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Abstract
This review explores the presence and functions of polyglutamine (polyQ) in viral proteins. In mammals, mutations in polyQ
segments (and CAG repeats at the nucleotide level) have been linked to neural disorders and ataxias. PolyQ regions in normal
human proteins have documented functional roles, in transcription factors and, more recently, in regulating autophagy. Despite
the high frequency of polyQ repeats in eukaryotic genomes, little attention has been given to the presence or possible role of
polyQ sequences in virus genomes. A survey described here revealed that polyQ repeats occur rarely in RNAviruses, suggesting
that they have detrimental effects on virus replication at the nucleotide or protein level. However, there have been sporadic reports
of polyQ segments in potyviruses and in reptilian nidoviruses (among the largest RNA viruses known). Conserved polyQ
segments are found in the regulatory control proteins of many DNA viruses. Variable length polyQ tracts are found in proteins
that contribute to transmissibility (cowpox A-type inclusion protein (ATI)) and control of latency (herpes viruses). New longer-
read sequencing methods, using original biological samples, should reveal more details on the presence and functional role of
polyQ in viruses, as well as the nucleotide regions that encode them. Given the known toxic effects of polyQ repeats, the role of
these segments in neurovirulent and tumorigenic viruses should be further explored.

Keywords Neurotropic viruses . Glutamine repeat diseases . A-type inclusion protein . Deoxyuridine 5′-triphosphate nucleotide
hydrolase (DUT) . Herpes virus latency . Cowpox virus . RNA viruses . Virus transmissibility . Protein inclusions containing
virus . Beclin-1 control of autophagy . Kaposi’s sarcoma

Introduction

Mutations in human proteins that result in longer polyQ repeat
sequences have been linked to dementias and ataxias [1].
Their toxicity has been attributed, at the protein level, to ag-
gregation of long polyQ protein tracts, interference with au-
tophagy [2] and to their ability to bind RNA in several model
organisms, including marmosets [3], Drosophila, and E. coli
[4–7]. Proteins containing mutated longer repeats may also
lose their function. For example, expanded polyQ repeats in
ataxin-3 may interfere with miRNA function in Machado-
Josef disease [8] and expansion of the polyQ tract in the

androgen receptor reduces its DNA binding capacity [9].
The mechanisms of polyQ toxicity are dependent on the pro-
tein encoded, and even alternative reading frames of the DNA
[10, 11]. For example, aggregated polyQ containing protein,
huntingtin, is found in the brain of Huntington’s disease (HD)
victims. However, a rare disease similar in clinical appearance
to HD, Huntington’s disease-like 2 (HDL2), has been linked
to repeat regions in RNA and alternative transcripts causing
loss of expression of other proteins, such as junctophilin-3
[12]. Targeting such repeats at the protein or RNA level may
provide novel therapies for these diseases [13–15].

While the mechanisms for the function and toxicity of ex-
tended polyQ segments (or the nucleic regions that encode
them) in eukaryotic proteins continue to be actively studied
[16], there has been little exploration of their occurrence and
possible roles, even in neurovirulent viruses. This is particu-
larly curious, in light of the documented role of polyQ tracts in
transcription factors (TFs) and their abundance in eukaryotic
genomes [17], even constituting a BpolyQ interactome^ [16].
The first goal of this work was to determine whether viral
proteins contain polyQ repeats at all. One might anticipate that
longer polyQ sequences, based on their tendency to aggregate
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and to interfere with transcription, would be selected against
in rapidly replicating viruses under extreme environmental
pressure. Sequence selection in DNA viruses during chron-
ic infections, on the other hand, would favor compatibility
with host cell transcription and translation mechanisms and
immune evasion [18, 19], rather than rapid growth
[20–23]. As this study has found, polyQ segments are in-
deed rare in the catalogued sequences of smaller RNA vi-
ruses, but even very long repeats have been found in sev-
eral large RNA and DNA viruses.

The second goal is to suggest what functions, if any, such
repeat sequences, at the protein or nucleotide level, could play
in viral replication, chronic infection, or neuro-pathogenesis.
Clues for the potential role of the repeats could be gleaned
from their roles in eukaryotic proteins, where they are present
in many transcription factors. In addition, Q-rich repeats in the
N-terminus of the Argonaute-2 protein ofDrosophila and oth-
er insects [24, 25] are essential for antiviral activity [26] and
one in a cellular protein, TLE2, contributes to this protein’s
ability to control lytic reactivation of Kaposi’s sarcoma-
associated herpesvirus [27]. As discussed below, the polyQ
segments found in several viral proteins could indeed affect
the ability of viruses to control the activities or transcription of
their own or cellular proteins, while their possible role in
neurovirulence remains to be established.

