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Abstract

Algorithms for comparing protein structure are frequently used for function annotation. By searching for subtle similarities
among very different proteins, these algorithms can identify remote homologs with similar biological functions. In contrast,
few comparison algorithms focus on specificity annotation, where the identification of subtle differences among very similar
proteins can assist in finding small structural variations that create differences in binding specificity. Few specificity
annotation methods consider electrostatic fields, which play a critical role in molecular recognition. To fill this gap, this
paper describes VASP-E (Volumetric Analysis of Surface Properties with Electrostatics), a novel volumetric comparison tool
based on the electrostatic comparison of protein-ligand and protein-protein binding sites. VASP-E exploits the central
observation that three dimensional solids can be used to fully represent and compare both electrostatic isopotentials and
molecular surfaces. With this integrated representation, VASP-E is able to dissect the electrostatic environments of protein-
ligand and protein-protein binding interfaces, identifying individual amino acids that have an electrostatic influence on
binding specificity. VASP-E was used to examine a nonredundant subset of the serine and cysteine proteases as well as the
barnase-barstar and Rap1a-raf complexes. Based on amino acids established by various experimental studies to have an
electrostatic influence on binding specificity, VASP-E identified electrostatically influential amino acids with 100% precision
and 83.3% recall. We also show that VASP-E can accurately classify closely related ligand binding cavities into groups with
different binding preferences. These results suggest that VASP-E should prove a useful tool for the characterization of
specific binding and the engineering of binding preferences in proteins.
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Introduction

Software for comparing protein structures is widely used to

make inferences about protein function. These methods assist in

function annotation by revealing proteins that perform similar

biological functions despite vast evolutionary differences. Many

methods focus on the discovery of subtle structural similarities

among very different molecules [1,2] using the superposition of

catalytic residues [3–5] or the comparison of binding cavities [6–

9]. By aligning polypeptide backbones [10–14], distance matrices

[15] or geometric graphs [16–18], related methods can reveal

similarities in tertiary structure that are not evident from sequences

alone. Most approaches use atom coordinates or molecular

surfaces [19–22] as digital representations of protein geometry.

Other characteristics, such as evolutionary significance [23–25],

hydrophobicity [26] and electrostatic potential [5,23,27] are

attached to this geometric representation as labels. Comparisons

of these data often generate a score, such as the root mean squared

distance (RMSD), that summarizes structural, biological, and

chemical similarities among two or more structures. Proteins with

very different sequences sometimes exhibit unusually similar

RMSDs, revealing shared origins in antiquity [28–30].

An emerging second type of comparison algorithm is designed

to find subtle differences among very similar proteins. These

methods seek to annotate protein specificity by proposing

structural causes for different binding preferences among proteins

that perform the same function [31–36]. For example, specificity

annotation software might identify a cleft inside the ligand binding

cavity of one protein that does not exist in a close homolog. That

cleft might accommodate substrates that the homolog cannot bind.

To find structural features like these, RMSD, and other scores for

function annotation, are inappropriate because they obscure

meaningful individual variations, like the cleft, behind summary

scores. Instead, volumetric representations [37], which describe

protein structure based on spatial regions occupied by the atoms of

a protein, can be used to identify individual structural differences

that may alter the binding preferences of ligand binding cavities

[31–34]. To date, few comparisons focused on finding subtle

electrostatic differences among closely related proteins have been

reported, even though electrostatic fields are widely used to infer

protein function [38–47] and specificity [48–53]. To fill this gap,

this paper proposes a novel volumetric representation and

comparison algorithm for finding electrostatic influences on

binding specificity.

The problem we are specifically addressing is the case where

several closely related proteins have already been structurally
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aligned and we seek to identify spatially conserved and varying

regions in their potential fields that might cause differences in

binding specificity. Conserved regions, where the fields have

similar potentials, might stabilize a molecular fragment attracted

by all proteins (Fig. 1g), while differences in specificity could arise

from regions where the fields vary (Fig. 1h,i). Software for

identifying conservation and variation in charged regions can

thus suggest how such regions may play a role in molecular

recognition, and how they might be changed to achieve different

binding preferences. Our approach identifies regions like these by

representing electrostatic isopotentials with volumetric solids

generated by the new program VASP-E (Volumetric Analysis of

Surface Properties with Electrostatics). VASP-E computes con-

served and varying regions using techniques from Constructive

Solid Geometry (CSG) (Fig. 1). Developed originally for computer

aided design [54] and computer graphics [55], CSG enables

unions, intersections, and differences of volumetric representations

to be calculated as if they are three dimensional solids. When used

to analyze fields, CSG intersections can approximate regions that

are common to isopotentials from several aligned proteins, thereby

identifying regions with conserved potentials. CSG differences

identify regions inside the isopotential of one protein but not inside

that of another, isolating a region where potentials vary. Together,

CSG operations provide a novel mechanistic approach to the

analysis of electrostatic fields because the approximation of

conserved and varying fields is not possible with existing structure

comparison methods.

The solid representations employed by VASP-E differ in kind

from existing electrostatic analyses. While VASP-E deconstructs

the electrostatic field to identify conserved and varying electro-

static phenomena, existing methods summarize and quantify the

field with comparison scores [56,57] and biophysical energies [58–

61]. These numerical values cannot point to specific regions in the

field with electrostatic similarities or differences, and so they

cannot suggest how a protein might be altered to engineer

different binding preferences. A second fundamental difference is

that solid representations have the additional capability to

represent the region inside molecular surfaces. Using CSG, we

can therefore integrate both types of data to focus on electrostatic

fields within binding sites. For example, the CSG difference of an

isopotential minus the molecular surface at a binding site

represents a three dimensional charged region in the solvent that

can be occupied by potential binding partners (e.g. Fig. 1c,d). In

contrast, representations used in function annotation methods

generally represent electrostatic fields at or near the molecular

surface only. Sampling a three dimensional field along this curving

two dimensional surface cannot describe the electrostatic field as it

extends outwards from the protein and influences other molecules.

Third, while existing methods characterize fields at all potentials,

solid representations describe fields at selected isopotential

thresholds only. This feature enables comparisons to focus on

ranges of potential that are especially relevant to binding. It can

also be used to measure electrostatic complementarity between

binding partners, as we will demonstrate later, by identifying

interface regions where oppositely charged isopotentials overlap.

To our knowledge, VASP-E is the first application of CSG to the

volumetric comparison of electrostatic isopotentials, although tree-

based methods that summarize topological differences in electro-

static isopotentials [57] have also been developed.

This paper explores two applications of VASP-E as it might be

applied in support of research in structural biology. One objective

in many investigations is to discover electrostatic influences on

protein-ligand or protein-protein binding specificity. Given the

long range nature of electrostatic interactions, many amino acids

could potentially be influential, and it could be impractical to

create all possible mutants and determine their binding prefer-

ences. Here, a first application of VASP-E is to suggest amino

acids that create differences between the electrostatic fields of two

ligand binding cavities or to suggest amino acids that enhance or

diminish electrostatic complementarity between two interacting

proteins. Because amino acids are suggested in tandem with a

hypothetical electrostatic influence on binding, VASP-E provides

reasons to produce and test certain mutants first, where no reason

might have existed before. The second application of VASP-E

examined in this paper is the classification of protein-ligand

binding cavities based on their electrostatic fields. This application

can support efforts to discover patterns of electrostatic similarities

or differences among related binding sites. In studies seeking to

identify a possible ligand, electrostatic classification can reveal

similarities to other proteins that may have known binding

partners. Together, these applications of VASP-E represent two of

many capabilities that become possible by combining CSG and

volumetric representations of electrostatic isopotentials. We

validate these capabilities in the results section against established

experimental observations.

Methods

2.0.1 Method summary
The underlying observation exploited by VASP-E is that

geometric comparisons of electrostatic potential fields can focus

on biologically relevant regions and specific potential ranges by

using CSG. Constraining the comparison of potential fields in this

manner ensures that comparisons reflect aspects of electrostatic

fields that influence binding, rather than spurious variations that

occur by random chance or outside of binding sites. To achieve

this kind of focus, comparisons always begin with a multiple

structure alignment of whole proteins [10–18,62], where ligand

binding cavities or protein-protein interfaces are defined on each

structure using cavity detection algorithms [63–67] or manual

design.

Structures aligned in this manner are then used to generate solid

representations of electrostatic isopotentials and protein structure.

