulonTM 2HB plates (Thermo

Scientific Nunc) were coated overnight at 4uC with ,1 mg of

purified GST-MhaB protein. Excess unbound protein was

removed by washing the wells with PBS+0.05% Tween 20, and

the wells were then filled with PBS+0.05% Tween 20 containing

3% (wt/vol) dry milk and incubated for 1 hour at room

temperature. After washing with PBS+0.05% Tween 20, the wells

were probed overnight at 4uC with primary Abs diluted in

PBS+0.05% Tween 20+3% dry milk. After this incubation, the

wells were washed with PBS+0.05% Tween 20, followed by

overnight incubation at 4uC with secondary Abs conjugated to

HRP and diluted in PBS+0.05% Tween 20+3% dry milk. After

washing off the excess secondary Abs with PBS+0.05% Tween 20,

100 mL of the SureBlueTM TMB Microwell Peroxidase Substrate

(KPL) was added to wells. Color development indicative of

antibody binding was measured by determining the absorbance of

well contents at a wavelength of 650 nm using a mQuantTM

Microplate Spectrophotometer (BioTekH). End-point titers were

determined as described by Song et al. [79] and correspond to the

highest fold dilution giving an optical density at 650 nm greater

than the mean value plus 3 standard deviations of pre-immune

samples.

Antibodies
The murine monoclonal Abs 10F3 (specific for the M. catarrhalis

iron transport protein CopB [80]), 5D2 (specific for the M.

catarrhalis adhesin Hag [81]), 17H4 (specific for the M. catarrhalis

serum resistance protein UspA2 [82]), and 1D3 (specific for the M.

catarrhalis adhesin OMPCD [83]), His-tagH (EMD Millipore) and

GST-TagTM were used as primary Abs in western blot experi-

ments in combination with goat anti-mouse HRP (IgG+IgA+IgM)

secondary Abs (SouthernBiotech). For experiments using chin-

chilla samples as primary Abs (ELISA, Western blot), goat anti-rat

Abs conjugated to HRP were utilized for detection. Goat anti-rat

HRP (IgG) and HRP (IgG+IgA+IgM) were purchased from

SouthernBiotech. Goat anti-rat HRP (IgA) Abs were obtained

from Bethyl Laboratories, Inc.

Adherence Assays
The WT M. catarrhalis strains O35E, O12E and McGHS1 were

preincubated for 30 min at 37uC with samples (serum, nasopha-

ryngeal lavage fluids) collected from naı̈ve and vaccinated

chinchillas. These bacteria were then used to perform adherence

assays as previously described by Lipski and colleagues [73].

Table 1. Strains and plasmids used in this study.

Strain Description Source

M. catarrhalis

O35E WT isolate from middle ear effusion (Dallas, TX) [82]

O35E.B1B2 mhaB1mhaB2 double isogenic mutant of strain O35E,
spectinomycin and zeocin resistant

[67]

O35E. TN2 hag transposon mutant of strain O35E, kanamycin resistant [132]

O35E.2 uspA2 isogenic mutant of strain O35E, kanamycin resistant [133]

O35E.CD1 ompCD isogenic mutant of strain O35E, kanamycin resistant [72]

O12E WT isolate from middle ear effusion (Dallas, TX) [66]

McGHS1 WT isolate from patient with respiratory infection (Toledo, OH) [70]

E. coli

EPI300TM Cloning strain for recombinant DNA methods EpicentreH (IlluminaH)

TUNERTM Expression strain for protein purification purposes EMD Millipore

Plasmids

pGEX4T-2 Protein expression vector, ampicillin resistant GE Healthcare Life Sciences

pGEX-MhaB pGEX4T-2 expressing O35E MhaB1 aa 72–399 joined to a
GST N-terminal tag (GST-MhaB), ampicillin resistant

This study

pGEX-McaP pGEX4T-2 expressing O35E McaP aa 51–333 joined to a
GST N-terminal tag (GST-McaP), ampicillin resistant

