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Abstract

Hepatocellular carcinoma (HCC) is a leading cause of cancer-related human mortalities.

Over-activation of mammalian target of rapamycin (mTOR) is important for HCC tumori-

genesis and progression. The current study assessed the potential anti-HCC activity by a

novel mTOR kinase inhibitor, CC-223. We demonstrate that CC-223, at nM concentrations,

induced profound cytotoxic and anti-proliferative activities against established HCC cell

lines (HepG2, KYN-2 and Huh-7) and primary human HCC cells. Meanwhile, CC-223 acti-

vated caspase-3/-9 and apoptosis in the above HCC cells. CC-223 concurrently blocked

mTORC1 and mTORC2 activation, and its cytotoxicity against HCC cells was much more

potent than the traditional mTORC1 inhibitors (RAD001 and rapamycin). Further studies

demonstrated that CC-223 disrupted mitochondrial function, and induced mitochondrial per-

meability transition pore (mPTP) opening and reactive oxygen species (ROS) production.

On the other hand, ROS scavengers and mPTP blockers (cyclosporin A or sanglifehrin A)

largely attenuated CC-223-induced HepG2 cell apoptosis. In vivo studies showed that oral

administration of CC-223 dramatically inhibited growth of HepG2 xenografts in severe com-

bined immuno-deficient (SCID) mice. mTORC1/2 activation was also blocked in xenografts

with CC-223 administration. Together, CC-223 simultaneously blocks mTORC1/2 and effi-

ciently inhibits human HCC cells.

1. Introduction

Hepatocellular carcinoma (HCC) is still a deadly disease for the majority affected patients

[1,2,3]. In China and other Eastern countries, the incidence of HCC has been rising [1,2,3], yet

the prognosis has not been significantly improved [1,2,3]. Even with the latest progresses in

HCC research, the clinical treatment for HCC is still very limited [4,5]. Surgical resection is

the only curative therapy for those with early-stage HCC [4,5]. Yet, HCC cells only show weak

response to the traditional chemotherapeutic agents [4,5,6]. Therefore, there is an urgent need

to develop novel and efficient anti-HCC agents [4,5,6].
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Molecule-targeted therapy has drawn broad attentions for HCC treatment [7,8]. Sorafenib

has been approved for the systemic treatment of HCC, and displayed promising clinical

benefits in some HCC patients [9,10]. Mammalian target of rapamycin (mTOR) is a well-

established oncogenic pathway and therapeutic target for HCC [11] and many other cancers

[12,13]. Hyper-activation of mTOR is observed in HCC, and is important for HCC tumorigen-

esis, pathogenesis and progression [11]. mTOR inhibitors of different mechanism of actions

are developed, which were tested for anti-HCC treatment [12,14,15].

There are at least two mTOR multi-protein complexes characterized thus far, including

mTOR complex 1 (mTORC1) and mTOR complex 2 (mTORC2) [12,13]. Traditional

mTORC1 inhibitors, including rapamycin, everolimus, temsirolimus, have displayed clinical

benefits in treating metastatic renal cell carcinoma (RCC) patients [16,17,18]. Yet, use of these

mTORC1 inhibitors could also cause several drawbacks, such as incomplete inhibition of

mTORC1, and feed-back activation of pro-cancerous signalings (i.e. AKT and ERK-MAPK)

[12,19,20,21]. Therefore, mTOR kinase inhibitors, also known as the second generation of

mTOR inhibitors, were developed [22]. These inhibitors block mTOR kinase activity, thus

simantanuously shutting down mTORC1 and mTORC2 [22]. A very recent study by Morten-

sen et al., has developed a novel, potent, selective, and orally bioavailable mTOR kinase inhibi-

tor, named CC-223 [23]. Its potential activity against human HCC cells is evaluated in this

study.

