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Aim: The emergence and evolution of artificial intelligence (Al) has generated increasing interest in machine learning applications for
health care. Specifically, researchers are grasping the potential of machine learning solutions to enhance the quality of care in emer-
gency medicine.

Methods: We undertook a narrative review of published works on machine learning applications in emergency medicine and pro-
vide a synopsis of recent developments.

Results: This review describes fundamental concepts of machine learning and presents clinical applications for triage, risk stratifica-
tion specific to disease, medical imaging, and emergency department operations. Additionally, we consider how machine learning
models could contribute to the improvement of causal inference in medicine, and to conclude, we discuss barriers to safe implemen-

tation of Al.

Conclusion: We intend that this review serves as an introduction to Al and machine learning in emergency medicine.
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INTRODUCTION

N RECENT YEARS, advancements in artificial intelli-

gence (Al) technologies have resulted in the rapid growth
of machine learning (ML) research in medicine.! Specifi-
cally, the development of unprecedented ML applications
has shown great potential to significantly impact the field of
emergency medicine. These applications address prevailing
challenges in the emergency department such as triage and
disposition, early detection of conditions and outcomes,
emergency department operations, and therapeutic interven-
tion. With the increasing availability of clinical data, it is
exceedingly advantageous for emergency medicine clini-
cians to understand computational techniques like ML that
are able to meaningfully process large quantities of complex
data. This review aims to provide a conceptual introduction
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to AI/ML and increase awareness of emerging clinical tools
derived from ML methods. We present examples of ML
models used in clinical research and highlight recent appli-
cations in the field of emergency medicine. Specifically, we
focus not only on predictive studies, which the vast majority
of ML research has targeted until the present, but also on
causal inference studies because the goal of clinical research
is often determining the effects of interventions on clinical
outcomes. To conclude, we discuss challenges to the imple-
mentation of Al and consider reasons why only a few ML
solutions have been applied in actual clinical practice despite
the proliferation of applications in clinical literature. By
examining barriers of clinical adoption, we also intend for
this review to encourage more discussion on how to practi-
cally address these concerns and integrate machine leaning
into routine clinical operations.

Fundamentals of Al, ML, and deep learning

In the 1950s, Stanford Professor John McCarthy coined the
term artificial intelligence as “the science and engineering
of making intelligent machines”. Artificial intelligence
enables machines to imitate human cognitive functions
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such as problem-solving and learning. Machine learning is
a branch of Al focused on leveraging data to develop com-
puter systems that are able to learn and improve from expe-
rience without being explicitly programmed.? Statistical
methods and algorithms are used to recognize patterns and
learn relationships from data in order to build models cap-
able of making predictions or decisions. Machine learning
algorithms fall into three main categories: supervised learn-
ing, unsupervised learning, and reinforcement learning.
Supervised ML is defined by the use of labeled data to
learn a mapping between input variables and an outcome
variable of interest (e.g., positive diagnosis or negative
diagnosis). The process of developing a supervised model
involves three datasets. The algorithm first learns on the
training dataset by adjusting weights to minimize a loss
function that computes the distance between the predicted
outcome and the true outcome for a given data point. After
fitting the model, a validation set is used for optimization
through tuning model parameters. The validation set can
also detect overfitting, which is observed when model per-
formance is significantly better on the training set. Finally,
a test set is used to provide an estimate of how well the
model can generalize to new data.

Conversely, unsupervised learning refers to methods that
use unlabeled data to find naturally occurring groups or clus-
ters. These clusters are analyzed to identify similarities and
differences between data points, and understand the

distribution of data in the feature space. In reinforcement
learning, a computer agent learns to achieve a goal in an
interactive environment by trial and error. Unlike supervised
learning where data labels serve as model feedback, rein-
forcement learning uses rewards or penalties as feedback
based on the actions the agent performs. Over time, the
agent learns action sequences that maximize the reward.