While it may be surprising that polyQ sequences in
neurovirulent viruses have not been a major topic of study, it
should be emphasized that the extent of very long repeat seg-
ments would be difficult to detect by short-read sequencing of
the large viruses in which they have been found. In addition,
CAG triplet repeats are known to be unstable [28] and may be
specifically excised during the transition from latency to ac-
tive growth, or after adaptation to cell culture. Newer
methods, designed to specifically determine repeat sequences
in direct isolates from infected tissues, should reveal more
details about the presence and roles of repeated sequences.

Section 1: Long PolyQ Segments in Larger RNA
and DNA Viruses

Searching for polyQ tracts in viruses Searching the published
sequences of many different virus families revealed that while
they are not present in smaller RNAviruses, surprisingly long
tracts of polyQ have been found in larger RNA and DNA
viruses. The search also suggested that repeats may be much
more common in viruses than is indicated by the currently
archived sequences.

At the start of this work, the ViPR database [29], which
allows rapid access to the published sequences of over 75,000
viral genomes or genome segments, was used to determine
which RNA and DNA viruses contain polyQ repeats. A new
resource, the Influenza research database [30], was used to
screen influenza virus sequences. OnceQ-rich sequences were

identified, BLAST searches starting from the viral proteins
that contained them were used to determine the extent of their
conservation in the same virus family and to find other virus
proteins containing similar tracts. BLAST was also used to
find viral proteins containing repeats similar to those of the
Argonaut-2 proteins.

The Vast Majority of Published RNA Virus Genomes Contain
No Extended PolyQ Repeats If long polyQ repeats are intrin-
sically toxic for the function of proteins, or stimulate aggrega-
tion [31], one would expect that rapid evolving RNA viruses
would selectively eliminate them. Table 1 summarizes
searches of over 20,000 genome sequences of many families
of pathogenic viruses, including single-strand RNA viruses
(Flavivirus, Reoviruses, Picornaviruses, Bunyaviridae, etc.),
43,000 segments of the dsRNA Reoviridae from the ViPR
database and over 100,000 strains of Influenza from the
Influenza research database [30]. This revealed that only a
few RNA viruses contain even a QQQQ sequence. Longer
polyQ sequences, which would be anticipated to cause ag-
gregation of the viral proteins (or, as discussed later, inter-
fere with autophagy), were not found. As long repeats of
many other amino acids (especially D, T, L, E, P) and
mixed basic or acidic residues occur very frequently, this
would suggest that there is some selection against longer
polyQ tracts, either at the RNA or protein level. Literature
searches have revealed sporadic reports of polyQ segments
in some small RNAviruses, including potyviruses [32, 33],
and even a coxsackie A24 isolate [34], whereby the lack of
consistency among closely related viruses suggests these
have no functional role.

More meaningfully, BLAST searches beginning with a Q-
rich sequence from DNA viruses (see below) identified a
polyQ sequence in the first open reading frame of a nidovirus
isolated from a python, representing a novel genus of
Torovirus [35]. A similar polyQ sequence is also found in
the ORF1 of the Morelia viridis (Boa constrictor) nidovirus,
but not in that of a nidovirus isolated from lizards [36].
Nidoviruses (which include the Coronaviridae) have the lon-
gest known RNA virus genome, with continuous positive
sense strands of 26–32 kBases [37]. In contrast, other +-strand
RNA viruses range from 7.5 to 12 kb, and negative-strand
RNA viruses have genome lengths ranging from 7 to 19 kb.
Bunyavirdae can be up to 22.7 kb in total length, but their
longest (L) segments do not exceed 12 kb.

It is possible that these long polyQ insertions may play a
role, at the RNA level, during genome replication or adapting
to changing environments [38]. As for other RNA virus fam-
ilies [39, 40], several studies have indicated the importance of
dsRNA folding domains near the 5′ end of coronavirus ge-
nomes [41]. Formation of dsRNA intermediates [42], impor-
tant for the interferon response [43–46], as well as viral en-
zymes that interfere with the OAS/RNaseL system that would
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target these [47, 48], are characteristic of infection by several
different nidoviruses. These include the coronaviruses, MERS
and SARS. The repeat RNA sequence encoding the polyQ
region in the 5′ region of the python virus may fold as an
independent domain containing extended segments of
dsRNA (Fig. S1, [49, 50]), whereby the low energy of folding
generates a dynamic, unstable structure [51]. The CAG repeat
region might be excised completely during rapid growth, as
CAG repeats are known to be unstable [28, 52, 53].
Alternatively, it may be transcribed past during generation of
subgenomic RNAs, which in nidoviruses proceeds by selec-
tive transcription of parts of the open reading frames [54].