This study

pRBHis.MhaB.72.399 pETcoco-1 expressing O12E MhaB1 aa 72–399 joined to
6 N-terminal histidine residues (His-MhaB), chloramphenicol resistant

[67]

doi:10.1371/journal.pone.0067881.t001
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Briefly, bacteria were incubated for 30 min with HEp-2 human

laryngeal cells seeded in 24-well tissue culture plates at a

multiplicity of infection of 100 bacteria to 1 epithelial cell. The

infected cells were then washed to remove unbound bacteria and

treated with a solution containing saponin. Well contents were

mixed, serially diluted, and spread onto agar plates to count

colony-forming units (CFU). This value was used to calculate the

number of inoculated bacteria that bound to HEp-2 cells. The

adherence of M. catarrhalis preincubated with samples from control

chinchillas (i.e. immunized with PBS) was set at 100%. The

adherence of M. catarrhalis preincubated with samples from

chinchillas vaccinated with the His-MhaB protein is presented as

the percentage (6 standard error) of that of M. catarrhalis

preincubated with samples from control chinchillas. These assays

were performed in triplicate in three or more separate experi-

ments.

Intranasal Inoculation of Chinchillas with M. catarrhalis
The method used to inoculate the nasopharynx of chinchillas

was adapted from that described by Luke et al. [84], Bakaletz and

colleagues [85], and more recently by Hoopman et al [86].

Healthy adult chinchillas (Chinchilla lanigera) were purchased from

Rauscher’s Chinchilla Ranch (LaRue, Ohio). Prior to inoculation,

the animals were anesthetized with by injecting ketamine (10 mg/

kg, Fort DodgeH) and xylazine (2 mg/kg, Lloyd Laboratories)

intramuscularly (i.m.). Once anesthetized, the animals were placed

on their stomach. Using a 26 K gauge needle attached to 1 cc

syringe, 0.2 mL of a M. catarrhalis suspension containing ,16109

CFU was delivered intranasally (i.n.) by administering 5–10 mL

droplets to alternating nasal openings and allowing droplets to be

brought into the nasopharynx by the animal’s breathing. A total

volume of 0.1 mL was administered per naris. Moraxella catarrhalis

strains used to inoculate chinchillas were cultured on THA for 16–

20 hr at 37uC. These plate-grown bacteria were suspended to a

concentration of ,56109 CFU/mL in PBS supplemented with

0.15% gelatin (PBSG) to maintain the viability of the organism.

The M. catarrhalis suspension was also diluted and 100 mL aliquots

were immediately spread onto THA supplemented with vanco-

mycin and trimethoprim to determine the number of CFU

inoculated into the nasal passages of the chinchillas. Back titration

of inoculum was performed for all challenge experiments.

Viable M. catarrhalis was recovered from the nasopharynx of

infected animals by performing nasopharyngeal lavages or by

collecting and homogenizing nasopharyngeal tissues. Lavages were

performed under anesthesia. Using a 1 cc syringe and a 26 1/2

gauge needle, 0.5 mL of PBSG was delivered at the entrance of

one naris (in the form of 5–10 mL droplets) by passive inhalation

and collected from the other naris (as it is exhaled) utilizing an

needle-free 1 cc syringe. Portions of these lavages were serially

diluted and plated onto THA supplemented with vancomycin and

trimethoprim. After 24 hr incubation at 37uC, CFU were counted

to determine the number of viable M. catarrhalis bacteria present in

the fluids.

To harvest nasopharyngeal tissues, chinchillas were first

anesthetized as described above. While under anesthesia, the

animals were euthanized by delivering 1 mL of BeuthanasiaH-D

solution (Schering-Ploug Animal Health) via cardiac injection.

This was accomplished by inserting 21 gauge, 1 K inch needle

into the chest cavity beneath the xyphoid process and injecting the

euthanasia solution directly into the heart. After assurance of

death, decapitation was performed. Standard dissection techniques

were used to remove the eyes, mandibles, and soft tissues covering

the skulls. Following this, the heads were bisected along the nasal

septum to expose the interior structures of the nasopharynx. The

mucosa of the nasopharynx and of the ethmoid and nasal

turbinates were collected, weighed and placed in 2 mL of PBSG.