Deep learning is a subfield of ML that has gained mas-
sive popularity in health care the past few years due to its
success on a variety of complex classification tasks.® This
can partly be attributed to increases in computational power
and access to ever-growing amounts of data. Inspired by
the structure and function of neurons in the cerebral cortex,
a neural network is the backbone of deep learning algo-
rithms. A neural network architecture consists of layers of
interconnected nodes that are analogous to neurons
(Fig. 1). In a process called forward propagation, data is
fed into an input layer and flows through the system of hid-
den nodes connected by weights. The input to each node is
a weighted linear combination of node outputs from the
previous layer and a nonlinear transformation is applied to
the node’s output. A loss function evaluates the difference
between the predicted value from the output layer and the
true value. An optimization algorithm called backpropaga-
tion uses the prediction error to iteratively adjust the
weights to learn the structure of the training data, gradually
improving model accuracy.

Classification and Regression Tree
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Fig. 1. Artificial neural network, the basis of deep learning algorithms.
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Factors that distinguish deep learning from
traditional ML

One of the primary ways ML and deep learning techniques
differ is in the learning process. Deep learning algorithms
have the ability to automatically learn feature hierarchies,
whereas traditional ML algorithms require manual feature
extraction and engineering. Second, deep learning often
requires a considerable amount of data to make predictions,
whereas traditional ML methods could reach a level where
model performance no longer scales with the amount of
data. Another major difference between the two techniques
is the execution time. Due to the large number of parameters
to learn, deep learning methods often take significantly
longer to train. Finally, deep learning methods involve a
large number of matrix multiplication operations, which can
result in a heavy dependence on high-end machines.

TYPES OF MACHINE LEARNING ALGORITHMS
IN CLINICAL RESEARCH

NE OF THE most interpretable ML models used in

clinical research is a decision tree. A decision tree is a
supervised learning algorithm structured like a flowchart that
can be used for both classification and regression tasks. The
goal is to develop a model that can be used to predict the tar-
get variable of future instances based on a set of decision
rules. The algorithm recursively partitions the data into sub-
sets (decision nodes) based on the value of the feature that
reduces the impurity of the resulting subsets the most. A
node is considered to be “pure” if all of the data points in
the node are of the same class. When a node contains equal
percentages of each class, impurity is maximized. Figure 2
shows an example of a decision tree to predict medication
dosage. The first split is based on body mass index (BMI),
indicating BMI is the best predictor for dosage level. Each
of the final subsets (leaf nodes) is assigned class member-
ship probabilities for each data point in the node.

Ensemble learning is a ML method that aims to increase
accuracy and reduce variance by combining multiple algo-
rithms. A random forest is a commonly used ensemble
model that aggregates the outputs of several decision trees to
make a single prediction. In general, ensembles have higher
predictive power than their constituents do individually.
Other widely used algorithms include linear regression,
naive Bayes, support vector machine (SVM), k-nearest
neighbors, and various ensemble methods such as gradient
and adaptive boosting.

Among breakthroughs in deep learning, the convolutional
neural network (CNN) has gained significant attention from
researchers because of its high performance in computer
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Fig. 2. Classification and regression tree to predict medication
dosage. BMI, body mass index; PMH, previous medical history.

vision tasks. A CNN is a specialized type of deep neural net-
work that adaptively learns features through backpropaga-
tion, eliminating the need for manual feature extraction.
Several studies in recent years have illustrated the potential
of deep learning for medical imaging tasks.*® Mzoughi
et al., Khan et al., and Qummar et al., have reported applica-
tions of a CNN for brain tumor classification, COVID diag-
nosis from chest X-ray images, and diabetic retinopathy
detection, respectively.*® With the emergence of high per-
forming deep learning models, neural networks have
become an attractive tool for radiologists due to their ability
to automatically learn feature hierarchies. For some classifi-
cation tasks, CNNs have shown success in overcoming the
limitations of traditional ML models.

In addition to computer vision, deep learning has made
large contributions to the field of natural language process-
ing (NLP), which is concerned with the development of
machines to analyze and derive meaning from human lan-
guage.” Natural language processing has become a part of
the clinical flow in emergency medicine as a way to harness
the vast amounts of textual data in electronic health records.
Certain neural network architectures are designed to effec-
tively extract valuable information from unstructured text
data in electronic health records such as clinical reports and
health-care provider notes.® Natural language processing
methods have shown potential in leveraging medical records
for various clinical tasks such as identifying sepsis, appen-
dicitis, and influenza.'®"'® Examples of deep learning meth-
ods that have garnered interest for NLP tasks include
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recurrent neural networks, CNNs, and deep generative mod-
els. Unsupervised learning and reinforcement learning meth-
ods have also been applied for NLP.