PolyQ Repeats in DNA Viruses Searches within two diverse
and well-studied DNA virus families, poxviridae and herpes,
indicated that several of these large viruses, known to cause
chronic neurotropic infections, contain long polyQ segments
(Tables 1, 2 and Fig. 1). These DNA virus genomes are 145–
200 kbp, 5–10 times longer than those of the RNA viruses.
Many herpes virus proteins contain variable length polyQ re-
peats in conserved regions (Table 2 shows some examples),
and even longer polyQ repeats have also been found (Fig. 1).
In addition to direct polyQ repeats, there are long, Q-rich
repeats in other viral proteins. For example, there is a long,

variable length, Q-rich repeat in the MC006L protein of the
pox virus,Molluscum contagiosum [55]. This virus causes the
formation of wart-like blisters on the skin of infected individ-
uals, and characteristic cellular inclusions.

As discussed below, the longest repeats were found in
DNAvirus proteins that function in enhancing transmissibility
(cowpox ATI) or contribute to viral latency (herpes viruses).

Section 2: Exploring the Function of Glutamine
Repeats in Viral Proteins

The RNA virus results, coupled with the fact that polyQ ex-
pansions in human proteins can lead to disease, suggest that
polyQ segments are probably selected against in rapidly grow-
ing viruses. This leads to the question: what possible functions
could they serve for the virus itself or interaction with host
cells? This is an important question to answer as the repeats
occur in proteins from viruses triggering hard-to-treat neurop-
athies and epilepsy [56] and isolated from latently infected
tissues and tumors.

PolyQ Repeats Serve Important Functions in Mammalian
Proteins Although studied for their role in disease, polyQ
segments in mammalian proteins have important regulatory

Table 1 Maximum length of
polyQ repeats (Qn) found in
published genomes of
mammalian RNA and DNAvirus
groups. The second column
shows the number of genomes
searched for each group of
viruses, and the last column lists
some of the proteins that contain
the longer polyQ repeats. See
Table 2 for examples of herpes
proteins with polyQ repeats and
Fig. 1 for longer repeats

Group Genomes Qn Found in

+-strand RNA

Coronavirus 1727 4 GKGQQQQGQ is conserved in the nucleocapsid of Bat
corona virus and SARS

Flavivirus 10,242 4 Hepacivirus NS4B (22 total)

Caliciviridae 1215 4 Norwalk p22, (15 total)

Hepeviridae 316 3 Hepatitis E (13 total)

Picornaviridae 3704 4 Sapelovirus; human parechovirus (17 total)

Togaviridae 1342 3 Alphaviruses including VEEV, Ross River, Sindbis,
Semliki Forest and Aura (542 total)

-strand RNA

Arenaviridae 961 4 Sabia virus nucleocapsid (3 total)

Bunyaviridae 6273 4 Brazoran nucleocapsid, Enseada polymerase, Southbay
virus L Protein (6 total)

Filoviridae 497 3 Ebolaviruses (several times; 1726 total)

Paramyxoviridae 2590 4 Mumps, Tuhoko, Newcastle, Avian and Bat
paramyxovirus nucleocapsid (106 total)

Influenza 107,759 3 Many virus proteins

Rhabdoviridae 1136 4 Rice yellow stunt virus nucleocapsid (1 result)

dsRNA

Reoviridae 43,913 segments 4 In 16 sequences: Rotavirus NSP3, orthoreovirus cell
attachment factor sigma 1, Cypovirus VP4, Eyach VP8

DNA viruses:

Herpesviridae 796 33 Tupaiid T2; RF1 of Rhadinovirus type 1 (Fig. 1)

Poxviridae 391 22 Cowpox virus A-type inclusion body protein
(ATI) (Table 3)
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functions. After a polyQ repeat was found to be an activation
domain [57] of the TF, SP1, the role of such segments in TFs
was extensively studied [58] long before they were document-
ed to have pathogenic characteristics possibly related to fold-
ing and formation of aggregates in cells (e.g., [59]). More
recently, the length of polyQ inserts was directly related to
their ability to enhance TF activity [9, 38]. Variable length
Q-rich repeats may also modulate TF activity in eukaryotic
cells by modulating their solubility [60] or by recruiting other
factors to the DNA binding complex. A polyQ repeat in mu-
rine SRY (sex determining region on the Y chromosome) both
stabilizes the protein and serves as a transactivation domain
[61]. However, the region is found only in rodent SRYand can
be replaced by an irrelevant protein (mCherry).

Consistent with a possible role for polyQ tracts in viral
proteins in controlling transcription, the first report of a
polyQ tract in a DNA virus was in a baculovirus regulatory
protein, where the authors noted the similarity of the amino
acid repeats to those in SP1 [62]. As Table 2 illustrates, polyQ
tracts are present in several regulatory proteins of herpes
viruses.