To represent electrostatic isopotentials, we first solve the potential

Author Summary

Proteins, the ubiquitous worker molecules of the cell, are a
diverse class of molecules that perform very specific tasks.
Understanding how proteins achieve specificity is a critical
step towards understanding biological systems and a key
prerequisite for rationally engineering new proteins. To
examine electrostatic influences on specificity in proteins,
this paper presents VASP-E, a software tool that generates
solid representations of the electrostatic potential fields
that surround proteins. VASP-E compares solids with
constructive solid geometry, a class of techniques devel-
oped first for modeling complex machine parts. We
observed that solid representations could quantify the
degree of charge complementarity in protein-protein
interactions and identify key residues that strengthen or
weaken them. VASP-E correctly identified amino acids with
established experimental influences on protein-protein
binding specificity. We also observed that solid represen-
tations of electrostatic fields could identify electrostatic
conservations and variations that relate to similarities and
differences in binding specificity between proteins and
small molecules.
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field of a given structure using DelPhi [68]. Using the field,

isopotential surfaces are approximated using Marching Cubes

[69], an algorithm first applied to visualize electrostatic isopoten-

tials in GRASP [70]. This method is paraphrased below. Solids

representing molecular surfaces are generated using the Trollbase

library [12], which implements the classical rolling-probe method

[71].

The resulting solids, regardless of their origin, are basic inputs

for CSG operations, which we described earlier [37]. Below, we

use the symbols \, | and { to denote intersection, union, and

difference operations, which are the basic CSG operations used in

this work. VASP-E uses CSG to integrate solid representations of

electrostatic isopotentials and molecular surfaces to create solid

representations of the electrostatic field within ligand binding

cavities (cavity fields) and protein-protein interfaces (interface
fields). These procedures are detailed below.

Cavity fields and interface fields are the constrained represen-

tations used by VASP-E to focus the comparison of electrostatic

fields on biologically significant regions. To quantify similarities,

we compute the CSG intersection of two regions and then

evaluate the volume of the resulting intersection region. To

quantify differences, we measure the volume of the CSG

difference. Large volumes of intersection imply similar fields

while large differences are characteristic of fields that vary. To

estimate the volume v(X ) of any region X , including outputs

from CSG operations, we use the Surveyor’s Formula [72], which

we described earlier [37].

Further CSG operations permit deconstructive comparisons of

cavity and interface fields that identify similarities in some regions

and differences in other regions within the fields they describe.

While many applications this kind are possible with VASP-E, we

describe two below: First, we can use VASP-E to trace differences

in electrostatic fields to individual amino acids that contribute to

these differences, thereby predicting residues that influence

binding specificity. Second, we can integrate multiple electrostatic

similarity measurements between a family of cavity fields to reveal

patterns of ligand binding specificity.

2.1 Solid representations of electrostatic isopotentials
with marching cubes

As input, marching cubes begins with a molecular structure from

the Protein Data Bank (PDB) [73], its electrostatic potential field E,

a desired isopotential threshold k, and the user’s choice of

representing the region with potential greater than or less than k.

The overall procedure (Fig. 2) approximates the solid region on one

side of the isopotential at k, which we refer to as a solid isopotential
(Fig. 2a). In this work, when generating electrostatic isopotentials at

k kT/e, we always represent the region with potential greater than k
when k is positive, and the region with potential less than k, when k
is negative. Regions on the other sides of these potentials are infinite

in volume, and thus their comparison is not well defined. Below, we

use a negative value for k and represent the region on the lower-

potential side of k, as an example.

First, we protonate the PDB structure using the reduce
component of MolProbity [74]. The resulting structure is passed

to DelPhi [68], which computes numerical solutions to the

nonlinear Poisson-Boltzmann equation, yielding an approximation

of E at every point within a bounding box surrounding the

protein. Using E, Marching Cubes outputs a polyhedral approx-

imation of the isopotential surface at k kT/e, which we interpret as

the exterior boundary of a three dimensional solid.

Marching Cubes begins by establishing a regular lattice of cubes

around the protein, whose borders fall within the bounding box

(Fig. 2b). The lattice as a whole can be interpreted as a collection

of lattice points at the corners of each cube, lattice edges connecting

adjacent corners, lattice faces between cubes, or as simply a

collection of lattice cubes. The resolution of the lattice, defined by

the length of a lattice edge, is specified by the user and can be

changed to accommodate structures of different sizes in system

memory.

Figure 1. CSG analysis of electrostatic isopotentials in ligand binding cavities. a) A demonstration of CSG operations, illustrating the
borders of input (dotted) and output (solid) regions in grey (grey everywhere). b,c) Shapes representing the regions occupied by protein X (yellow)
and Y (green), their molecular surfaces (thin black lines), and their electrostatic potential fields (red and blue gradients). Regions with increasingly
negative potential are shown in darker red, and regions with increasingly positive potential are shown in darker blue. An isopotential selected by a
user is shown with a heavy black line. d,e) The CSG differences x and y between the region within the user-selected isopotential and the molecular
surface of X and Y is shown in yellow and green. These volumes represent solvent accessible cavity regions with electrostatic potential at least as
negative as that selected by the user. The external boundary of the ligand binding cavities of X and Y is shown with a dotted line. f,g) x and y are
shown in yellow and green, with a black boundary. The ligand binding cavities they occupy are shown with a dotted boundary. h) The CSG
intersection (red) of x and y (black outlines), when X and Y are aligned, represents a solvent accessible cavity region where electrostatic potential in
both proteins is at least as negative as that selected by the user. i,j) The CSG differences of x - y (yellow) and y - x (green), indicating regions of
electrostatic potential in the ligand binding cavity of one protein and not the other.
doi:10.1371/journal.pcbi.1003792.g001
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Once the lattice is initialized, we evaluate the potential UE(r) of

the field E at every lattice point r. If UE(r)ƒk, we mark r as being

inside the isopotential. Otherwise, we mark r as being outside
(Fig. 2c). The evaluation of UE(r) is made possible using the

Trollbase library [12], which evaluates the field to determine the

potential at r.

Next, we select every lattice edge that connects an inside lattice

point to one outside. Since isopotentials are topologically closed

surfaces, the selected edge must intersect the desired isopotential

(Fig. 2d). On each selected edge, we estimate the intersection point
p between the segment and the isopotential using linear

interpolation between the electrostatic potentials at the endpoints

(Fig. 2e).

Finally, we consider every lattice cube joined to at least one

lattice edge with an intersection point. On the cube, the

intersection points collectively approximate the places where the

isopotential passes through the cube. In two dimensions, this can

be drawn as a shape passing through a square (Fig. 2f1), and

approximated with a line through the cube. In three dimensions,

when the isopotential passes through the cube, it’s boundary is a

surface that intersects the segments at the intersection points

calculated earlier. This surface can be approximated inside each

cube with triangles connecting triplets of intersection points. We

use a lookup table to specify each triangle layout based on the

28~256 possible combinations of selected edges in a cube

(Fig. 2f2). Assembling the triangles into a single surface

generates the exterior boundary of the solid isopotential

(Fig. 2g,h).

2.2 Generating and comparing cavity fields
A cavity field is a solid representation of the region inside a

ligand binding cavity that is also inside a solid isopotential. To

generate a cavity field, we require the solid isopotential and a solid

representation of the ligand binding cavity (Fig. 3a,b). We

generate the solid isopotential using the method above and

represent the ligand binding cavity using VASP and a volumetric

approach based on SCREEN [65], described earlier [37].

Computing a CSG intersection of these two regions generates

the cavity field (Fig. 3c,d).

We compare cavity fields to detect local electrostatic differences

that might affect specificity. Our approach follows the assumption

that the user has selected solid isopotentials at a threshold that is

relevant for ligand binding. For example, if a negative potential is

influential for the selection of positively charged substrates,

comparing regions of negative potential in several cavities could

reveal electrostatic causes for different binding preferences. We

discuss the selection of these potentials in Supplemental Text S1.

Our comparison begins by structurally aligning two proteins, A
and B, and generating their cavities, AP and BP. Because AP and

BP are regions that are outside the molecular surface, we say that

they are solvent accessible regions. Using AP and BP, we generate

their cavity fields, AC and BC at the same side of the electrostatic

potential k. Next, we generate the intersection I~AP\BP. I is

the region that is solvent accessible in both cavities (Fig. 3e). By

comparing electrostatic fields inside I , we are guaranteed that our

comparison is not influenced by steric differences. For this reason,

we next compute the intersection IA~I\AC and IB~I\BC

(Fig. 3f,g). IA and IB are regions within the solid isopotentials of

AC and BC that are solvent accessible in both cavities.