2. Materials and methods

2.1. Chemicals, reagents and antibodies

CC-223 (S7886) was obtained from Selleck (Shanghai, China). Reactive oxygen species (ROS)

scavengers N-acetyl cysteine (NAC, A7250) and Mn (III) tetrakis (4-benzoic acid) porphyrin

(MnTBAP, 323497) were provided by Sigma Chemicals (Sigma, St. Louis, MO). Mitochondrial

permeability transition pore (mPTP) blockers cyclosporin A (CsA, C3805) and sanglifehrin

A (SfA) were also provided by Sigma Chemicals. AKT (9272), p-AKT (Ser 473, #9271), p-p44/

42 MAPK (p-ERK1/2, #9101), ERK1/2 (#9102), p70-S6 Kinase (S6K1 #9202) and p-S6K1

(Thr389, #9205) antibodies were purchased from Cell Signaling Tech (Shanghai, China).

2.2. Cell lines

Established HCC cells (HepG2, KYN-2 and Huh-7 lines) and the L02 normal hepatocytes

were purchased from the Cell Bank of Shanghai Biological Institute (Shanghai, China). HCC

cells were grown in DMEM/RPMI medium supplemented with 8–12% fetal bovine serum

(FBS, Gibco, Shanghai, China), in an atmosphere of 5% CO2. L02 normal hepatocytes were

cultured as described [24].

2.3. Primary culture of patient-derived HCC cells

Surgery-isolated fresh HCC tissues from informed-consent patients (three patients, 56–65

years old, named “HCC1/HCC2/HCC3”) were thoroughly washed in DMEM and 1 mM DTT

(Sigma). Tissues were subjected to digestion for 1 hour. Single-cell suspensions were then pel-

leted and washed, before re-suspending the cells in culture medium (DMEM, 10%-FBS, 2 mM

glutamine, 1 mM pyruvate, 10 mM HEPES, 100 units/mL penicillin/streptomycin, 0.1 mg/mL

gentamicin, and 2 g/liter fungizone) [25,26,27]. Fibroblast cultures were abandoned. All inves-

tigations requiring clinical samples were in accordance with the principles expressed in the

Declaration of Helsinki, and were approved by the Institutional Review Board (IRB) and Eth-

ics Board of Fudan University. Written-informed consent was obtained each participant.
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2.4. Cell survival assay

After the applied CC-223 treatment, trypan blue (0.2%, Sigma)-stained cells was counted by

the Countess Automatic Cell Counter (Invitrogen, Shanghai, China). The cell survival percent-

age (%) was calculated by the number of the trypan blue negative cells divided by the total cell

number[28,29].

2.5. Cell viability assay

To test cell viability, cell counting kit-8 (CCK-8, Sigma, Shanghai, China, 96992) assay was per-

formed using the attached manual. CCK-8 absorbance optic density (OD) was recorded at 450

nm, reflecting cell viability.

2.6. BrdU incorporation assay

BrdU (10 μM, Cellular Signaling, Shanghai, China, #6813) [30,31] was pre-added to HCC

cells. After the applied CC-223 treatment, BrdU incorporation was examined via the enzyme-

linked immunosorbent assay (ELISA) format. ELISA OD at 450 nm was tested as the indicator

of cell proliferation.

2.7. Colony formation assay

HCC cells with applied CC-223 treatment were re-suspended in DMEM medium with 0.5%

agar (Sigma), which were plated onto a pre-solidified six-well plate. Cells were then cultured in

CC-223-containing medium for additional seven days. Afterwards, the remaining survive col-

onies were counted [32].

2.8. Assay of caspase activity

Following treatment of cells, caspase-3/-9 activity was analyzed using the described protocol

[33]. Briefly 10 μg of cytosolic extracts were added to caspase assay buffer [33] with the cas-

pase-3/-9 substrate [33]. Release of 7-amido-4-(trifluoromethyl)-coumarin (AFC) was tested

by the Fluoroskan fluorescence machine [33]. The OD of treatment group was always normal-

ized to that of untreated control group. Caspase inhibitors were also purchased from Biyuntian

(Wuxi, China)

2.9. TUNEL assay

Cell apoptosis was tested by the TUNEL staining assay. At least 200 cells per treatment in six

repeated wells were included to calculate the TUNEL-nuclei percentage.