Further evidence for a functional roles in controlling virus
replication is that Q-rich tetratricopeptide repeats are upregu-
lated during bovine leukemia virus infection [63], as well as in

human breast cancer cells [64]. The Q-rich N-terminal region
of a cellular protein, transducing inhibitor of SPLIT (TLE2),
contributes to this protein’s ability to control lytic reactivation
of Kaposi’s sarcoma-associated herpesvirus [27].

PolyQ Regions in Viral Proteins May Mediate Neurovirulence
Through Interference with Autophagy Recent reports suggest
that polyQ segments may also serve to downregulate autoph-
agy, which serves as a barrier to the growth of neurovirulent
herpes viruses (whereby RNA viruses may use the membra-
nous structures characteristic of autophagy for their own rep-
lication). These examples suggest possible roles for the longer
repeats in proteins of viruses that typically cause latent infec-
tions, including herpes simplex, Epstein Barr, β- and ɣ-herpes
viruses (Fig. 1). Mutations in beclin-1, a protein which trig-
gers the process, were previously linked to development of
neurodegenerative diseases [65]. Neurovirulent herpes sim-
plex virus produces a protein that specifically binds to and
interferes with beclin-1 function [66], called neurovirulence
factor ICP34.5 (or gamma1 34.5, ɣ34.5).

Figure 2 (based on [2, 67]) shows how an expansion of the
polyQ repeat in mutant ataxin-3, as well as excess polyQ from
other cellular (or viral) proteins, could interfere with the inter-
action of ataxin-3 and beclin-1 to inhibit autophagy. The

Table 2 Examples of herpes
proteins containing polyQ repeat
segments

Virus Protein Residues Sequence

Human herpesvirus 5 Multifunctional expression regulator 703–713 QQQQQQQQQQQ

Human herpesvirus 5 Protein UL133 247–257 QQQQQQQHQTG

Human herpesvirus 5 Tegument protein pp150 399–409 RQQNLQQRQQQ

Elephant endotheliotropic
herpesvirus 4

Protein ORF-S 316–326 QQQQQQQQQQQ

Elephant endotheliotropic
herpesvirus 4

Protein U59 74–84 QQQQQQQQQRQ

Tupaiid herpesvirus 1 2 T2 (see also Fig. 1) 496–506 QQQQQQQQQQQ

Murid herpesvirus 1 C4A m18 60–70 QQQQQQQQQQE

Murid herpesvirus 1 C4A M25 335–345 QRQQQQQQQQQ

Murid herpesvirus 1 C4A M34 176–186 REQQHQQQQQG

Murid herpesvirus 1 K181 Apoptosis inhibitor 112–122 QQQQEKQQQQQ

Equid herpesvirus 2 86/67 Capsid maturation protease 606–616 QPQQQQQPQQQ

Equid herpesvirus 2 86/67 Capsid scaffold protein 299–309 QPQQQQQPQQQ

Equid herpesvirus 5 2–141/67 DNA packaging protein UL32 248–258 KQQQGQGQRQQ

Equid herpesvirus 5 2–141/67 DNA packaging tegument
protein UL25

415–425 KQQQSQQQQQS

Equid herpesvirus 5 2–141/67 Uracil-DNA glycosylase (UDG) 12–22 QQQQQQPQDDQ

Equid herpesvirus 5 2–141/67 Envelope glycoprotein B 789–799 QQQQQQQQQQQ

Equid herpesvirus 5 Glycoprotein B 790–800 QQQQQQQQQQQ

Suid alphaherpesvirus 1 VP1/2 2258–2268 QQQQQQQQQRQ

Suid herpesvirus 1 Protein V57 106–116 QQQQQQQQQQR

Suid alphaherpesvirus 1 ICP27 62–72 QRQQQQQRQQQ

Suid herpesvirus 1 Early regulation protein UL54 64–74 QRQQQQQQRQQ

Suid herpesvirus 1 UL3.5 106–116 QQQQQQQQQQR
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polyQ region of wt-ataxin-3, a deubiquitinase, is expanded in
spinocerebellar ataxia type 3. The normal length polyQ region
mediates binding of ataxin-3 to beclin-1, preventing its degra-
dation and allowing it to stimulate autophagy (Fig. 2, top line).
Soluble, mutated polyQ segments can inhibit this binding, thus
preventing beclin-1 degradation and upregulation of autophagy,
preventing efficient clearance of aging cellular, as well as viral,
proteins. Another indication that polyQ sequences from the vi-
rus, or some other repeat in ɣ34.5, may also be involved in this
regulation is that there is a discontinuity within the (otherwise
well conserved) ɣ34.5 sequence in many herpes isolates (see
supplementary material). Such discontinuities usually indicate
repeat insertions [68].