Computing IA and IB permits several useful comparisons. First,

the intersection IA\IB (Fig. 3h), is solvent accessible in both

cavities and also inside both solid isopotentials. This region of

structural and electrostatic similarity might stabilize molecular

fragments that are common to substrates of both proteins. Second,

the difference regions DA B~IA{IB and DB A~IB{IA (Fig. 3i,j)

Figure 2. Generating a solid representation of an electrostatic isopotential using marching cubes. a) The input electrostatic field,
illustrated as a gradient of red (negative potential) and blue (positive potential) regions. The solid region to be approximated is within the heavy
black line. b) Axis aligned cubic lattice surrounding solid isopotential (black grid). c) Lattice points (circles) evaluated as being inside (red) or outside
(green) the isopotential. d) Selected edges, found between interior and exterior lattice points (short black lines), intersect the electrostatic
isopotential (grey curved line). e) Intersection points along each selected edge (small white circles). f1) A two dimensional illustration of the solid
isopotential passing through a lattice square (red, left), with interior lattice points shown with red circles, and exterior lattice points shown with green
circles. An approximation of the solid isopotential using a straight line is shown on the right. f2) A three dimensional illustration of the surface of a
solid isopotential (red gradient, left) inside a lattice cube. Lattice points inside the solid isopotential are shown as red circles, lattice points outside are
shown in green. An approximation of the solid isopotential triangles connecting intersection points (white circles) is shown on the right. g) Together,
the triangles in all cubes (black lines) form the boundary surface approximating the solid isopotential (h).
doi:10.1371/journal.pcbi.1003792.g002
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are solvent accessible in both cavities but different in electrostatic

character, because they lie inside the solid isopotential of one

cavity and not the other. Molecular fragments in this region may

thus be accommodated by one protein and electrostatically

destabilized in the other.

We quantify differences by measuring the volume of DA B and

DB A. If v(DA B) and v(DB A) are small, we say that the cavity fields

are similar. If one or both volumes are large, we say that AC and

BC are electrostatically dissimilar, and that DA B (or DB A) is

evidence supporting the hypothesis that AC could attract or

stabilize a ligand that BC cannot. This computation enables a

systematic categorization of all electrostatic differences in the

binding cavities of A and B.

2.3 Generating and comparing interface fields
An interface field is a solid representation of a region of

electrostatic complementarity between two proteins A and B, in

complex. Given a potential threshold k, we define a region of

electrostatic complementarity to be the spatial region where the field

of A, independent of B, has potential greater than k, and the field

of B, independent of A, has potential less than {k. We refer to

this region as an interface field. To generate an interface field, we

require three inputs: A solid representation of the interface region,

an electrostatically significant isopotential of A alone at k kT/e

(Ak), and an electrostatically significant isopotential of B alone at

{k kT/e (B{k). Because we use interface fields to analyze the

specificity of interacting proteins, and because VASP-E is not

designed to determine how two proteins interact, unbound

structures are not used for the generation of interface fields.

To generate the interface region, we first identify amino acids at

the interface (Fig. 4a). These are the amino acids of A that have an

atom within 5 Å of B, and the amino acids of B that have an atom

within the same distance of A. Next, we generate spheres with

radius 5 Å, centered at every atom of these amino acids (Fig. 4b).

Finally, we compute the interface region I with the CSG union of

these spheres (Fig. 4c). In identifying amino acids that are part of

the interface region, we do not include or exclude amino acids

based the fraction of their surface exposed to the solvent, because

some influential ‘‘hot spot’’ amino acids may have low solvent

exposure [75].

Electrostatically significant isopotentials Ak and B{k (Fig. 4d,e)

are generated with the marching cubes method described above.

Using Ak and B{k, we compute Ak\I , the electrostatically

significant region of the field of protein A within the interface, and

B{k\I , the oppositely charged electrostatically significant region

of the field of protein B within the interface (Fig. 4f,g). The

intersection of these two regions is the interface field, IFA B(k)
(Fig. 4h).

Since the interface field represents electrostatic complementar-

ity in a given complex, we can use interface fields to compare

electrostatic complementarity in two complexes. For two com-

plexes, C and D, and k, the user’s threshold for electrostatic

significance, we generate four interface fields: IFC(k), IFC({k),
IFD(k), and IFD({k). Comparing the interface fields at k and

{k yields a more complete representation of electrostatic

complementarity in both complexes.

We evaluate the difference d between two complexes using the

following expression:

d(C,D)~(v(IFC(k))zv(IFC({k))){(v(IFD(k))zv(IFD({k)))

Where v(Y ) denotes the volume of a given region Y . The two

interface fields for each complex express the degree of comple-

mentarity on the positive and negative parts of the electrostatic

potential spectrum. The interface fields for the same complex are

summed, to represent the total degree of complementarity on that

complex. The difference between the two sums expresses the

difference in complementarity d between the two complexes, on

both sides of the potential spectrum. Large absolute values of d
indicate large differences in electrostatic complementarity between

the two complexes, while values close to zero point to similar

degrees of complementarity.

2.4 Identifying electrostatically influential amino acids
DelPhi [68] is able to solve the electrostatic field of a given

protein structure while omitting the electrostatic contribution of a

individual amino acid. This process, which we refer to as

nullification, has the unique property of leaving the structure of

the amino acid intact while eliminating its electrostatic contribu-

tion. Maintaining the structure of the protein is important in an

electrostatic analysis because the nullified amino acid still displaces

solvent, creating a region of low dielectric. That region can

enhance the electrostatic potentials of amino acids that were not

Figure 3. Cavity field generation and comparison. a,b) The molecular surfaces of protein A and protein B are shown in dotted outlines. Ligand
binding cavities are shown in grey with solid outlines. A solid isopotential is shown in transparent blue. c,d) Cavity fields AC and BC are shown in
opaque blue, with the solid isopotential (transparent blue), and the binding cavity (dotted outline). e) The intersection of the two binding cavities, I
(grey) is a solvent accessible region in both cavities. f,g) The intersections IA and IB are shown in blue, I is shown with a dotted outline, and cavity
fields AC and BC (solid outline). h) IA and IB (dotted outline) and their intersection (blue). i,j) IA and IB shown with a dotted outline, with differences
shown in blue. k,l) The same differences relative to the molecular surface.
doi:10.1371/journal.pcbi.1003792.g003

VASP-E: Specificity Annotation with Electrostatic Isopotentials

PLOS Computational Biology | www.ploscompbiol.org 5 August 2014 | Volume 10 | Issue 8 | e1003792



nullified because of an effect called electrostatic focusing.

Electrostatic focusing is known to play a considerable role in

function and specificity [48,76,77]. Below, we use nullification in

different ways to suggest amino acids that may influence specificity

in ligand binding cavities and protein-protein interfaces. Calibra-

tion of both nullification techniques is discussed in Supplemental

Text S1.

2.4.1 Cavity fields. Amino acids that create electrostatic

differences between two ligand binding cavities can cause different

binding preferences. To identify amino acids like these, we begin

with a test protein and a reference protein with different binding

preferences and previously defined ligand binding cavities. First,

we use ESBRI [78] to scan for intramolecular salt bridges. Second,

we structurally align the test protein to the reference protein.

Third, at an electrostatic threshold k selected by the user, we

compute the cavity field of the reference structure, r, at k. Fourth,

we systematically compute variants of the electrostatic field of t,

where each variant exhibits a different nullified amino acid i. Once

computed, the variant potential fields and the ligand binding

cavity of the test structure are used to generate a variant cavity

field ti, for each nullified i, at isopotential k.

Each nullified cavity field ti is then compared to the reference

cavity field r by computing the volume of their CSG difference,

v(Dtir). Based on this difference, we can propose several

explanations for the impact of amino acid i on molecular

recognition: If v(Dtir) is similar to v(Dtr), then nullifying i has

little effect on the electrostatic differences between t and r, so we

assume that i is not responsible for the differences in specificity

between t and r. However, if v(Dtir) is significantly smaller than

v(Dtr), then nullification of i reduces electrostatic differences

between t and r. In this case, the original effect of i must have been

to make the fields more different. Since electrostatic differences

can be a sufficient reason for one protein to stabilize a binding

partner that another cannot, we infer that i may be an electrostatic

cause for different binding preferences.

Throughout this process we may observe that two amino acids i
and j both appear, independently, to create significant differences

between t and r. This observation, however, provides no

information to compare their relative influence on specificity.