The nasopharyngeal tissues were then shredded, homogenized

using a sterile glass dounce and pestle (Kimble Chase Life Science

and Research Products), serially diluted, and plated onto selective

media to determine the number of viable M. catarrhalis organisms.

Immunization of Chinchillas
Serum and nasopharyngeal lavage fluids were collected from

anesthetized chinchillas prior to immunization. Nasal fluids were

collected as described above and stored at 280uC for later use.

Blood was drawn by cardiac puncture. This was accomplished by

inserting 21 gauge, 1 K inch needle into the chest cavity beneath

the xyphoid process and removing blood directly from the heart.

The samples were allowed to clot, centrifuged to remove red blood

cells, and the sera were stored at 280uC. Blood samples and

nasopharyngeal lavage fluids were also collected on days 19 and

44 post-immunization.

Vaccination was performed under anesthesia. Groups of

chinchillas were immunized with PBS (control animals) or 80 mg

of the His-MhaB protein. PBS and protein preparation were

mixed with Complete Freund’s Adjuvant (CFA) in a 1:1 ratio (vol/

vol) and administered subcutaneously (s.c.). Booster vaccinations

were performed on days 23 and 72. Animals were boosted with

PBS or 80 mg of His-tagged protein mixed with Incomplete

Freund ’s Adjuvant (IFA).

Animal Research Ethic Statement
This study was carried out in strict accordance with the

recommendations in the Guide for the Care and Use of

Laboratory Animals of the National Institutes of Health. The

protocol was approved by the Institutional Animal Care and Use

Committee of the University of Georgia. All efforts were made to

minimize suffering.

Statistical Analyses
The paired t test was used to analyze data from adherence

assays. P values ,0.05 were found to be statistically significant.

The results of nasopharyngeal colonization experiments were

examined with the Wilcoxon signed rank test. All statistical

analyses were performed using the Graph Pad Prism software.

Results

Use of the Chinchilla Model to Examine Colonization of
the Nasopharynx by M. catarrhalis

To study M. catarrhalis colonization and persistence in vivo, we

developed the ability to utilize the chinchilla model of nasopha-

ryngeal colonization. Figure 1 shows the results of calibration

experiments in which chinchillas were inoculated intranasally (i.n.)

with 109 colony-forming units (CFU) of the wild-type (WT) isolate

O35E. At the indicated times post-infection, animals were

anesthetized and nasopharyngeal lavage fluids were collected,

diluted and spread onto selective agar plates to suppress the

growth of the chinchilla flora and accurately count viable M.

catarrhalis CFU. Following this, chinchillas were euthanized and

nasopharyngeal tissues were harvested, weighed, homogenized,

diluted and plated. After overnight incubation at 37uC, CFU were

counted to determine the number of viable M. catarrhalis bacteria

present in lavage fluids and tissues. The results shown in Figure 1

demonstrates that we obtain reproducible and consistent numbers,

comparable to those reported by Luke et al. for the WT isolate

7169 [84] and Hoopman and colleagues for strain O35E [86].

M. catarrhalis Vaccine Studies in Chinchillas
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After establishing the model, we tested the hypothesis that