2.10. Histone DNA apoptosis ELISA assay

The cell apoptosis histone DNA ELISA detection kit (Roche, Shanghai, China) [34] was applied

to quantify cell apoptosis using the manufacturer’s protocol. ELISA OD at 450 nm was tested to

indicate cell apoptosis intensity.

2.11. Western blotting assay

Cell lysates or tumor tissue lysates (30 μg per treatment) were separated by 10% of SDS-PAGE

gels, and were then transferred onto polyvinylidene difluoride (PVDF) membranes. The blots

were always blocked with 10% milk, and incubated with primary and corresponding secondary

antibodies. Blots were subjected to enhanced chemiluminescence (ECL) detection kit detec-

tion via x-ray films [29,30,35].
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2.12. Mitochondrial depolarization assay

As described [36], mitochondrial depolarization, the indicator of mitochondrial permeability

transition pore (mPTP) opening, was assessed by the JC-10 fluorescence dye (Invitrogen,

Shanghai, China) [36]. Briefly, after the applied CC-223 treatment, cells were incubated with

2 μg/mL of JC-10 dye for 10 min. After wash, the JC-10 fluorescence in HCC cells was exam-

ined by the fluorescence microplate reader (Titertek Fluoroscan, Germany) [36].

2.13. ROS detection

After treatment, HCC cells were incubated with CellRox Orange Reagent (5 μM, Invitrogen)

for 30 min at room temperature. ROS intensity was examined by the above fluorescence

microplate reader (Titertek Fluoroscan, Germany).

2.14. Mice xenograft assay

The female severe combined immuno-deficient (SCID) mice (4–5 week-old, 19–20 g in weight)

were purchased from the Animal Center of Fudan University (Shanghai, China). Mice were fed

with an autoclaved laboratory rodent diet. Exponentially growing HepG2 cells (five million cells

per mouse) were subcutaneously (s.c.) inoculated into the SCID mice. Within 2–3 weeks, the

xenografted tumors were established with 100 mm3 in volume. The SCID mice were then

treated as described. Tumor volumes were calculated weekly via the formula: (mm3) = (A2 × B)/

2: A and B were the shortest and the longest diameter, respectively. Mice body weights were also

recorded each week. The animal protocols were approved by Institutional Animal Care and Use

Committee (IACUC) and Ethics committee of Fudan University (Shanghai, China). Animals

were observed on daily bases. Humane endpoints were defined as a loss of more that 15% of

body mass, a tumor greater than 1.2 cm, severe fever, vomiting or skin problems (wounds or

signs of inflammation) or inability to ambulate or rise for food and water. If reaching these end-

points, CO2 inhalation was used for euthanasia of animals. All mouse surgical procedures were

performed with anesthesia by intramuscular injection of 50% ketamine, 38% xylazine, and 12%

acepromazine maleate (0.02 mL). All efforts were made to minimize suffering.

2.15. Statistical analysis

All values were expressed as the mean ± standard deviation (SD). A p-value, calculated by

ANOVA, of less than 0.05 was considered statistically significant. Data of in vitro experiments

were summarizing one set of experiment. The whole set of experiments were always repeated

3–5 times, and similar results were obtained.

3. Results

3.1. CC-223 is cytotoxic and anti-proliferative to cultured human HCC

cells

To study the potential effect of CC-223 on HCC cells, cultured HCC cell lines (HepG2, KYN-2

and Huh-7) were treated with gradually-increasing concentrations of CC-223 (10–1000 nM,

for 72 hours), trypan blue staining assay results in Fig 1A demonstrated that CC-223, at 100–

1000 nM, potently decreased the number of viable HCC cells. CC-223 showed a dose-depen-

dent response in the HCC cells, and it was safe at a low (10 nM) concentration (Fig 1A).