Notably, even if v(Dtir){v(Dtr) and v(Dtjr){v(Dtr) are different,

they can also be differentially affected by other biophysical

phenomena, and so we cannot infer that i affects specificity more

or less than j does. We may also observe that v(Dtir) becomes

greater than v(Dtr), indicating that nullification of i increases

differences between t and r, suggesting that the effect of i is to

make the electrostatic fields of t and r more similar. This

observation may be true but it is insufficient to imply that i causes t

and r to have similar binding preferences because other

biophysical differences may prevent similar molecules from

binding, despite the electrostatic similarities. Finally, if we observe

that an amino acid i is part of an intramolecular salt bridge and

that v(Dtir) is significantly smaller than v(Dtr), we infer that i is

part of a salt bridge nearby the cavity and that mutating i would

reduce cavity stability and alter electrostatic properties inside the

cavity. By evaluating every amino acid in the manner above,

VASP-E yields an electrostatic analysis relating each amino acid to

its possible effect on binding.

Finally, we define a conservative prediction threshold for

identifying amino acids that influence specificity. First, we

compute m~v(Dtr), the volume of the difference between t and

r without nullifications. m represents the baseline electrostatic

differences between the two cavity fields. Second, we find the

amino acid i such that v~v(Dtir) is minimized for all i. v
represents the maximum degree to which the nullification of an

amino acid can cause t and r to be similar. We define the

prediction threshold p~m{((m{v)=2), which represents electro-

static differences reduced by one half of that achieved by v. We

predict that any amino acid j, where v(Dtir)vp, creates an

electrostatic influence on specificity because nullifying it causes the

cavity fields of t and r to become at least half as similar as is

possible for any amino acid.

2.4.2 Interface fields. For protein-protein interfaces, we can

perform a similar analysis to identify amino acids that affect

electrostatic complementarity. Here, we begin with the structure of

an input complex C and a user-selected threshold of electrostatic

potential k. First, we use ESBRI [78] to scan for intramolecular

salt bridges in each unit of the complex. We then generate

interface fields at k and {k. Next, we create copies of the input

complex, Ci, where one amino acid, i, is nullified. For each variant

complex Ci, we generate interface fields at k and {k as well.

Next, we compare the interface fields of each variant complex

Ci to C, measuring the difference in electrostatic complementary

d(Ci,C) between the variant and input complexes. Using the value

of the difference, we can draw several inferences about the nature

Figure 4. Generating an interface field. a) Two proteins in complex (rounded rectangles), and amino acids at the protein-protein interface
(yellow, green). b) Spheres around every atom in the interfacial amino acids (orange). c) CSG union of interfacial spheres. d,e) Red and blue gradients
representing the electrostatic potential field in the interfacial regions of protein A (d) and B (e). Black lines represent the user-selected isopotential at
k in protein A and {k in protein B. f,g) The electrostatically significant isopotentials from A and B, in red and blue. h) The CSG intersection (green) of
the isopotentials from A and B. i) The interface field (transparent green).
doi:10.1371/journal.pcbi.1003792.g004
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of electrostatic complementarity in the complex: If d(Ci,C)&0 for

some amino acid i, then nullifying i causes few differences in

electrostatic complementarity at the protein-protein interface. We

can thus infer that i has an insignificant electrostatic influence on

affinity. If for some other i, d(Ci,C) is significantly negative, then

we infer that electrostatic complementarity is diminished in the

variant complex relative to the input complex. i must therefore

contribute to affinity when it is not nullified. Finally, if d(Ci,C) is

significantly positive, then we infer that electrostatic complemen-

tarity is enhanced by the nullification of i, implying that i is an

electrostatic hindrance to binding affinity.

We may observe that nullification of two amino acids i and j

independently result in significant changes to electrostatic com-

plementarity. In such cases, the degree to which electrostatic

complementarity is altered by i relative to j is insufficient to

indicate their relative influence on affinity. We cannot draw this

inference because other biophysical phenomena may unequally

influence electrostatic complementarity for i and j, making their

relative influence incomparable. We may also observe that an

amino acid i is part of an intramolecular salt bridge and that

nullification of i results in a significant change in electrostatic

complementarity. In this case, we infer that i is part of a salt bridge

nearby the interface and that mutating i would result in a

destabilization of the protein at the interface and a reduction in

binding affinity.

Finally, we define two conservative prediction thresholds to

predict electrostatically influential amino acids in protein-protein

interactions. Given a complex C to be evaluated at isopotential

threshold k, we find the amino acid i such that v~d(C,Ci) is

minimized and the amino acid j such that V~d(C,Cj) is

maximized. Amino acids i and j represent the amino acids that

most increase and most decrease electrostatic complementarity in

C upon nullification. We define the upper prediction threshold

P ~ V=2. If the nullification of an amino acid x increases

electrostatic complementarity beyond P, then we predict that it

reduces the electrostatic complementarity of the complex enough

to reduce affinity. We also define a lower prediction threshold

p~v=2. If the nullification of an amino acid y decreases

electrostatic complementarity below p, we predict that this amino

acid contributes to electrostatic complementarity of the complex

enough to enhance affinity. In the case where amino acids at the

interface do not act to increase electrostatic complementarity, we

only apply the upper prediction threshold if fewer than 10% of the

amino acids in the protein cause electrostatic complementarity to

surpass P. We apply the same requirement to amino acids falling

below p.

2.5 Clustering cavity fields based on volumetric similarity
Cavity fields based on a given family of proteins were clustered

based on the Jaccard distance J(x,y).

J(x,y)~1{
v(x\y)

v(x|y)

where x and y are cavity fields, and v(x\y) and v(x|y) are the

volume of the CSG intersection and CSG union of x and y,

respectively. By normalizing the volume of the intersection by the

volume of the union, the Jaccard distance permits cavity fields to

be compared without bias relating to total volume. Cavity fields

that have a low Jaccard distance have greater volumetric similarity

than cavity fields with higher Jaccard distances. Using the

neighbor program from Phylip [79], we summarized the pattern

of volumetric similarities and variations between all pairs with

UPGMA clustering (unweighted pair group method with arith-

metic mean).

2.6 Clustering other measures of protein similarity
Members of a given family of proteins were also clustered based

on amino acid sequence alignments and backbone structure

alignments. ClustalW 2.0.7 was used to compute multiple

sequence alignments. The resulting alignments were passed to

the protpars tool from Phylip [79], to generate a maximum

parsimony clustering of the protein sequences. Ska [80] was used

to compute backbone structure alignments, which we used to

generate a pairwise superposition of every structure onto a selected

individual. The root mean squared distance (RMSD) between

aligned alpha carbons was clustered via UPGMA, using the

neighbor tool from Phylip [79]. Finally, Clustal Omega [81] was

used to compute multiple sequence alignments and generate a

neighbor joining tree.

2.7 Data set construction
Because VASP-E is designed to identify electrostatic influences

on specificity, we validate it using families of proteins for which the

mechanisms that achieve specificity are well understood and

fundamentally electrostatic. The serine protease and cysteine

protease superfamilies were selected for validating that VASP-E

finds amino acids that influence protein-ligand binding specificity

because many mutational studies confirm the role of specific

residues in achieving specificity. The same studies permit the

validation of VASP-E as a method for clustering proteins based on

ligand binding preferences.

The protein data bank (PDB) [73] contains the structures of 681

serine proteases from the trypsin and chymotrypsin subfamilies,

and 859 cysteine proteases from the cathepsin B, cathepsin L, and

papain subfamilies. From each subfamily, we first removed

mutants and functionally undocumented structures. Then we

removed structures with greater than 90% sequence identity,

creating a nonredundant subset of 12 serine proteases and 4

cysteine proteases. Filtering in this order maximized the number of

diverse representative structures. Serine proteases averaged 51%

sequence identity and cysteine proteases averaged 40% sequence

identity.

We used ska [80] to structurally align the serine proteases to

bovine chymotrypsin (pdb: 8gch) and the cysteine proteases to

papaya papain (pdb: 1pad). Chymotrypsin and papain were

selected because they are in complex with a peptide substrate.

Using a method described earlier [37], substrate residues in the S1

subsite of the serine proteases and the S2 subsite of the cysteine

proteases were used to generate a solid representation of the

binding cavity in all structures. The binding cavity representation

and the electrostatic field in each structure was then used to create

cavity fields with the method in Section 2.2.

We demonstrate the comparison of interface fields on two

protein complexes: barnase-barstar (pdb: 1brs) and rap1A-RAF

(pdb: 1c1y). We selected these complexes because electrostatic

potential is known to affect their binding preferences and because

detailed experimental studies have established how binding

preferences are affected by mutations on both sides of the

interface. These studies create a well-defined gold standard for

evaluating how accurately VASP-E can predict amino acids that

alter binding preferences. The data set is summarized in Fig. 5.