mutants lacking expression of adherence proteins will not colonize

as effectively as WT M. catarrhalis. To accomplish this, cohorts of

chinchillas were challenged with WT M. catarrhalis O35E and the

mutant strain O35E.B1B2, which is unable to express the

filamentous hemagglutinin-like proteins MhaB1 and MhaB2

[67]. These molecules are associated with the outer membrane

of M. catarrhalis and are secreted in a Two-Partner Secretion

manner via the outer membrane protein MhaC. MhaB1 and

MhaB2 are involved in adherence to several human epithelial cell

types that are relevant to the pathogenesis of M. catarrhalis (lung,

laryngeal, conjunctival). The adhesins also resemble the filamen-

tous hemagglutinin FHA, which is the major colonization factor of

Bordetella pertussis and a component of all vaccines that are currently

licensed for use in children to protect against whooping cough

(CDC website. Available: http://www.cdc.gov/vaccines/pubs/

pinkbook/downloads/pert.pdf. Accessed 2013 Jun 4). Figure 2

shows that lack of expression of MhaB1 and MhaB2 causes an

18.5-fold reduction in the number of viable M. catarrhalis bacteria

recovered from nasopharyngeal tissues 72 hr post-infection. These

results indicate that the filamentous hemagglutinin-like proteins

are involved in M. catarrhalis ability to colonize and persist in the

chinchilla nasopharynx. Lavages (prior to collecting tissues) were

not performed in these experiments in order to generate a single

value representing the total number of bacteria present in the nasal

passageways at the experimental end-point.

Use of the Chinchilla Model to Perform Vaccine Studies
To test the hypothesis that a vaccine containing M. catarrhalis

adherence proteins protects against colonization in vivo, chinchillas

were immunized subcutaneously (s.c.) with a recombinant form of

MhaB1 and MhaB2. Three independent vaccination trials were

performed and the experimental timeline is depicted in Figure 3.

The recombinant protein used to immunize chinchillas corre-

sponds to aa 72–399 of MhaB1 fused to six N-terminal histidine

residues. This portion of MhaB1 is 99% identical to aa 72–399 of

MhaB2 in all M. catarrhalis isolates characterized to date, and

murine Abs against this polypeptide were previously shown to

react with both MhaB1 and MhaB2 [67]. This shared region of

MhaB1 and MhaB2 also displays sequence similarity to the

portion of B. pertussis FHA that is a component of all licensed

vaccines for whooping cough (data not shown).

Serum and nasopharyngeal lavage fluids were collected from

chinchillas and analyzed by western blot and ELISA. The results

are shown in Figure 4 and demonstrate that the animals produced

serum Abs reacting with the adhesins in the outer membrane of M.

catarrhalis (Fig. 4A) and with a GST-tagged version of MhaB1/

MhaB2 (Fig. 4B and 4D). The data also indicate that chinchillas

developed mucosal Abs binding to the shared region of MhaB1

and MhaB2 (Fig. 4C). Serum and lavage fluids from the control

animals vaccinated with PBS did not contain Abs against the

adhesins (data not shown). Following this, we performed in vitro

adherence assays in which M. catarrhalis was incubated with serum

or lavage fluids from immunized chinchillas prior to infecting

HEp-2 laryngeal cells. These experiments revealed that chinchilla

Abs against MhaB1 and MhaB2 significantly decrease the

adherence of multiple WT M. catarrhalis isolates to epithelial cells

(Fig. 5A and 5B). The data also indicate that this inhibitory effect is

dependent on the concentration of Abs.

After confirming that chinchillas produced Abs against MhaB1

and MhaB2, and demonstrating that these Abs interfere with

adherence to airway cells, we challenged the animals with

,109 CFU of the WT strain O35E and determined bacterial

loads in nasopharyngeal tissues three days post-infection. Figure 6

shows that vaccination with the His-tagged MhaB protein causes a

9.3-fold reduction in the number of viable M. catarrhalis bacteria

recovered from the nasopharynx of chinchillas compared to sham-

immunized animals. These results substantiate the data obtained

when comparing the ability of the mutant O35E.B1B2 to colonize

the nasopharynx to that of its progenitor strain O35E (Fig. 2). The

results also support the hypothesis that a vaccine containing M.

catarrhalis adherence proteins will elicit the production of Abs

blocking colonization and promoting clearance.