This finding ties in with many years of research on the
effect of inhibiting autophagy on replication and
neurovirulence of various viruses [69]. While neurovirulent
viruses such as herpes are indeed held in check by autophagy,
some RNA viruses subvert the process for their own replica-
tion (e.g., picornaviruses [70], dengue [71]). Although polio-
virus requires autophagy for non-lytic spread, its replication is
not affected by beclin-1 inhibition [72], suggesting it uses
other ways to trigger the process.

Role of PolyQ Regions in Maintaining Latency As is probably
the case with the polyQ repeat in murine SRY, polyQ repeat
regions in viral proteins are generally variable in length and
may be unstructured or Bdisordered^ [73]. However, some of

the examples where the repeats are found suggest they have
important functions that would not be obvious during in vitro
replication. Once they have infected a cell, viruses enter differ-
ent growth phases, ranging from almost no replication to rapid
growth leading to cell lysis. A herpes virus-infected ganglion
may contain less than 1000 copies of the virus/cell in the latent
state and still successfully reactivate after stress (from heat, UV
light exposure or infection with, for example, a rhinovirus)
[74]. AlthoughRNAviruses are generally considered to be Bhit
and run^, with rapid clearance from the serum, recent experi-
ence with Zika [75–77] and Ebola [78, 79] viruses has shown
that some may also persist within body compartments where
they are protected from the immune response.

This leads us to a complicated equation: a virus seeking to
survive intracellularly must sacrifice rapid growth for its abil-
ity to evade immune detection. Variable polyQ repeats may
allow a virus to adjust to changing levels of required cellular
factors [80], and determine whether the virus is able to active-
ly replicate, or assume a lysogenic state. Herpes viruses in
particular are known to incorporate genes from the cells they
infect into their genomes that may aid in maintaining lysoge-
ny. PolyQ insertions at the amino acid or RNA level may
directly contribute to viral latency by lowering the transcrip-
tion or activity of the affected proteins. Alternatively, their
presence, or the RNA tracts encoding them, could contribute
to neurovirulence by mechanisms demonstrated for human
proteins (e.g., huntingtin).

Tupaiid herpesvirus 1 protein T2: 
RRRRRQRRSSSSRSSRRRPLLRPPSPDLPQAPPRPRR[Q33]PPPPQKQ
QPRPPPLPSRPSEEPSEEPSEEPSEDSPPILSSSPIQPVPVPIPPPPPP
PPPAFHD
Retroperitoneal fibromatosis-associated 
herpesvirus protein RF1:
LSMIACCVYKWLMMRQQQQQQQQPQQQPQQQQQHHQQQHHQQQQHHQQQ
QHHQQQQHHQQQQRQQQQQQHHHQQQQQQQP[Q17]LPDYMPLLDRQPS
LYNIASS
Equid herpesvirus 5:2-141/67 Name:envelope 
glycoprotein B:
LIVGGIIVLYLFITRSRTVYQAPIRMLYPEVDRAPQQNVQPIPEDQVRS
ILLAMHQFQQQQQQQQQQQQEEHTQRRSIFDTIRESTSNILRRRRGGGG
YTRLRQR
Human herpesvirus 5/BE/33/2011 protein UL69:
PPSPPAPLAGVRSHRGELNLMTPSPSHGGSPPQVPHKQPIIPVQSANGN
HSTTATQQQQQQQQQQQQQQPPPPPPVPQEDDSVVMRCQTPDYEDMLCY
SDDMDD
Molluscum contagiosum virus Protein MC006L:
PTQQMQLQQHLRQLQQQLQFPPPYPSQLQLQLPHAAQAPAQAPPRRAQR
PQGPQATKAQTGKARAPTTKPQSAKVRAQAAKEQAEARAETRATRVRAA
KAREMQSQAQTRTQVQAQAQQAQAQAQQAQAQQAQAQQAQAQQAQAQQA
QAQQARAQQAQAQQAQQAQAQQAQQAQQAQQAQQAQQAQQAQAQQAQQA
QAQQAQQAQAQQARAQQAQVQARSQTQALVQARSQAQAQRQAHVIQPPQ
LSLDTPGPSPLEDAFEISYAP