2.8 Implementation details and performance
VASP-E was developed in ansi C/C++ using gcc (the Gnu

Compiler Collection) version 4.4.7, on 64 bit linux-based

computing platforms. Experimentation was performed on Corona,
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a cluster at Lehigh University with 1056 Opteron cores (model

6128) running at 2.0 Ghz. Each compute node on corona had 16

cores with access to either 2 or 4 GB of random access memory

(RAM) per core. VASP-E is a single-threaded process that runs on

one core and approximately 1 GB of random access memory. All

experimentation was conducted at .5 Å resolution, which permit-

ted accurate results and practical runtimes.

Visualization for some figures was performed with SURFview, a

tool written using the OpenGL library and running on Intel Core

i7 and Nvidia Geforce GTX 660 chipsets, in Microsoft Windows

7. Trees representing clusterings were visualized using Newick

Utilities [82].

The performance of VASP-E depends on the volume and

resolution of the molecular surfaces or electrostatic isopotentials

analyzed. On our dataset, generating solid isopotentials for entire

proteins required approximately 9.5 seconds on average, to

process an average of 1,337,083 lattice cubes. Comparing cavity

fields required 1.06 seconds on average, to process an average of

41,984 cubes via CSG, while interface fields from two complexes

required 23.4 seconds on average, to process an average of

729,321 cubes.

The website http://www.cse.lehigh.edu/,chen/software.htm

hosts the software and primary data associated with this paper for

public download.

Results

3.9 Serine proteases
Serine proteases exhibit affinity for amino acids at specificity

subsites called S4, S3, …, S1, S19, …, S39, S49 [83]. Each subsite

recognizes substrate residues P4, P3, …, P1, P19, …, P39, P49,

enabling the protease to selectively cleave the peptide bond

between P1 and P19. Trypsins are digestive serine proteases that

narrowly prefer positively charged amino acids [84] at P1. Their

selectivity is assisted by the strongly negative electrostatic character

of S1. In contrast, chymotrypsins hydrolyze peptide bonds

following large hydrophobic amino acids [85] and exhibit

considerably less electrostatic potential at their S1 subsite.

Using VASP-E, we identified amino acids that create electro-

static differences between trypsins and chymotrypsins at S1. Fig. 6

reports the average volumetric difference between cavity fields

from all trypsins in our dataset and the cavity field of bovine

chymotrypsin (pdb: 8gch), where each trypsin residue has been

nullified individually. Volume differences were computed for

cavity fields generated at 22.5, 25.0, 27.5, and 210.0 kT/e.

Volumetric differences between nullified trypsin and chymotrypsin

cavity fields varied most at 210 kT/e, so a prediction threshold

was computed for differences at this level. The average volumetric

difference between trypsin and chymotrypsin cavity fields

remained nearly constant for almost all residue nullifications and

all four thresholds. Nullifying almost all trypsin residues does not

make the very different electrostatic environments of the trypsin

and chymotrypsin S1 pockets more similar.

One notable exception stands out. Nullifying aspartate 189 in all

trypsins results in a large reduction in the average electrostatic

difference with chymotrypsin at all potential thresholds, suggesting

that the presence of aspartate 189 makes their S1 pockets

electrostatically different. Fig. 7 illustrates the effect that nullifying

aspartate 189 has on the electrostatic difference between

chymotrypsin and trypsin, using bovine chymotrypsin and atlantic

salmon trypsin as examples. VASP-E examines only the volumet-

ric intersection of their S1 cavities, where the binding cavities have

no steric differences (Fig. 7b). In unmodified trypsin (Fig. 7d), the

intersection region exhibits a 152 Å3 region with electrostatic

potential less than or equal to 210 kT/e. Once D189 is nullified,

the region with potential less than or equal to 210 kT/e drops to

32 Å3 (Fig. 7e). In comparison, regions of negative electrostatic

potential in chymotrypsin, where the S1 cavity overlaps with that

of trypsin, is small and remains small when S189 is nullified

(Fig. 7f,g). Similar effects were observed with other trypsins. These

indications predict experimentally established observations that

the negatively charged aspartate 189, at the bottom of the S1

pocket, creates the specificity of trypsin for positively charged

amino acids [48,86].

Fig. 8 illustrates a UPGMA clustering of cavity fields from

trypsin and chymotrypsin S1 cavities, generated at 210 kT/e.

The topology of the tree, which reflects electrostatic similarities

and differences measured with the Jaccard distance, correctly

separated the chymotrypsins as outliers from the trypsins. This

result indicates that the electrostatic characteristics measured by

VASP-E correlate with similarities and differences in serine

protease binding preferences.

Clusterings based on cavity fields generated at 22.5, 25.0,

27.5, or 210.0 kT/e (Fig. S1) illustrate that the classification is

correct for a range of isopotential thresholds, though they becomes

less accurate as thresholds approach neutral charges. Also, relative

to comparisons of protein sequences and structures, separated

trypsins and chymotrypsins less well (Fig. S2).

3.10 Cysteine proteases
Cathepsin B is involved in the onset of pancreatitis [87] and the

malignant progress of tumors [88]. Following the same subsite/

substrate numbering scheme as serine proteases, Cathepsin B

cleaves a peptide bond following two positively charged amino

acids that bind in its S1 and S2 subsites [89]. The S2 subsite

exhibits a strong negative potential that enables the recognition of

positively charged side chains. In contrast, cathepsin L and papain

prefer bulky hydrophobic amino acids at P2 [90,91], and both

exhibit an uncharged S2 subsite [91].

We used VASP-E to identify amino acids that create

electrostatic differences between cathepsin B and cathepsin L.

Fig. 9 illustrates the average volumetric difference between cavity

fields representing S2 in cathepsin B and human cathepsin L (pdb:

1icf) generated at 22.5, 25.0, 27.5, and 210.0 kT/e. Volumetric

differences between cavity fields with different nullified amino

acids were greatest at 22.5 kT/e, so a prediction threshold was

computed for differences at this level. The average volumetric

difference was nearly constant for almost all residue nullifications.

Insignificant fluctuations in the volumetric difference were

approximately the same magnitude as in serine proteases.

Figure 5. PDB codes of structures used.
doi:10.1371/journal.pcbi.1003792.g005
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The nullification of two amino acids, glutamic acid 171 or

glutamic acid 245, reduced electrostatic differences between

cathepsin B and cathepsin L beyond the prediction threshold.

This observation suggests that both amino acids create electro-

static differences between the S2 subsites of cathepsin B and L.

Indeed, glutamic acid 245 has been shown to cause Cathepsin B to

bind arginine residues at the S2 cavity [90], while cathepsin L

prefers phenylalanines. In glutamic acid 171, one of the

carboxylate oxygens is involved in a hydrogen bond and the

other is free to form other interactions in the S2 pocket. Such

interactions have been observed with positively charged inhibitors

[92,93], again in contrast with cathepsin L.

Figure 6. Average volume differences between chymotrypsin and trypsin cavity fields with nullified amino acids. The red arrow
indicates a trypsin residue associated with increased electrostatic similarity (downward spikes) when it is nullified. The dashed line represents the
average prediction threshold between chymotrypsin and trypsin cavity fields.
doi:10.1371/journal.pcbi.1003792.g006

Figure 7. A visual examination of the nullification of aspartate 189 of trypsin. a) S1 cavity of atlantic salmon trypsin (pdb: 1a0j) shown in
teal. b) Intersection region (teal) of S1 cavities from trypsin and chymotrypsin (transparent yellow). c) S1 cavity of bovine chymotrypsin (pdb: 8gch)
shown in teal. Inset figs. d-g illustrate cavity fields, all with potential less than 210 kT/e (teal), inside the intersection region (transparent yellow). d)
The wild type trypsin cavity field occupies 152 Å3. e) The trypsin cavity field with D189 nullified (32 Å3). f) The wild type chymotrypsin cavity field
(9 Å3). g) The chymotrypsin cavity field with D189 nullified (2 Å3).
doi:10.1371/journal.pcbi.1003792.g007
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Fig. 10 plots a UPGMA clustering of cavity fields based on S2

subsites from cysteine proteases in our data set. Cavity fields were

generated at 22.5 kT/e. The topology of the tree describes

electrostatic similarities and differences measured with the Jaccard

distance. It is apparent that the tree structure clusters cathepsin B

cavities, setting them apart from those of cathepsin L and papain,

which have different binding preferences. Cavity fields produced

at 22.5, 25.0, 27.5, and 210.0 kT/e, shown in Fig. S3, cluster

in a similar manner. This pattern of separations demonstrates that

VASP-E is correctly identifying electrostatic conservations and

variations that correlate to binding preferences in the S2 subsite.

Global sequence and structure alignments separated the cysteine

proteases as well as the Jaccard distance clustering (Fig. S4).