Figure 1. Recovery of WT M. catarrhalis O35E from the
nasopharynx of chinchillas. Animals were inoculated with
,16109 CFU. Results are expressed as the mean (6 standard error)
CFU/mL (lavage fluids, black bars) or CFU/gr (nasopharyngeal tissues,
open bars). Each column represents at least 4 animals, and each
experimental condition was tested on at least two separate occasions.
doi:10.1371/journal.pone.0067881.g001

Figure 2. Recovery of M. catarrhalis from the nasopharynx of
chinchillas three days post-infection. Animals were inoculated
with ,16109 CFU. Results are expressed as the mean (6 standard error)
CFU/gr of nasopharyngeal tissues. Strains were tested in parallel on two
separate occasions. Each column represents 12 animals. The asterisk
indicates that the reduction in the number of bacteria is statistically
significant (Wilcoxon signed rank test).
doi:10.1371/journal.pone.0067881.g002
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Moraxella catarrhalis Proteins Targeted by the Chinchilla
Immune Response During Colonization

To gain more insight into the immune response of the chinchilla

to M. catarrhalis, we inoculated four animals i.n. with 109 CFU of

the WT strain O35E on three consecutive occasions (21 days

apart). Seven days after the last challenge, serum samples were

collected and analyzed by western blot. Figure 7 shows that

chinchillas produced Abs against several M. catarrhalis antigens

during colonization including the iron acquisition protein CopB,

the serum-resistance factor UspA2, and the adhesins OMPCD and

Hag. Of significance, these four molecules have been shown to be

major targets of systemic and mucosal antibody responses in

humans [83,87,88,89,90,91,92,93,94]. Infected chinchillas did not

produce detectable levels of Abs against the shared region of

MhaB1 and MhaB2 (data not shown).

Discussion

The success of the immunization program against S. pneumoniae

has placed more emphasis on M. catarrhalis as a frequent cause of

ear infection. Vaccination of children with PrevnarH, which

contains capsular polysaccharides from seven different S. pneumo-

niae serotype strains, affords protection against otitis media caused

by the organism (57% efficacy) [95]. Likewise, an investigational

vaccine containing the capsule of 11 distinct S. pneumoniae serotype

strains conjugated to protein D of H. influenza was shown to reduce

the incidence of ear infection caused by S. pneumoniae (57% efficacy)

and NTHi (35% efficacy) [96]. Significantly, SynflorixTM, a

capsule-protein D conjugate vaccine comprising capsular polysac-

charides from 10 different S. pneumoniae serotype strains, was

licensed in Europe in 2009. While these studies demonstrate that

prevention of otitis media can be achieved, the widespread

administration of capsule-protein D conjugate vaccines protecting

against both S. pneumoniae and NTHi, along with the continued

expansion of the S. pneumoniae vaccination program (a version of

PrevnarH covering 13 capsule serotypes was licensed in 2010), will

result in M. catarrhalis becoming an even more prevalent cause of

infectious disease. Evidence of such a shift has been observed in

children with otitis media as well as in children and adults with

sinusitis [97,98,99]. Therefore, the prevention of M. catarrhalis

infections would make a significant contribution to improving

children’s health. Though otitis media would be the primary

target, a vaccine against the organism would also be of value to

adults at high risk of infection, especially those with COPD.

Moraxella catarrhalis is an exclusively human organism and

studying pathogenesis, as well as the stringent testing of vaccine

candidates, has been hindered by the lack of an animal model that

mimics human infection. To date, the most commonly used model

Figure 3. Timeline of vaccination experiments.
doi:10.1371/journal.pone.0067881.g003