Supervised ML algorithms have rapidly replaced tradi-
tional methods in predictive studies aiming to forecast the
occurrence of outcomes using patient characteristics that are
measured prior to the outcomes. As these models allow us to
capture relationships between features (predictors) and out-
comes flexibly, the prediction performance is expected to
outweigh simple scoring systems. In addition to predictive
studies, supervised ML algorithms have come into use in
causal inference studies targeting the investigation of the
effects of interventions on outcomes of interest. As causal
inference in observational studies generally needs models to
estimate treatment effects, we can expect to reduce bias
using sophisticated ML models.

CURRENT RESEARCH USING Al IN
EMERGENCY MEDICINE

Triage and disposition

RIAGE REFERS TO the process by which patients are

assessed upon arrival to the emergency department (ED)
and prioritized based on the severity and urgency of their
medical condition. Traditionally, a triage nurse will carry out
the evaluation using vital signs, demographics, and ordered
tests. Proficiency in triage takes time and experience. When
immediate life-threatening conditions are not identified, emer-
gency severity index level 3 is a default choice, which could
leave a large number of patients waiting long hours for a pro-
vider and evaluation.'* The use of ML models in the ED can
facilitate triage with more accuracy and efficiency, requiring
only information routinely collected by the triage staff. In
addition to predicting the urgency of medical conditions, ML
techniques can be applied to develop screening tools for dis-
ease specific risk prediction.

Medical imaging

The ED provider does not always have timely access to radi-
ology interpretation. An accurate identification of a fracture
in X-ray images or a stroke in magnetic resonance imaging
scans conventionally requires timely access to avoid misdi-
agnosis and a delay in treatment. This is especially critical
when working in a smaller ED with limited access to spe-
cialists. Deep learning models for medical imaging with
high sensitivities could help clinicians quickly identify life-
threatening pathologies. Recent reports suggest that the
quality of Al interpretation is not inferior to an expert radiol-
ogist.!> 18

Emergency department operations and
management

Stochasticity in ED operations, such as patient arrivals, types
of medical treatments and diagnostic tests required, and the
duration of treatments and tests imposes unique challenges
to predict future service demands. Artificial intelligence has
the potential to transform ED operations and hospital leader-
ship at multiple steps in the patient care process from arrival
to discharge. The integration of ML could improve ED oper-
ations by better matching resources to patient needs, ulti-
mately reducing costs and improving patient outcomes.'®
Emergency department overcrowding is an increasing issue
in health care that can have negative implications for the
quality of patient care.’® Predictive models for ED volume
could help plan staffing models and prepare for surge and
disaster situations. Second, many complicating factors make
it difficult to estimate ED wait times. Machine learning algo-
rithms with the ability to identify patterns in complex feature
sets have the potential to produce more accurate ED wait
times. On a larger scale, if multiple nearby hospitals report
accurate wait times, low acuity patients could have a choice
for ED service based on wait time and travel distance.

Not all ATl applications will survive and win trust from
clinicians and patients. It seems that triage and radiology
models are likely to be adopted faster than other applications
in ED operations.'? Table 1 outlines the selected works cov-
ered in this narrative to provide an overview of the most
recent ML techniques in emergency medicine that have
shown promise to improve patient outcomes.

CAUSAL INFERENCE, RISK, PREDICTION, AND
METRICS

ERN an et al. has categorized medical and epidemio-
logical research data science approaches in three ways:
description, prediction, and causal inference (counterfactual
prediction).>* Although descriptive and predictive studies
are essential to understanding the frequency, determinants,
and prognosis of diseases or conditions, clinicians usually
cannot achieve the ultimate goal by solely using these types
of research methods when we aim to improve patient out-
comes through interventions. Thus, causal inference, a type
of study that compares hypothetical potential outcomes
using two or more different treatments in a targeted popula-
tion, attracts great interest in medical research. For example,
we aspire to know whether resuscitative endovascular bal-
loon occlusion of the aorta (REBOA) improves mortality in
patients with life-threatening trauma.
Machine learning models can contribute to the improve-
ment of causal inference in several ways.
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Table 1. Machine learning models reported in emergency medicine publications