Fig. 1 Extensive polyQ repeats
and Q-rich (underlined) regions
are present in several different
herpes and pox virus proteins
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Many herpes virus proteins contain conserved, variable
length polyQ segments (Table 2 gives a sampling), including
regulatory proteins, an apoptosis inhibitor, and uracil-DNA
glycosylase (UDG), all factors that may affect viral replication
positively or negatively. It may also be pertinent that a long,
Q-rich repeat is present immediately after the catalytic domain
of the deoxyuridine 5′-triphosphate nucleotide hydrolase
(DUT) gene of the red deer parapox virus (RDPV). Similar
sequences have not been reported in the DUT enzymes of
other viruses, nor has the role of the polyQ sequence been
determined in RDPV. However, UDG and DUT enzymes,
which remove or prevent insertion of U residues in viral
DNA, are found in all herpes viruses [81]. Their enzymatic
activity is essential for neurovirulence, neuroinvasion, and
escape from latency of herpes viruses [82]. Mutation of the
virus encoded DUT inhibits transcription of equine infectious
anemia virus (EILV, a lentivirus and retrovirus). On the other
hand, EILV can replicate in non-dividing cells [83] if it allows
incorporation of U into its DNA [84].

Accordingly, insertion or amplification of the polyQ segment
in UDG or DUTcould slow replication to help maintain a latent
state. As single point mutations (D71E in the active site, or those
preventing phosphorylation of S187 [85]) are sufficient to reduce
neurovirulence, DUT may also be a target for antiviral drug
design [86]. However, such inhibitors must be very efficient, as
residual low levels of the enzyme might have the negative effect
of prolonging viral latency (analogous to antibiotic treatment
selecting for slow-growing bacterial persister cells [87]).

The long polyQ repeats in other herpes virus proteins
(Fig. 1) may also help to suppress virus growth during latency.
These include the direct repeats of polyQ that occur in the low
complexity C-terminal regions of the Tupaiid T2 protein (β-

Herpes group F, isolated from a lymphoma in a tree shrew
[88]) and the RF1 protein of Radinovirus type 1 (ɣ-
Herpesvirus), isolated from a Kaposi’s sarcoma-like lesion in
a macaque [89]. It is possible that these polyQ repeats were
directly incorporated from the host cell genes, as their se-
quences are quite similar to some host proteins (Fig. 3).
Further evidence that these polyQ repeats were incorporated
in an adventitious fashion from the host cell is that repeats are
not found in the published sequences of the (otherwise simi-
lar) N1 proteins of Radinoviruses type 2 [91]. Longer repeti-
tive regions could slow growth by decreasing transcription of
an essential enzyme, making its RNA more vulnerable to cel-
lular nucleases, and at the protein level, reducing its solubility
[92] or enhancing its degradability. Under growth conditions
allowing the virus to resume lytic growth, where the enzyme
activity is required to ensure efficient replication, the region

Fig. 2 Soluble polyQ segments (of cell or viral origin) may prevent
beclin-1-induced autophagy, which depends on the DNA binding ability
of the polyQ segment of wt-ataxin-3 (based on [2, 67]). Scheme A shows
that under normal cell conditions, ataxin-3 binding (mediated by its
polyQ region) to beclin-1 (BECN) protects it from proteosomal degrada-
tion. This allows beclin-1 to stimulate autophagy, which eliminates both

aging cellular proteins and those of viral invaders. SchemeB suggests that
viral proteins’ polyQ, similar to the extended polyQ loop of mutant
ataxin-3, can interfere with this control by preventing ataxin-3 from bind-
ing. Beclin-1 is now degraded and cannot stimulate autophagy, resulting
in even more accumulation of polyQ tracts, defective cellular, and viral
proteins that will interfere with normal metabolism

Tupaiid herpesvirus 1 protein T2: 
RSSSSRSSRRRPLLRPPSPDLPQAPPRPRR[Q33]PPPPQKQQPRPPPL
Human huntingtin fragment: 

MATLEKLMKAFESLKSF[Q45]PPPPPPPPPPPPQLPQP
Pig huntingtin: 

MKAFESLKSF[Q24]PPPPPPQPPQPPPQTQPPPQPPP
Human ataxin 2 fragment: 

[Q45]PPPAAANVRKPG
Human TATA box binding protein: 

PQPIQNTNSLSILEEQQR[Q47]AVAAAAVQQSPS
Human Ataxin 3 variant:
NLTSEELRKRREAYFEKQQQK[Q66]

Fig. 3 The polyQ region in the Tupaiid T2 protein (herpes virus group F,
isolated from a lymphoma in a tree shrew) is flanked by poly-prolines (P),
similar to polyQ expansions in huntingtn, and ataxins associated with
neurological disease. Proline residues may also affect protein solubility
[90]. Two other mammalian proteins that also contain long polyQ repeats
are shown for comparison. The T2 repeat is encoded primarily by CAG
codons, as is the case with huntingtn, and the nidovirus repeat (Fig. S1)
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encoding the polyQ segment could be rapidly removed at the
gene level.