Figure 4. Western blot and ELISA analyses of samples from chinchillas immunized with the His-tagged MhaB protein. Western blot
(panels A, B, C): Equivalent protein amounts were resolved by SDS-PAGE, transferred to PVDF and probed with the indicated primary and secondary
Abs. Post-boost serum and lavage samples taken on Day 44 of the vaccination experiments (see Fig. 3) were pooled and used as primary Abs at the
dilution shown in parentheses. Goat a-rat Abs conjugated to HRP were used as secondary Abs. Panel A: western blot of outer membrane protein
preparations from the WT M. catarrhalis strain O35E and the mhaB1mhaB2 mutant O35E.B1B2. Panels B and C: western blot of the purified
recombinant proteins GST-tagged MhaB and GST-tagged McaP (used as negative control). Arrows indicate proteins specifically reacting with
chinchilla Abs a-MhaB1/MhaB2. MW markers are shown to the left in kDa. ELISA (panel D): Individual serum samples were serially diluted and placed
in duplicate wells of plates coated with GST-tagged MhaB. Goat a-rat Abs conjugated to HRP were used as secondary Abs. The results are expressed
as the mean (6 std deviation) end-point titer of samples from n = 12 animals. Individual titers were determined using pre-immune samples as
background. Open bars correspond to pre-boost samples taken on Day 19 of the vaccination experiments while black bars represent post-boost
samples collected on Day 44 (see Fig. 3).
doi:10.1371/journal.pone.0067881.g004
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has been a pulmonary clearance test in which bacteria are

deposited in the lungs of mice [100,101,102,103,104,105,106].

Viable organisms are enumerated by aseptically removing the

lungs, homogenizing the tissues, and spreading dilutions of the

homogenates onto agar plates. While this model has provided

important data, it is limited to measuring the rate at which

bacteria are cleared over a very short period of time because M.

catarrhalis persists for ,24-hr in the murine lungs. Another

drawback is that mice do not develop pneumonia. Hence, the

rapid clearance and failure to cause disease limit the usefulness of

this model.

Recent studies have demonstrated the value of the chinchilla to

examine M. catarrhalis host-pathogen interactions in vivo

[84,85,86,107,108]. Following intranasal inoculation, M. catarrhalis

causes symptoms of disease (inflammation of the tympanic

membrane, middle ear effusions) and colonizes the nasopharynx

for ,2 weeks [85,86,108]. Therefore, chinchillas provide an

advantage over the mouse pulmonary clearance test in that M.

catarrhalis persists in their nasopharynx for several days. This

imparts greater confidence in the data obtained by comparing the

difference in colonization between two experimental conditions

(vaccinated vs. sham-vaccinated animals, WT vs. mutant strains)

as it provides a more physiologically relevant time frame to

monitor bacterial clearance. The chinchilla model has been an

invaluable tool to study the pathogenesis of NTHi and S.

pneumoniae and to develop vaccines for these organisms

[109,110,111,112]. The course of disease (nasopharyngeal coloni-

zation, ascension of the Eustachian tubes, development of middle

ear effusions, clearance of fluids, return to homeostasis) is similar to

that in children with otitis media [113,114,115,116,117,118].