3.11 Barnase-barstar
Barnase is an guanine-preferring endo-ribonuclease expressed

by Bacillus amyloliquefaciens [94] whose activity, without

inhibition by barstar, can be lethal to the cell [95]. Barstar

inhibits barnase by forming an extremely tight complex with close

steric and electrostatic complementarity at many amino acids

across the binding site [96]. We used VASP-E to identify

mutations that enhance or diminish electrostatic complementarity.

3.11.1 Nullifications of barnase amino acids. Fig. 11

illustrates comparisons of wildtype and modified barnase-barstar

interface fields, where nullifications were performed on Barnase.

The magnitude of volume changes observed were much larger

than in the cavity fields examined earlier because the volume of

the interface is much larger than the cavities. We evaluated the

impact of nullifying individual amino acids with values of k equal

to 1.0, 3.0, 5.0, 7.0, and 9.0 kT/e. Differences in electrostatic

complementarity caused by nullifying some amino acids were

greatest at k~1:0 kT/e, so this value of k was used to set upper

and lower prediction thresholds. Nullification of most barnase

amino acids resulted in small changes in electrostatic complemen-

Figure 8. Patterns of electrostatic similarity in the S1 specificity
pockets of trypsins and chymotrypsins, relative to P1 binding
preferences. The color coding, which is independent of tree topology,
indicates the types of P1 residue preferred by each protein. Trypsins
(blue) prefer basic amino acids and chymotrypsins (red) prefer large
hydrophobic amino acids. The topology of the tree reflects patterns of
similarity measured with the Jaccard distance. Proteins on adjacent
branches have greater similarity than proteins on different subtrees.
The topological separation of the chymotrypsins from the trypsins
indicates that similarities and differences in the electrostatic character
of S1 subsites, which create the differences in their binding preferences,
were detected and correctly classified by VASP-E, using the Jaccard
distance.
doi:10.1371/journal.pcbi.1003792.g008

Figure 9. Average volume differences between cathepsin L and cathepsin B cavity fields with nullified amino acids. The red arrows
indicate amino acids in cathepsin B associated with increased electrostatic similarity (downward spikes) to cathepsin L, when they are nullified.
doi:10.1371/journal.pcbi.1003792.g009

Figure 10. Patterns of electrostatic similarity in the S2
specificity pockets of cathepsin B, cathepsin L, and papain.
The color coding, which is independent of tree topology, indicates the
types of P2 residue preferred by each protein. Cathepsin B’s (red) prefer
basic amino acids and cathepsin L and papain (blue) prefer large
hydrophobic amino acids. The topology of the tree reflects patterns of
similarity measured with different comparison algorithms. Proteins on
adjacent branches have greater similarity than proteins on different
subtrees. The topological separation of the cathepsin B’s from
cathepsin L and papain indicates that similarities and differences in
the electrostatic character of S2 subsites, which create the differences in
their binding preferences, were detected and correctly classified by
VASP-E, using the Jaccard distance.
doi:10.1371/journal.pcbi.1003792.g010
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tarity below both prediction thresholds. However, nullification of a

few amino acids created very large increases and decreases in

complementarity between wildtype and modified interface fields.

For four barnase residues, K27, R59, R83, and R87,

nullification significantly reduced electrostatic complementarity,

predicting correctly that mutations abrogating net charge at these

positions could reduce affinity. These predictions are consistent

with experimental observations established earlier: K27A decreas-

es association rates by a factor of 7 to 10 times [97–99]. R59A

reduces association rates by a factor of 7 to 10 times [98,99]. R83A

decreases association rates by 4 to 6 fold [95,97,99]. R87A

decreases association rates by 2 to 3 fold [97–99].

Nullification of barnase residues 54 and 73 significantly

increased electrostatic complementarity, correctly predicting that

substituting these amino acids with alanine should increase affinity.

Predictions for D54 and E73 reproduced established observations:

Substituted individually, D54A and E73A increase association

rates by 2 to 4 fold [98,99]. Also, D75 is involved in an

intramolecular salt bridge, and is thus predicted to reduce the

stability of barnase and it’s ability to form a complex with barstar.

This prediction is correct; the substitution of D75 with asparagine,

a nearly isosteric but uncharged analogue of aspartate, is known to

diminish complex stability by 4.80 kcal/mol [100].

Three known influences on affinity fell below our prediction

threshold. Nullifying residues 39 and 102 reduced electrostatic

complementarity, but not significantly enough to achieve our

prediction threshold. The mutation K39A is known to reduce

affinity [95], and the mutation H102A reduces association rates

less than 2 fold [97–99]. Also, it is known that replacing glutamic

acid 60 with alanine is known to increase association rates by 2 to

4 fold [98,99], but nullifying glutamic acid 60 did not generate a

large increase in electrostatic complementarity. While VASP-E

made no incorrect predictions, the application of a conservative

prediction threshold caused some influential amino acids to be

missed.

Nullifications of influential amino acids identified by VASP-E

create changes in electrostatic complementarity that can be

localized to specific regions. For example, Fig. 12 illustrates the

effect of nullifying lysine 27 in barnase. In the interface region,

lysine 27 is responsible for a large positively charged region of

electrostatic potential that extends outwards towards barstar

(Fig. 12e). This region overlaps considerably with a negative

isopotential from barstar (Fig. 12f). When lysine 27 is nullified, the

positively charged isopotential on barnase collapses (Fig. 12g), and

electrostatic complementarity is substantially reduced. This ability

to identify spatial regions of electrostatic complementarity, and

thus provide insights into the mechanisms that control specificity,

is unique to VASP-E.

3.11.2 Nullifications of barstar amino acids. Fig. 13 plots

comparisons of wildtype and modified Barnase-Barstar interface

fields, where nullifications were performed on Barstar. Because

Barstar is interacting with Barnase, the same calibration threshold,

k~1:0 kT=e, was used. Also, because more than 10% of amino

acids in barstar are above the threshold, an upper prediction

threshold was not used, suggesting that there are no outliers on the

positive end. Nullifications of several amino acids created

distinctive differences between wildtype and modified interface

fields.

Nullifying three barstar residues, 35, 39 and 80 reduced

electrostatic complementarity. These observations correctly pre-

dict experimental observations that these amino acids are crucial

for affinity between barnase and barstar, and that diminishing

their electrostatic contribution interferes with binding: Charge

reversal mutations individually converting aspartate 35 and 39 to

Figure 11. Volume differences between interface fields of wildtype barnase/barstar and a barnase/barstar complex with
electrostatic nullifications in the barnase residues. The red arrows indicate amino acids in barnase that are associated with decreased
electrostatic complementarity with barstar, when they are nullified. Blue arrows indicate amino acids associated with increased electrostatic
complementarity, when they are nullified. Green arrows indicate amino acids below the prediction threshold that are known to influence specificity.
doi:10.1371/journal.pcbi.1003792.g011
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lysine were shown to halt the inhibition of barnase by barstar

[99,101]. Mutation of glutamic acid 80 to alanine reduces the

binding energy by .5 kcal/mol and increases the dissociation

constant by 2.5 fold relative to the wildtype complex.

The nullification of glutamic acid 76 insufficiently reduced

electrostatic complementarity to be associated with a prediction.

Nonetheless, the mutation of E76 to alanine was shown to reduce

the binding energy by 1.6 kcal/mol and increases the dissociation

constant by 10 fold relative to the wildtype complex [99]. As was

the case with barnase, VASP-E made no incorrect predictions but

the application of a conservative prediction threshold caused some

influential amino acids to be missed.

Nullifying the uncharged interfacial amino acids 29–31, 36–38,

and 40–46 generated increases in electrostatic complementarity

via electrostatic focusing. This enhancement creates isopotentials

with larger volume, especially when the isopotentials are generated

at low absolute thresholds (e.g.+/2 1 kT/e). Since these amino

acids are uncharged, their nullification enlarges the isopotentials of

nearby charged amino acids D35 and D39.