Study Year Outcome Methods
Triage
Raita et al.%' 2019 Develop machine learning models to predict critical Lasso regression, random forest,
care and hospitalization outcomes; compare gradient boosting machine, and a
model performance with the ESI deep neural network
Ivanov et al.?? 2021 Use variables collected at triage and free text from Gradient boosting model
patient records to produce predictive models for
acuity; compare model performance with clinical
gestalt
Chen et al.? 2020 Employ deep learning methods to predict disposition ~ Deep neural network

Disease-specific risk prediction

Obeid et al.** 2019
Patel et al > 2018
Klang et al. > 2021
Kim et al.?” 2020
Taylor et al.%® 2018
Imaging
Lindsey et al.° 2018
Feng et al.*° 2018
Chilamkurthy et al.’”®> 2018
Ginat et al.'® 2019
Rao et al."” 2021
ED operations
Jilani et al.?° 2019

using variables collected at triage and clinical
notes; compare model performance to rapid
emergency medicine score (REMS)

Identify altered mental status during the assessment
of patients by applying natural language
processing techniques to ED provider notes

Detect pediatric asthma during triage using clinical
data combined with information about weather,
neighborhood characteristics, community viral
load, and socioeconomic status

Predict admission to the neurosciences intensive
care unit within 30 min of ED arrival using clinical,
demographic, and unstructured text data from
nurse and physician notes

Explore the use of a machine learning model as a
triage screening tool for septic shock; compare
model performance to quick sepsis-related organ
failure assessment (QSOFA) and modified early
warning score (MEWS)

Address the high diagnostic error rates for UTI in the
emergency department with machine learning
predictive models

Develop deep learning models to predict fractures in
wrist radiographs and compare model
performance to clinicians’ ability to detect
fractures

Echocardiogram and predicting mortality

Critical head CT finding

Identification of intracranial hemorrhage

Al to serve as a peer review tool to reduce the false-
negative rate of radiologists for intracranial
hemorrhage detection

Address overcrowding by developing a heuristic-
based time series model to obtain a prediction for
ED attendance

Naive Bayes, lasso regression, decision
tree, random forest, SVM, and
convolutional neural networks

Gradient boosting machine, decision
tree, random forest, and lasso
regression

Gradient boosting machine

SVM, gradient boosting machine,
random forest, ridge regression,
lasso regression, multivariate
adaptive regression splines,
ensembles

Random forest, SVM, gradient boosting
machine, adaptive boosting, elastic
net, neural network, and logistic
regression

Convolutional neural networks

Multivariate regression and gradient
boosted model to draw causal
inference

Deep learning

Deep learning

Convolutional neural network

Time series forecasting and neural
networks
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Table 1. (Continued)

Study Year Outcome Methods

Pak et al > 2021 Use queuing and service flow variables to build Lasso regression, ridge regression,
models to predict wait time for low acuity patients random forest
assigned to the waiting room after triage

Lee et al 2 2020 Develop an optimal scheduling policy to minimize Reinforcement learning
patient wait times where the wait time value
differs between high and low acuity patients

Xu et al. 33 2014  Group ED patients with common features to improve  Unsupervised learning

resource management

Abbreviations: Al, artificial intelligence; CT, computed tomography; ED, emergency department; ESI, emergency severity index; SVM, sup-

port vector machine; UTI, urinary tract infection.

First, unsupervised learning models can identify groups
of patients that share specific characteristics. A recent article
identified four clinically meaningful phenotypes of sepsis
using data from several observational studies and random-
ized control trials.>® In this study, k-means-based consensus
clustering was used for the grouping. Although this study
did not explicitly conduct causal inference, the authors sug-
gested that the effects of early goal-directed therapy differed
across these identified phenotypes.