Immunological parallels between chinchillas and humans have

also been demonstrated. For example, middle ear fluids collected

from chinchillas and children infected with NTHi contain Abs that

bind to the same antigenic determinants of the adhesin OMP P5

[119]. Chinchillas also produce homologs of human antimicrobial

peptides, and at least 2 of them (cBD-1 and cCRAMP) have been

shown to have bactericidal activity against M. catarrhalis

[120,121,122,123]. Kerschner and colleagues analyzed host

cDNA libraries generated from the middle ear mucosa of

chinchillas infected with NTHi, and discovered that the cDNA

sequences displayed greater phylogenetic similarities to human

genes than to other rodent species [124,125,126]. These investi-

gators also noted similarities with human infection in the pattern of

host defense genes expressed in chinchilla tissues. Our data

showing that chinchillas infected with M. catarrhalis produce Abs

against antigens known to be major targets of the immune

response in humans further underscore the usefulness of the model

(Fig. 7). To our knowledge, this is the first demonstration of

immunological parallels between chinchillas and humans during

M. catarrhalis infection.

We discovered that lack of expression of the filamentous

hemagglutinin-like proteins MhaB1 and MhaB2 decreases recov-

ery of viable M. catarrhalis cells from the chinchilla nasopharynx

approximately 20-fold (Fig. 2). This reduction is most likely caused

by a defect in adherence to the airway mucosa. MhaB1 and

Figure 5. Inhibition of adherence with samples from chinchillas immunized with His-tagged MhaB protein. The WT M. catarrhalis
strains O35E, O12E, and McGHS1 were preincubated for 30 min at 37uC with pooled samples from chinchillas sham-vaccinated with PBS (black bars)
or with pooled samples from chinchillas immunized with His-tagged MhaB at dilutions of 1:50, 1:100, 1:200 and/or 1:2000. These bacteria were then
used to perform adherence assays. The adherence of M. catarrhalis preincubated with samples from chinchillas vaccinated with PBS was set at 100%.
The adherence of M. catarrhalis preincubated with samples from chinchillas immunized with His-tagged MhaB is expressed as the percentage
(6standard error) of that of M. catarrhalis preincubated with samples from chinchillas vaccinated with PBS. Assays were performed in triplicate on
three separate occasions. The asterisks indicate that the reduction in adherence is statistically significant (P values ,0.05, paired t test). Post-boost
samples taken on Day 44 of vaccination experiments (see Fig. 3) were pooled and used in these assays.
doi:10.1371/journal.pone.0067881.g005

Figure 6. Recovery of WT M. catarrhalis O35E from the
nasopharynx of immunized chinchillas three days post infec-
tion. Results are expressed as the mean (6 std error) CFU/gr of
nasopharyngeal tissues (note the log scale). The asterisk indicates that
the reduction in the number of bacteria is statistically significant
(Wilcoxon signed rank test, P value is shown in parentheses). Control
and His-tagged MhaB groups were tested in parallel on three separate
occasions. Each column represents 12 animals (groups of n = 4 animals/
experiment).
doi:10.1371/journal.pone.0067881.g006
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MhaB2 mediate adherence to respiratory cells in vitro and

resemble FHA, the major adhesin and colonization factor of

B. pertussis [67]. Moreover, Abs against MhaB1 and MhaB2

reduce in vitro adherence of M. catarrhalis (Fig. 5) and decrease the

number of viable organisms recovered from the nasopharynx of

chinchillas infected with the WT strain O35E (Fig. 6). Taken

together, our data suggest that MhaB1 and MhaB2 are critical

factors for colonization. Hoopman and colleagues recently used

the chinchilla and DNA microarray technology to determine

global transcriptome expression by M. catarrhalis in vivo [86]. More

than 100 ORFs of strain O35E, including mhaB1, were found to

be upregulated 24-hr after introducing the organism in the

nasopharynx. Another 200 genes were shown to be downregulat-

ed, and the ORF specifying MhaB2 (MchA1) exhibited some of

the highest levels of repression. Therefore, it is tempting to

speculate that lack of MhaB1 is responsible for the reduced

number of viable O35E.B1B2 cells recovered from the chinchilla

nasopharynx during our colonization experiments (Fig. 2). How-

ever, the contribution of MhaB2 cannot be ruled out. The

transcriptome analysis showing decreased mhaB2 expression levels

was performed with samples collected 24-hr post-inoculation,

whereas we calculated bacterial loads in the nasopharynx 3 days

after infection. It is possible that expression of mhaB2 (and mhaB1)

changes during this 48-hr period. Interestingly, microarray data

also indicate that expression of the uspA2 and hag genes is

downregulated [86]. The western blot results of Fig. 7 show that

infected chinchillas produce Abs against UspA2 and Hag,

demonstrating their expression in vivo. Clearly, understanding the

individual contribution of MhaB1 and MhaB2 to colonization and

persistence is a key area for future study.