Intriguingly, same CC-223 treatment (10–1000 nM, for 72 hours) was yet non-cytotoxic to the

L02 normal hepatocytes (non-cancerous cells, Fig 1A). Thus, CC-223 apparently is uniquely

cytotoxic to HCC cells. CCK-8 viability assay (Fig 1B) and colony formation assay (Fig 1C)
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were also performed. Results showed that 100–1000 nM of CC-223 treatment in HepG2 cells

largely decreased CCK-8 viability OD (Fig 1B) and number of viable colonies (Fig 1C).

Next, BrdU incorporation assay was performed to study the potential effect of CC-223 on

HCC cell proliferation. Results in Fig 1D showed that CC-223 dose-dependently decreased

BrdU ELISA OD in HepG2 cells, demonstrating an anti-proliferative activity by CC-223 (Fig

1D). Notably, for the BrdU assay, cells were only treated with CC-223 for 24 hours, when no

significant cytotoxicity was noticed (Data not shown). The potential effect of CC-223 on the

primary human HCC cells was examined. As described, three primary human HCC cell lines

(“HCC1/2/3”) were established. These cells were also treated with 500 nM of CC-223, and cul-

tured for additional 72 hours. CCK-8 viability assay results in Fig 1E clearly demonstrated that

CC-223 was similarly cytotoxic to all three lines of primary cancer cells. Collectively, these

results demonstrate that CC-223 is cytotoxic and anti-proliferative to cultured human HCC

cells.

3.2. CC-223 induces apoptosis in HCC cells

The potential effect of CC-223 on HCC cell apoptosis was tested next. As shown in Fig 2A,

treatment with CC-223 in HepG2 cells dose-dependently induced activation of caspase-3 and

caspase-9. Histone DNA apoptosis ELISA assay results in Fig 2B further demonstrated that

100–1000 nM of CC-223 induced significant apoptosis in HepG2 cells. Meanwhile, the per-

centage of TUNEL-positive nuclei was increased significantly following 100–1000 nM of CC-

223 treatment in HepG2 cells (Fig 2C). These results confirm that CC-223 is pro-apoptotic
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https://doi.org/10.1371/journal.pone.0173252.g001
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when added to HepG2 cells. Notably, at a low (10 nM) concentration, CC-223 failed to induce

significant apoptosis (Fig 2A–2C).

Various caspase inhibitors were utilized here, including the caspase-9 inhibitor z-LEHD--

CHO, the caspase-3 inhibitor z-DEVD-CHO and the pan caspase inhibitor z-VAD-CHO.

These inhibitors dramatically inhibited CC-223 (500 nM)-induced apoptosis activation

(TUNEL-nuclei percentage increase, Fig 2D) and subsequent HepG2 cell viability reduction

(Fig 2E). Thus, CC-223 possibly induced apoptotic death in HepG2 cells. The primary human

HCC cells (“HCC1/2/3”) were also treated with CC-223 (500 nM), results from the Histone

DNA apoptosis ELISA assay clearly showed that CC-223 was pro-apoptotic when added to the

primary cancer cells (Fig 2F). Collectively, these results demonstrate that CC-223 is pro-apo-

ptotic when added to the human HCC cells.

3.3. CC-223 blocks mTORC1 and mTORC2 activation in HCC cells

CC-223 is a mTOR kinase inhibitor [23]. Thus, we tested mTOR signaling in CC-223-treated

HCC cells. In this study, p-S6K1 (Thr-389) and p-AKT (Ser-473) were tested as indicator of

mTORC1 and mTORC2 activation, respectively. Western blotting assay results in Fig 3A dem-

onstrated that CC-223 (100–1000 nM) almost completed blocked mTORC1 (p-S6K1) and

mTORC2 (p-AKT, Ser-473) activation in HepG2 cells. At 10 nM, CC-223 was in-effective (Fig

3A). Expressions of total S6K1 and AKT1 were unchanged in CC-223-treated cells (Fig 3A).