Second, predictions from supervised learning models can
find high-risk patients more accurately than the previous
approaches. As an example, a study referenced earlier
(Table 1) predicted critical care (intensive care unit admission
or in-hospital death) and hospitalization of patients presented
to the ED using baseline demographics, vital signs, chief com-
plaints, and patient comorbidities.”' The authors found that the
discrimination accuracies of the four ML models (lasso regres-
sion, random forest, gradient boosting, and deep neural net-
work) were higher than that of the prediction model using
logistic regression. Even though the purpose of this study was
not causal inference, earlier detection of high-risk patients
might lead to the identification of a subgroup that benefits
from immediate aggressive interventions.

Finally, ML models can be directly used in causal infer-
ence to improve the model fit of either a treatment model to
construct a propensity score or an outcome model or both.
Although logistic regression is almost always used for
propensity score estimation, it is plausible to use more
sophisticated methods for this purpose. A representative
example was a study that evaluated the effect of transtho-
racic echocardiography on 28-day mortality in intensive care
unit patients with sepsis.>* The authors used gradient boost-
ing, rather than logistic regression, for the treatment model
to estimate propensity scores to receive transthoracic
echocardiography. Similarly, we can also use ML models for

the outcome model to estimate treatment effect to draw cau-
sal inference.

A challenge in using ML models for causal inference is
that there are not enough reliable ways to verify that these
methods are better than the traditional parametric models
using linear or logistic regression. In the predictive studies,
we can compare the performance of ML models with that of
parametric models in preserved test datasets by some met-
rics, including the area under the receiver operating curve
(AUROC) and the area under the precision-recall curve
(AUPRC). Additionally, there is no guarantee that ML algo-
rithms better eliminate confounding, even though the predic-
tion accuracy for the treatment model and outcome model is
improved. As scientists do not know the ground truth of the
causal effect, there is always a risk of overfitting when we
use complicated models. Hernan et al. advocated for using a
sophisticated epidemiological method named doubly robust
estimators, which combines a model to predict the outcome
using multiple covariates with a model for the exposure (i.e.,
the propensity score model), to estimate the causal effect of
an exposure on an outcome. They also suggest that sample
splitting with cross-fitting could overcome the risk of over-
fitting of ML models. Machine learning models are not
“magic wands” that automatically answer causal questions.
However, it can help researchers estimate the effects of inter-
ventions accurately.

BARRIERS TO SAFE IMPLEMENTATION OF Al

RTI ficial intelligence is not a panacea for diagnostic
and therapeutic dilemmas. Many prediction models
using Al are presented in academic articles. However, the
number of algorithms that have been used for the improve-
ment of patient care is still limited. Yin et al.>® found that
only 51 relevant studies reported implementing and
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evaluating Al applications in clinical practice. One explana-
tion for why numerous studies are not translated into real
practice is that many researchers design ML applications
without the goal of implementation in mind. That is, some
work is “research for research’s sake”. Beyond this reason-
ing, there are also unique ethical and practical considerations
for the actual implementation of Al technologies in health
care.

Garbage in, garbage out

One of the greatest barriers to the safe implementation of
Al is the accuracy of input. Datasets used for ML training
will be chosen and scored by “expert” clinicians. These
datasets could contain cases that are incorrectly diagnosed,
leading to fundamental flaws in decision making. Addition-
ally, the composition of these datasets might be subject to
bias. Cases that stand out in the programmer/clinician’s
mind may be over-represented (e.g., “availability bias”).
There can also be “spectrum bias” in ML. For example, a
computed tomography (CT) dataset of biopsy-proven lung
cancer could be visually different than that diagnosed inci-
dentally in the ED, leading to degraded AI performance.
Additionally, there may be “base rate neglect”. A weighting
of “cancer” versus “not-cancer” should be based not only
on lesion characteristics but on the pretest probability in
the population to which the Al is being applied. This pret-
est probability will differ when, for example, Al is applied
to patients in an academic referral center where a cancer

CT ML/AI dataset is developed than it will in a commu-
nity ED.