Although lack of MhaB1 and MhaB2 reduces the recovery of

viable O35E.B1B2 cells from the chinchilla nasopharynx, the

mutant retained colonization capabilities (Fig. 2), which implies

that additional factors contribute to this process. Luke et al used

the chinchilla model to show that a type IV pilus mutant of

M. catarrhalis strain 7169 does not colonize as effectively as the WT

parent isolate [84]. The pilus-negative mutant exhibited 7.67-,

2.56-, and 9.6-fold reductions in recovery of viable organisms from

nasopharyngeal, nasoturbinate, and ethmoid turbinate tissues,

respectively. The mutant also showed lower adherence to

epithelial cells in vitro [84]. Strain O35E expresses a type IV pilus

[127], which presumably contributed to colonization in our

experiments. Our laboratory demonstrated that M. catarrhalis has

strict tropism for ciliated cells of the human respiratory tract and

that the autotransporter adhesin Hag is responsible for this

phenotypic trait [69]. Brockson and colleagues recently reported

that M. catarrhalis exhibits similar ciliotropism in the chinchilla

nasal passageways [108]. Hag may therefore play a role in

colonization and persistence. Other potential colonization factors

include UspA1 (binds to human CEACAM-1 receptor

[128,129,130], chinchillas express a homologue of human

CEACAM-1 shown to be necessary for colonization by NTHi

[131]) and genes that are part of the truncated denitrification

regulon, specifically MC ORF1550 (encodes a protein of unknown

function, highly upregulated in the chinchilla nasopharynx 24-hr

post inoculation, mutation in the gene causes a decrease in the

ability of strain O35E to survive in the chinchilla nasopharynx

over a 3-day period [86]).

The results of vaccination experiments validate the role of

MhaB1 and MhaB2 as critical factors for colonization. Subcuta-

neous immunization with a polypeptide common to both

molecules elicits the production of serum Abs reacting with the

proteins in the outer membrane of M. catarrhalis (Fig. 5A).

Vaccinated animals also develop mucosal Abs binding to the

shared region of MhaB1 and MhaB2 (Fig. 5C). These Abs not only

block M. catarrhalis adherence in vitro, but also reduce nasopha-

ryngeal colonization of the WT strain O35E by one order of

magnitude (Fig. 6). The MhaB proteins function as adhesins and

mediate a key step in pathogenesis by M. catarrhalis. To cause

disease, the organism must first colonize the nasopharynx and then

spread to distal sites such as the middle ear and the lower

respiratory tract. Hence, adherence to the mucosal surface of the

nasopharynx is critical. MhaB1 and MhaB2 are surface-located

and thus are readily accessible to Abs and the host immune

response. In addition, the proteins are well conserved among

clinical isolates of diverse clinical and geographical origins [67,68].

Therefore, MhaB1 and MhaB2 possess many attributes of

excellent vaccine candidates. Our results showing that Abs against

the shared region of MhaB1 and MhaB2 blocks adherence of

multiple WT M. catarrhalis isolates suggests that immunization with

the proteins will have broad-spectrum activity. Of note, this shared

region of MhaB1 and MhaB2 displays sequence similarity to the

portion of B. pertussis FHA that is a component of all vaccines that

are currently licensed for use in children to protect against

Figure 7. Western blot analysis of serum from chinchillas inoculated with the WT M. catarrhalis strain O35E. Equivalent amounts of
whole cell lysates (WT M. catarrhalis O35E, uspA2 KO strain O35E.2, hag transposon mutant strain O35E.TN2, and ompCD KO strain O35E.CD1) were
resolved by SDS-PAGE, transferred to PVDF and probed with the indicated primary Abs. Panels A and B: Pre- and post-infection serum samples were
pooled and used as primary Abs at a dilution of 1:250. Goat a-rat IgG conjugated to HRP were used as secondary Abs. Controls: The murine
monoclonal Abs 10F3 (Panel C, a-CopB), 5D2 (Panel D, a-Hag), 17H4 (Panel E, a-UspA2) and 1D3 (Panel F, a-OMPCD) were used as primary Abs in
combination with goat a-mouse HRP-(IgG+IgA+IgM) secondary Abs. These controls were included to verify the identity of proteins recognized by
post-infection chinchilla serum in panel B. MW markers are shown to the left of in kDa.
doi:10.1371/journal.pone.0067881.g007
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whooping cough. Future studies will be aimed at exploring the

vaccinogenic potential of MhaB1 and MhaB2 with adjuvants that

readily translate to human studies, immunization routes that

promote robust mucosal immunity, measuring colonization at

multiple intervals post-inoculation, and testing additional M. catar-

rhalis isolates.
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