PolyQ Repeats in Proteins that Mediate Virus Transmissibility
As with the RNAviruses, the published sequences of only a few
Poxviridae proteins contain even a tetrad QQQQ repeat.
However, there is a conserved polyQ insertion of variable length
in the A-type inclusion proteins (ATI) of cowpox (CWPX) vi-
ruses (Table 3). Aswith theQ-rich repeat in theMC006L protein
ofMolluscum contagiosum (Fig. 1), this repeat is a variable area
in an otherwise well-conserved protein (Supplementary materi-
al). The ATI with the longest polyQ segment is in strain
FM2292, isolated from a lesion in a vole, which causes skin
lesions and mild symptoms in its host. Although the length of
the polyQ segment in the CWPX strains in Table 3 is not directly
related to pathogenicity, ATI plays a role in a more difficult to
measure parameter: transmissibility. The ATI protein, together
with the p4C protein [93, 94], allows CWPX to form protein
inclusions that, when excreted from the animal, protect the virus
from the elements. Inclusions that sequester the virus (V+ phe-
notype) contribute to the high transmissibility of CWPX in the
wild. As Jennings noted centuries ago, nearly all milkmaids had
been infected with CWPX, as were probably most cows. It is
significant that in a comparison of three CWPX strains, only the
FM2292 virus, which contained the longest polyQ insertion in
its ATI, made V+ inclusions containing virus particles [95]. Two

strains with shorter polyQ segments, the index strain Brighton
Red and a similar strain from rat, formed inclusions that
contained no internalized virus particles (V0). The ATIs of these
three strains differ primarily in their polyQ repeat region length
(Table 3 and supplementary).

Growth in cell culture alone does not indicate that ATI is an
essential gene [96], although it is one of the most abundant
CWPX proteins, amounting to as much as half of all protein
synthesis in the Blate-late stages^ of replication [97]. Deleting
the ATI gene leads to a faster growing virus [98]. However, as
discussed above, ATI enhances transmissibility from animal
to animal, as well as virus survival outside the host. The pres-
ence of a longer polyQ sequence could reduce its transcrip-
tion, synthesis, or solubility during restrictive growth in an
organism, where ATI’s activity is not required.

Smallpox and vaccinia virus (VV) strains lack polyQ seg-
ments in their ATIs and form only virus-free inclusions (V0 phe-
notype). CWPX and VV strains also differ in the ATI interacting
protein, p4C, in that only CWPX strains contain long repeats (up
to 28) of aspartate (D) residues. These results suggest strongly
that this amino acid repeat, together with the polyQ segment in
the ATI, aid in sequestering virus particles into the V+ inclusions,
which further the extracorporeal survival of the virus.

Recent direct, deep sequencing of fresh CWPX isolates
from diseased animals indicated diversity in both genome
length and coding areas from the Brighton Red reference

Table 3 Variable length polyQ
repeat region in the highly
conserved A-type inclusion
proteins of cowpox strains. The
last three lines show data from
Hoffman et al. 2015, where the
ability of three strains to form
virus containing inclusion bodies
(V+ phenotype), which aid in
transmissibility, was compared

Cowpox strain PolyQ region and surrounding area of the ATI

HumGri07/1Russia, 1990 ATGGDKEEQEQQHQQQQPVKVVQTQPDDDG

HumBer07/1 ATGGDKEEQEQQHQQQQQQQQPVKVVQTQPDDDG

EleGri07/1 ATGGDKEEQEQQHQQQQPVKVVQTQPDDDG

CatBer07/1 ATGGDKEEQEQQHQQQQQQQQPVKVVQTQPDDDG

Cowpox virus MonKre08/4 ATGGDKEEQEQQQHQQQQQQQQPVKVVQTQPDDDG

JagKre08/2 ATGGDKEEQEQQQHQQQQQQQQPVKVVQTQPDDDG

JagKre08/1 ATGGDKEEQEQQQHQQQQQQQQPVKVVQTQPDDDG

HumMag07/1 ATGGDKEEQEQQHQEQQHQQQQQQQQQPVKVVQTQPDDDG

HumLan08/1 ATGGDKEEQEQQQHQQQQQQQQPVKVVQTQPDDDG

BeaBer04/1 ATGGDKEEQEQQHQQQQQQQQQQPVKVVQTQPDDDG

BH71/10 ATGGDKEEQEQQQQQQQQQQQQQPVKVVQSQPDDG

Germany_2002_MKY
(marmoset, fatal)

ATGGDKEEQEQQQQQQPVKVVQTQPDDDGI

Germany_1998_2 ATGGDKEEQEQQHQQQPVKVVQTQPDDDDG

Germany_1990_2 (human,
fatal)

ATGGDKEEQEQQQQQQQQQQQQPVKVVQSQPDDD

Germany_1980_EP4
(Elephant, 1980)