3.12 Rap1a-Raf
Ras is a master regulator that transmits a wide range of signals

via protein-protein interactions. Downstream, its effectors are

involved in many crucial systems, including cell cycle progression,

cell division, apoptosis, lipid metabolism, DNA synthesis, and

cytoskeletal organization [102–104]. While the structure of ras in

complex with these effectors is unknown, rap1a, a homolog of ras

(w50% sequence identity), can serve as a substitute. Rap1a has an

essentially identical binding interface and binds competitively with

the same downstream effectors [105], such as raf, an oncogene

involved in ERK 1/2 signaling [106]. Here, we use VASP-E to

Figure 12. A visual examination of the nullification of lysine 27 in barnase. a) The molecular surface of Bacillus amyloliquefaciens barnase
(teal). b) The molecular surface of Bacillus amyloliquefaciens barstar (transparent yellow) and barnase (teal). c) The interface region (transparent
yellow) between barnase and barstar (teal). d) Electrostatic isopotential at +3 kT/e (blue) near barnase (teal). e) The same isopotential shown in
transparent yellow. f) The electrostatic isopotential at 23 kT/e near barstar (red) and it’s overlap with the electrostatic isopotential at +3 kT/e near
barnase (transparent yellow). g) Electrostatic isopotential at +3 kT/e (blue) near barnase (teal), where Lysine 27 is nullified.
doi:10.1371/journal.pcbi.1003792.g012

Figure 13. Volume differences between interface fields of wildtype barnase/barstar and a barnase/barstar complex with
electrostatic nullifications in the barstar residues. The red arrows indicate amino acids in barstar that are associated with decreased
electrostatic complementarity with barstar, when they are nullified. Numbers in yellow ovals indicate inclusive intervals of amino acids where
electrostatic focusing enhances the volume of the electrostatic potential inside the barnase/barstar interface. The green arrow indicates an amino
acid below the prediction threshold that is known to influence specificity.
doi:10.1371/journal.pcbi.1003792.g013
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examine the effect of charge nullification on the rap1a-raf interface

to make predictions on the effect of mutation on ras-raf binding.

3.12.1 Nullifications of Rap1A amino acids. Fig. 14 plots

comparisons of wildtype and modified Rap1A-Raf interface fields,

where nullifications were performed on Rap1a. We evaluated the

impact of nullifying individual amino acids with values of k equal

to 1.0, 3.0, 5.0, 7.0, and 9.0 kT/e. Differences in electrostatic

complementarity caused by nullification were greatest at k~1:0
kT/e, so this value of k was used to set upper and lower prediction

thresholds. Nullification of most barnase amino acids resulted in

small changes in electrostatic complementarity below both

prediction thresholds. However, nullification of several amino

acids created very large increases and decreases in complemen-

tarity between wildtype and modified interface fields.

Nullification of six rap1a residues, 33, 37, 38, 54, 57 and 62

reduced electrostatic complementarity beyond the lower predic-

tion threshold, suggesting that loss of charge mutations would

reduce complex affinity. These predictions were consistent with

established experimental observations: Substituting aspartate 33

for alanine in rap1a results in a binding energy reduction of

1.2 kcal/mol [107]. Glutamic acid 37, in both rap1a and ras,

forms hydrogen bonds with with R59 and R67 in raf [105].

Substituting E37 with glycine would break these bonds, and in ras-

raf, E37G inhibits the formation of the complex [108]. Substitut-

ing aspartate 38 for alanine in ras, eliminating its contribution to

electrostatic complementarity and removing a hydrogen bond,

reduces its rate of association with raf by 72 fold [107,109].

Glutamic acid 54 forms a hydrogen bond with arginine 67 of raf.

Mutations of R67 that break this bond reduce the rate of

association by 12 fold [108,110]. Substituting E54 with alanine

would break the same bond and likely achieve a similar effect.

Substituting aspartate 57 for alanine in Ha-Ras causes a total loss

of affinity to raf [111]. Finally, glutamic acid 62 is a conserved

amino acid that radically affects binding in a range of RAS

homologs when mutated [112].

Nullification of two rap1a residues, 31 and 41, increased

electrostatic complementarity beyond the upper prediction

threshold, suggesting that mutations removing their net charge

should also increase affinity. Established results confirm these

observations: Charge reversal of lysine 31 to glutamic acid is

known to create a 30 fold increase in affinity [110]. In Ha-ras, a

substitution of arginine 41 to alanine is known to increase affinity

by 11.8 fold [111,113].

Finally, VASP-E predicted that the nullification of lysine 5 could

result in an increase in binding affinity. This observation suggests

that lysine 5 may normally reduce affinity. However, to our

knowledge, no current experimental results that establish this

claim, and hence we leave it as an open prediction.

3.12.2 Nullifications of Raf amino acids. Fig. 15 plots

comparisons of wildtype and modified Rap1A-Raf interface fields,

where nullifications were performed on residues in raf. Because

Raf is interacting with Rap1a, the same calibration threshold,

k~1:0kT=e, was used. Also, because more than 10% of amino

acids in Raf are above the threshold, an upper prediction

threshold was not used, suggesting that there are no outliers on

the positive end. Nullifications of several amino acids created

distinctive differences between wildtype and modified interface

fields.

Nullification of four residues in raf, 59, 67, 84, and 89 reduced

electrostatic complementarity below the lower prediction thresh-

old and correctly predicted experimentally established substitu-

tions that correspond to reductions in affinity. Substituting

arginine 59 with alanine is known to reduce the rate of

association by 25 fold [108,110]. Substituting arginine 67 with

alanine is known to reduce the rate of association by 12 fold

[108,110]. Also, both arginine 59 and 67 form hydrogen bonds

with glutamic acid 37 in rap1a. Loss of these hydrogen bonds

inhibits complex formation [108]. Substitution of lysine 84 with

alanine produces a 9.4 fold reduction in the association rate

[110], and substitution of arginine 89 with leucine inhibits

complex formation [105].

Nullification of lysine 65 did not reduce electrostatic comple-

mentarity below the lower threshold. While lysine 65 was therefore

not predicted to have a significant electrostatic influence on

specificity, the mutation K65A is known to reduce the rate of

association by 4.5 fold [110]. While VASP-E made no incorrect

predictions, the conservative prediction threshold caused K65 to

be overlooked.

Figure 14. Volume differences between the interface fields of a wildtype rap1a/raf complex and a rap1a/raf complex with
electrostatic nullifications in rap1a residues. The red arrows indicate amino acids in rap1a that are associated with decreased electrostatic
complementarity with barstar when they are nullified. Blue arrows indicate amino acids associated with increased electrostatic complementarity,
when they are nullified. The white arrow indicates an open prediction.
doi:10.1371/journal.pcbi.1003792.g014
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3.13 Analysis of prediction performance on individual
amino acids

By collecting the predictions made on our dataset, we can

measure the prediction performance of VASP-E. We begin by

counting true positives (TPs), false positives (FPs), true negatives

(TNs), and false negatives (FNs). TPs are defined as amino acids

that are both predicted by VASP-E to have an influence on

specificity and also published in experimental findings to have such

an influence. The predictions detailed earlier in this section cite

these findings as specific validation for the predictions made with

VASP-E. FPs are amino acids that are both predicted by VASP-E

to have an influence on specificity and are documented in the

literature to not have an effect on specificity. TNs are amino acids

that are predicted to not have an influence on specificity that are

also documented in the literature to not have an effect on

specificity. FNs are amino acids predicted to not have an influence

on specificity but are established in the literature as having a role

in specificity. Finally, we VASP-E made two predictions that were

neither confirmed nor denied in the literature. We leave these two

observations as open predictions and do not include them in our

evaluation of prediction performance.

Of these statistics, TNs cannot be fully counted because no

studies categorically classify the role of every amino acid in

specificity, including those that are distant from the binding site.

For this reason, we describe the number of true negatives as

unknown. Nonetheless, we do not require TNs in order to

compute precision and recall, two fundamental statistics used to

evaluate the accuracy of a predictor. Precision is the fraction of

predictions that are verified in experimental studies and recall is

the fraction of verified experimental results that are correctly

predicted. Using our conservatively defined prediction thresholds,

every prediction made with VASP-E was verified, giving perfect

precision, and most verified results were correctly predicted, giving

strong recall. Precision and recall are reported together in Fig. 16.

Discussion

We have presented VASP-E, a new program for the comparison

of electrostatic isopotentials. To our knowledge, VASP-E is the

first program capable of comparing isopotentials using CSG,

enabling a new unified approach to the characterization of

protein-ligand and protein-protein binding specificity. In an

application to the serine and cysteine proteases, we demonstrate

that VASP-E is capable of reproducing known ligand binding

preferences and of detecting differences in electrostatic potential

among proteins that, based on global sequence and structure

similarity, might have been expected to be similar. Subtle

differences like these, which can arise from variations in single

amino acids, can still be detected by VASP-E because they are

reflected in differently shaped isopotentials.