Similarly results were also obtained in the primary HCC cells (HCC1 line), where 500 nM of

CC-223 almost completely blocked mTORC1 and mTORC2 activation (Fig 3B). Intriguingly,

basal mTORC1 (p-S6K1) and mTORC2 (p-AKT, Ser-473) activation was quite low in L02
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https://doi.org/10.1371/journal.pone.0173252.g002
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normal hepatocytes (Fig 3C), as compared to that of HCC cells (Fig 3A and 3B). This should

explain why these hepatocytes were not targeted by the mTOR kinase inhibitor.

We also compared CC-223 with other known traditional mTORC1 inhibitors: RAD001

and rapamycin. CCK-8 assay results (Fig 3D) and TUNEL-nuclei assay results (Fig 3E) clearly

demonstrated that CC-223 was dramatically more potent that same concentration (500 nM) of

RAD001 and rapamycin in killing HepG2 cells. It should be noted that treatment of CC-223

failed to provoke feed-back activation of ERK (p-ERK1/2) in above cells (Data not shown).
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While the traditional mTORC1 inhibitors reportedly could lead to ERK activation (See Discus-

sion below).

3.4. CC-223 disrupts mitochondrial function, causing ROS production

and HCC cell apoptosis

Recent studies [36,37,38,39] including ours have demonstrated that a number of anti-cancer

drugs would disrupt normal mitochondrial function, causing mitochondrial permeability

transition pore (mPTP) opening, mitochondrial depolarization and reactive oxygen species

(ROS) production, which mediate the subsequent cancer cell death. Here, we showed that

treatment with HepG2 cells with CC-223 (500 nM) also induced mitochondrial depolarization

(JC-10 intensity increase, indicating mPTP opening [36,37,38,39]) (Fig 4A) and dramatic

ROS production (Fig 4B). Thus, CC-223 apparently also disrupted mitochondrial functions in

HCC cells. To study the link between mitochondrial dysfunction and HCC cell death, pharma-

cological strategy was utilized. As demonstrated, CC-223-induce HepG2 cell death (Fig 4C)

and apoptosis (Fig 4D) were largely alleviated with co-treatment of ROS scavengers (NAC and

MnTBAP [40]) and mPTP blocker cyclosporin A (CsA) [41] or sanglifehrin A (SfA) [42].

Notably, treatment with these inhibitors alone didn’t affect HepG2 cell survival/apoptosis

(Data not shown). These results imply that CC-223 disrupts mitochondrial dysfunction, which

mediates subsequent HCC cell apoptosis.

3.5. Oral administration of CC-223 inhibits HepG2 xenograft growth in

SCID mice

In order to test the potential anti-HCC activity of CC-223 in vivo, HepG2 xenograft SCID

mice model was applied. As described, HepG2 cells were inoculated into the flanks of SCID

mice via subcutaneous injection. With 2–3 weeks, the HepG2 xenografts were established with

the volume around 100 mm3. The mice were then randomly divided into three groups. The

control group received the vehicle control (aqueous 0.5% carboxymethyl cellulose plus 0.25%

Tween-80), and the other two groups received CC-223 administration (10 or 30 mg/kg body

weight, gavage, daily for 21 consecutive days) [23]. Weekly tumor growth curve results in Fig

5A clearly showed that CC-223 oral administration dramatically inhibited HepG2 xenograft
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Fig 5. Oral administration of CC-223 inhibits HepG2 xenograft growth in SCID mice. HepG2 tumor-bearing