Errors can be amplified in ML iterations (Table 2). While
the inclusion of a misdiagnosis in the first dataset can lead to
less-than-ideal diagnostic accuracy, further ML based on this
initial dataset can reinforce this bias. One can think of it as a
form of “confirmation bias”; the Al is looking for patterns it
already knows even if they are erroneous. For example, sev-
eral mislabeled echocardiograms or radiographs could lead
to the incorporation of similar, erroneously interpreted stud-
ies into the ML process. This is not just theoretical; several
algorithms have become “self-fulfilling prophecies”. In one
case, questionable race-based adjustments for glomerular fil-
tration rate biased the process of referral for kidney trans-
plants against Black patients.>” There are cautionary tales of
algorithms used to identify “drug seekers” that include spuri-
ous information.>® Concern has also been raised about the
accuracy of Al in those with a disability.>’

The accuracy of Al can also be hampered at the bedside
based on the subjective nature of required data. Even with
something so fundamental to the diagnostic process as
patient history, there is often a lack of interobserver agree-
ment. This can lead to variable scoring of predictive models.
For example, interobserver agreement of the patient history
is poor even with something as straightforward as the
HEART score, designed to predict the 6-week risk of major
cardiac events.*® As history will necessarily make up part of
a predictive model, the prediction for any individual patient
will be dependent on the accuracy of this data.

Table 2. Errors related to artificial intelligence and human heuristic equivalent

Human heuristic Error
equivalent

Source of error

Inclusion of notable
cases in ML
database

Application of ML to a
population in which
it was not derived

ML will reinforce what
it is taught over
multiple iterations
and not recognize
patterns it is not
taught

Types of information in
the ML dataset are
limited

Availability bias

Base rate neglect

Confirmation bias

Unpacking
principle/bias

Cases that are exceptional “come to mind” and may be over-represented
in the ML database leading to missing “usual” cases

Baseline rate of disease will differ in community settings versus academic
settings in which ML datasets are derived. Not taking this into account
can lead to diagnostic errors

Turning a “blind eye” to information that is not consistent with what one
believes or is taught

The more specific the information we have, the higher we judge the
likelihood of an event. Lack of information could hinder our diagnostic
accuracy (e.g., the lack of specific aspects of a history)

Abbreviation: ML, machine learning.
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Most Al is proprietary

Another barrier to the safe implementation of Al is the pro-
prietary nature of most systems. External validation must be
assured as part of the quality control process. For example,
the sepsis decision support tool in the EPIC electronic medi-
cal record was found to be neither sensitive nor specific
when applied to an external validation set.*' Data sharing is
another issue when we undertake ongoing training, valida-
tion, and improvement of Al algorithms. The model can be
quickly outdated due to dynamically evolving clinical prac-
tices. Thus, users need to continuously provide data to fine-
tune the model to fit the current situation. Massive efforts
should also be made for anonymization and de-identification
of the data to protect patients’ privacy.

Probabilities

We cannot expect diagnostic perfection; whether made by
an Al or human, diagnosis and treatment decisions are prob-
abilistic. Errors will be made. Ideally, we would accept the
same rate of “misses” by an Al as by a human provider. This
remains a fertile area for research.

Regulation

Some regulation is already in place. The European Union
ranks medical Al applications as “high risk,” making them
subject to stricter oversight than, for example, the Al that
fills out your music playlist or recommends your next binge-
watch. Artificial intelligence/ML is also subject to regulation
by the Food and Drug Administration as a “medical device”
in the United States. We have argued in a prior paper that,
given the role of AI/ML in patient care, programmers/de-
signers of diagnostic software should be considered medical
providers and should be subject to traditional principles
medical ethics such as beneficence and nonmaleficence.*?

LIMITATIONS

ANY RESEARCH STUDIES at the forefront of

innovation could be found in articles published in
nonmedical journals or preprints that have yet to be peer-
reviewed. Therefore, we are not able to capture all state-of-
the-art ML technologies in emergency medicine.

CONCLUSION

HIS REVIEW SUMMARIZED the current status of
ML research in emergency medicine. Although many
applications have demonstrated efficacy in academic

literature, few have been implemented in practice due to bar-
riers such as potential bias in datasets, the proprietorship of
systems, and regulation. Quality measures and ethical con-
trols need to be developed, including appropriate external
oversight. Although this might make AI development more
cumbersome, ensuring accuracy when potentially life-
changing decisions are being made is critical. Future
research should work towards overcoming these challenges
to bridge the gap between academic research and clinical
integration.
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