Central to our approach is a novel solid representation of

electrostatic isopotentials that can also represent regions within

molecular surfaces. This seamless integration of two nearly

orthogonal aspects of protein structure enables analytical capabil-

ities that were not possible before. One capability is the

identification of amino acids that create differences in electrostatic

isopotentials at binding cavities. Using the molecular surface to

exclude electrostatic variations outside the binding cavity, we

identified three amino acids in trypsin and cathepsin B that create

electrostatic differences in binding specificity. These predictions

correctly reflected experimentally established observations regard-

ing their electrostatic influence. VASP-E also finds amino acids

that change electrostatic complementarity in protein-protein

interfaces. In an analysis of the barnase-barstar and rap1a/raf

Figure 15. Volume differences between the interface fields of a wildtype rap1a/raf complex and a rap1a/raf complex with
electrostatic nullifications in raf residues. The red arrows indicate amino acids in rap1a that are associated with decreased electrostatic
complementarity with barstar when they are nullified. The green arrow indicates an amino acid below the prediction threshold that is known to
influence specificity. The white arrow indicates an open prediction.
doi:10.1371/journal.pcbi.1003792.g015

Figure 16. Precision and recall performance of VASP-E.
doi:10.1371/journal.pcbi.1003792.g016
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complexes, VASP-E predicted 22 amino acids that either increase

or decrease affinity upon mutation, all in agreement with

established experimental results. Solid representations enable a

deconstructive analysis of electrostatic fields that permits the

discovery of individual residues that influence binding preferences

in protein-ligand and protein-protein binding sites.

As the first approach to the comparison of electrostatic

isopotentials with CSG, VASP-E exhibits novel potential for

useful experimental applications. In experimental settings, identi-

fying mutants that may alter binding specificity can be a time

consuming and expensive effort with many possible mutants to

consider. VASP-E identifies amino acids that might play a role in

specificity, and, in addition, it suggests a biophysical mechanism

for that amino acid: It may increase or decrease electrostatic

complementarity. This additional information, beyond simply

identifying an important amino acid, provides utility beyond the

identification of important amino acids because it suggests how

that amino acid might be tested, such as by mutation to an

uncharged or oppositely charged residue. When comparing

protein-ligand binding cavities, pointing out amino acids that

create electrostatic differences can inform experimental design.

VASP-E has the potential to serve broad applications. For

example, identifying groups of amino acids that work together to

achieve specificity can be an especially difficult problem, because

of the combinatorial space of variants that must be considered.

Nullification, as applied to individual amino acids in this paper,

could be exhaustively applied to many combinations of residues to

assist in experimental design. Given the rapid performance of

VASP-E and the expanding availability of parallel computing,

examining combinations of influential amino acids would also be

very practical. Furthermore, the analysis of influential amino acids

at protein-protein interfaces is not limited to dimers; the approach

described here could be logically extended to higher order

interactions. For such applications, interfaces between specific

chains could be considered individually or in groups, to reflect the

order in which the complex associates. Finally, while VASP-E is

designed to identify subtle variations among highly similar

proteins, VASP-E could in principle be used to analyze

electrostatic similarities and differences among binding sites from

very different proteins, as long as structural alignments could be

correctly generated and binding cavities can be properly defined.

These diverse applications suggest that the integrated representa-

tion and comparison of structure and electrostatics may offer an

important new tool in the study of drug resistance and algorithms

for specificity annotation.

Supporting Information

Figure S1 Patterns of electrostatic similarity in the S1 specificity

pockets of trypsins and chymotrypsins, relative to P1 binding

preference. The color coding in all trees, which is independent of

tree topology, indicates the types of P1 residue preferred by each

protein. Trypsins (blue) prefer basic amino acids and chymotryp-

sins prefer large hydrophobic amino acids (red). The topology of

each tree reflects patterns of similarity measured with the Jaccard

distance on cavity fields generated at different isopotential

thresholds. In each tree, proteins on adjacent branches have

greater similarity than proteins on different subtrees. The topology

of the trees reflect UPGMA clustering of serine protease cavity

fields generated at (a) 2.5 kT/e, (b) 5.0 kT/e, (c) 7.5 kT/e, (d) and

10.0 kT/e.

(EPS)

Figure S2 Patterns of similarity and variation in the sequence,

backbone structure, and cavity fields of trypsins and chymotrypsin,

relative to P1 binding preference. The color coding in all trees,

which is independent of tree topology, indicates the types of P1

residue preferred by each protein. Trypsins (blue) prefer basic

amino acids and chymotrypsins prefer large hydrophobic amino

acids (red). The topology of each tree reflects patterns of similarity

measured with different comparison algorithms. In each tree,

proteins on adjacent branches have greater similarity than proteins

on different subtrees. The topology of tree (a) reflects sequence

similarity measured with Clustalw 2.0.7, the topology of (b) reflects

backbone structure similarity measured with ska, the topology of

(c) reflects cavity field similarity measured with the Jaccard

distance, and the topology of (d) reflects sequence similarity as

measured with clustal omega. Jaccard similarity positions serine

proteases with similar P1 binding preferences more closely than

the other similarity measures do.

(EPS)

Figure S3 Patterns of electrostatic similarity in the S2 specificity

pockets of cathepsin B, cathepsin L, and papain, relative to P2

binding preference. The color coding in all trees, which is

independent of tree topology, indicates the types of P2 residue

preferred by each protein. Cathepsin B’s (red) prefer basic amino

acids and cathepsin L and papain (blue) prefer large hydrophobic

amino acids. The topology of each tree reflects patterns of

similarity measured with the Jaccard distance on cavity fields

generated at different isopotential thresholds. In each tree, proteins

on adjacent branches have greater similarity than proteins on

different subtrees. The topology of the trees reflect UPGMA

clustering of cysteine protease cavity fields generated at (a) 2.5 kT/

e, (b) 5.0 kT/e, (c) 7.5 kT/e, (d) and 10.0 kT/e.

(EPS)

Figure S4 Patterns of similarity and variation in the sequence,

backbone structure, and cavity fields of cysteine proteases,

relative to P2 binding preference. The color coding in all trees,

which is independent of tree topology, indicates the types of P2

residue preferred by each protein. Cathepsin B’s (red) prefer basic

amino acids and cathepsin L and papain (blue) prefer large

hydrophobic amino acids. The topology of each tree reflects

patterns of similarity measured with different comparison

algorithms. In each tree, proteins on adjacent branches have

greater similarity than proteins on different subtrees. The

topology of tree (a) reflects sequence similarity measured with

Clustalw 2.0.7, the topology of (b) reflects backbone structure

similarity measured with ska, the topology of (c) reflects cavity

field similarity measured with the Jaccard distance, and the

topology of (d) reflects sequence similarity as measured with

clustal omega. Jaccard similarity positions cysteine proteases with

similar P2 binding preferences in a manner similar to the other

similarity measures.

(EPS)

Text S1 Text S1 includes three supplemental notes describing

the calibration of the method.

(PDF)
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2.2 å crystal structure of the ras-binding domain of the serine/threonine kinase

c-raf1 in complex with rapla and a gtp analogue. Nature 375: 554–560.
106. Kyriakis J, App H, Zhang XF, Banerjee P, Brautigan D, et al. (1992) Raf-1

activates map kinase-kinase. Nature 358: 417–421.
107. Kiel C, Serrano L, Herrmann C (2004) A detailed thermodynamic analysis of

ras/effector complex interfaces. J Mol Biol 340: 1039–1058.

108. Jaitner B, Becker J, Linnemann T, Herrmann C, Wittinghofer A, et al. (1997)
Discrimination of amino acids mediating ras binding from noninteracting

residues affecting raf activation by double mutant analysis. J Biol Chem 272:
29927–29933.

109. Herrmann C, Martin G, Wittinghofer A (1995) Quantitative analysis of the
complex between p21 and the ras-binding domain of the human raf-1 protein

kinase. J Biol Chem 270: 2901–2905.

110. Nassar N, Horn G, Herrmann C, Block C, Janknecht R, et al. (1996) Ras/rap
effector specificity determined by charge reversal. Nat Struct Mol Biol 3: 723–

729.
111. Akasaka K, Tamada M, Wang F, Kariya KI, Shima F, et al. (1996) Differential

structural requirements for interaction of ras protein with its distinct

downstream effectors. J Biol Chem 271: 5353–5360.
112. Gasper R, Thomas C, Ahmadian M, Wittinghofer A (2008) The role of the

conserved switch ii glutamate in guanine nucleotide exchange factor-mediated
nucleotide exchange of gtp-binding proteins. J Mol Biol 379: 51–63.

113. DeClue J, Stone J, Blanchard R, Papageorge A, Martin P, et al. (1991) A ras

effector domain mutant which is temperature sensitive for cellular transforma-
tion: interactions with gtpase-activating protein and nf-1. Mol Cell Biol 11:

3132–3138.

VASP-E: Specificity Annotation with Electrostatic Isopotentials

PLOS Computational Biology | www.ploscompbiol.org 17 August 2014 | Volume 10 | Issue 8 | e1003792