SCID mice were administrated with CC-223 (10 or 30 mg/kg, daily, oral gavage) or vehicle control (“Vehicle”) for a

total of 21 days; Tumor volume (A) and mice body weight (B) were recorded every weekly for a total of 5 weeks. At

day-3, 12 hours after initial CC-223/vehicle administration, one tumor of each group was separated, and expression of

listed proteins was tested by Western blotting assay (C). n = 11 means total 11 mice. * p <0.05 vs. “Vehicle”. # p <0.05

vs. CC-223 at 10 mg/kg.
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growth in SCID mice. CC-223 again displayed a dose-dependent activity in vivo. CC-223 at 30

mg/kg was more potent than 10 mg/kg in inhibiting HepG2 xenografts (Fig 5A). Results in Fig

5B showed that CC-223 administration didn’t affect the body weight of experimental mice,

indicating that CC-223 regimens were apparently safe [36]. To test signaling changes in vivo,

at day-3, 12 hours after initial CC-223 administration, one tumor of each group was separated.

Western blotting assay analyzing HepG2 tumor lysates showed that activation of mTORC1

(p-S6K1) and mTORC2 (p-AKT, Ser-473) were largely inhibited in tumor lysates with CC-223

administration (Fig 5C). ERK activation, tested by p-ERK1/2, was yet unchanged (Fig 5C).

Thus, in line with the in vitro findings, oral administration of CC-223 similarly inhibited

mTORC1/C2 activation in vivo.

4. Discussions and conclusions

mTOR over-activation in HCC cells participates in a number of key cancerous behaviors,

including cell survival, proliferation and migration as well as angiogenesis, chemo-resistance

and metastasis [11]. Thus, various mTOR inhibitors are developed to possibly inhibit HCC

cells [11]. The traditional mTORC1 inhibitors, including rapamycin and its analogs (i.e.
RAD001, CCI-779, AP23573) [43], could only exert weak to moderate anti-cancer activity,

even combination with other cytotoxic agents [14,22]. This could be due to following reasons:

Rapalogs partially inhibit 4E-BP1 phosphorylation, therefore only incompletely suppress

mTORC1 activation [14,22]. Further, mTORC1 inhibitors had no or limited inhibition on

mTORC2 activity, the latter is equally important as mTORC1 in HCC and other cancer cells

[44]. More importantly, rapalogs could induce feedback activation of several key oncogenic

signaling, i.e. AKT and ERK-MAPK, which shall counteract the anti-cancer activity [14,22].

Due to these limitation, mTOR kinase inhibitors, i.e. CC-223, are developed.

There are several advantages using this novel mTOR kinase inhibitor. First, CC-223 is

extremely efficient in killing various HCC cells. At nM concentrations, it exerted profound

cytotoxic, anti-proliferative and pro-apoptotic actions against established HCC cell lines

(HepG2, KYN-2 and Huh-7) and primary human HCC cells. Second, it concurrently blocked

mTORC1/C2 activation in HCC cells, without inducing feedback activation of above pro-

cancerous signalings (AKT and ERK). Its cytotoxicity against HCC cells therefore was much

more potent than traditional mTORC1 inhibitors. Third, CC-223 also disrupted mitochon-

drial function in HCC cells, leading to mitochondrial-dependent cell death. That could be

another reason of its superior activity in HCC cells. Fourth, this novel mTOR kinase inhibitor

is orally bioavailable. Indeed, oral administration of CC-223 dramatically suppressed HepG2

xenograft growth in SCID mice. Fifth, this compound is non-cytotoxic to normal L02 hepato-

cytes and was safe to the experimental SCID mice. Thus, CC-223 might have translational

value for the treatment of HCC.

HCC has long been known as an otherwise chemo-resistant malignancy [7,8]. Molecularly-

targeted therapy is currently a major research focus for HCC treatment, and has drawn over-

whelming attentions around the world [7,8]. It is exciting to learn that sorafenib, a multiple

tyrosine protein kinase inhibitor, could improve the survival of some metastatic HCC patients

[8]. This preclinical study showing promising anti-HCC activity by CC-223 suggests that this

compound may warrant further investigation as a promising anti-HCC agent.
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