ATGGDKEEQQQQQQQQQQQQQQQPVKVVQTQPDDDG

CPR06 ATGGDKEEQEQQPVKVVQSKPDDGITPYN

CPXVAmadeus 2015 ATGGDKEEQEQQHQQQQQQQQPVKVVQTQPDDDG

RatHei09/1 V0 ATGGDKEEQEQQQHQQQQQQQQPVKVVQTQPDDDG

Brighton Red V0 ATGGDKEEQEQQPVKVVQSKPDDGITPYN

FM2292: V+ ATGGDKEQQQQQQQQQQQQQQQQQQQQQQPVKVVQSQPDDG
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strain, including an additional 6000 bp ORF [95]. As Table 3
illustrates, freshly isolated strains have the longest polyQ region
in the ATI, which makes it difficult to determine a Bwild type^
length of polyQ. It is, for example, possible that the polyQ
repeats in CWPX ATI can be selected against during growth
in tissue culture. In keeping with this, there is no polyQ repeat
in the (extensively passaged [98]) Brighton Red strain, first
isolated in 1937 in England from human lesions. This strain
would be expected to transmit poorly in the wild, thanks to its
V0 phenotype. More recently isolated German strains (1998
and 2002) have shorter polyQ regions than isolates from 1980
or 1990, but it is unknown how often these have been trans-
ferred in cell culture [99].

PolyQ Repeats as a Key to Antiviral Therapy As noted in the
introduction to this article, a primary reason for documenting
the presence of polyQ segments in viruses is the role polyQ
sequences in human proteins have been shown to play in hu-
man neurological syndromes [100–102]. Considering the im-
portance of glutamine metabolism for central nervous system
function, it would be instructive to specifically test the role of
the Q-rich regions on virus latency or replication in neuronal
cells. Glutamine itself is extremely important in brain chemis-
try, and inhibitors similar to this amino acid have antiviral ac-
tivity. A Q analogue, 6-diazo-5-oxo-l-norleucine (DON), can
delay encephalitis caused by alphaviruses, such as Sindbis, by
reducing the amount of glutamate synthesized from glutamine
[103]. Adding polyQ tracts to the antiviral agent zanamivir
greatly enhanced its anti-influenza activity [104].

As Fig. 3 shows, the viral proteins that contain long polyQ
segments are very similar to those implicated in Huntington’s
disease and human ataxias, and may thus be targeted by
protein- [16] or gene-based [15, 101, 105–107] therapies simi-
lar to those now being tested. Going forward, diagnostics
should, as much as possible, distinguish polyQ sequences due
to a latent virus from those indicating a mutation in a human
gene. The flanking regions, which contain proline repeats
(PolyP), may also affect the solubility of the proteins [90]. To
date, there have been few investigations of a direct role for these
polyQ repeats in initiating neural damage. Aiding in establish-
ing a latent infection could, in itself, contribute to
neurovirulence, due to the presence of viral products [108].

Conclusions

PolyQ repeats in viruses could play important roles in control-
ling transcription, latency, transmissibility, and neurovirulence,
whereby the latter three aspects of virus pathogenicity are inde-
pendent of the ability of the virus to grow to high titer in cell
culture. Long polyQ tracts in the protein products of neurotropic
and cancer-related DNA viruses could chronically disturb their
host cells, by mechanisms similar to those identified for

huntingtin and other ataxia-related proteins that contain similar
repeats.

Just as B cells and other somatic cells may change their
genome structure upon differentiation, it is probable that rap-
idly growing viruses (and those adapted to tissue culture) have
different sequences than those in a latent state. Serial cultiva-
tion can favor rapid growth and the loss of pathogenic char-
acteristics, an attenuation process used since the first vaccines
against Yellow Fever [109] and poliovirus [110]. The instabil-
ity of repeated CAG regions that encode polyQ repeat se-
quences might be a mechanism for adapting virus replication
to changes in environmental factors [38]. This means that they
may be selectively excised during generation of subgenomic
RNAs or resumption of active growth after latent periods.
Thus, rational reference sequences of viruses should be based
on those obtained from direct isolates of diseased tissue or
consensus sequences covering many isolates [111–113].

As the Brighton Red example illustrates, historical reference
strains, many of which have been transferred multiple times in
labs across the globe, may have long ago eliminated their unsta-
ble polyQ repeat regions. As more direct sequences from infect-
ed tissues become available, it is possible that polyQ repeats will
be found in many other viral proteins. Several methods have
been validated for identifying such long repeat sequences
[114], which may be difficult to identify with more traditional
methods. For example, sequences up to 20 kb can be generated
from a single read using BPacBio^ or MinIon technology and
related methods. This should allow further determination of the
accurate length of repeat regions, and better characterization of
their importance for neurovirulent virus infections.
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