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Carcinoma
Ze-Bing Song, Yang Yu, Guo-Pei Zhang and Shao-Qiang Li*

Department of Liver Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China

Hepatocellular carcinoma (HCC) is one of the major cancer-related deaths worldwide.
Genomic instability is correlated with the prognosis of cancers. A biomarker associated
with genomic instability might be effective to predict the prognosis of HCC. In the present
study, data of HCC patients from The Cancer Genome Atlas (TCGA) and International
Cancer Genome Consortium (ICGC) databases were used. A total of 370 HCC patients
from the TCGA database were randomly classified into a training set and a test set.
A prognostic signature of the training set based on nine overall survival (OS)–related
genomic instability–derived genes (SLCO2A1, RPS6KA2, EPHB6, SLC2A5, PDZD4,
CST2, MARVELD1, MAGEA6, and SEMA6A) was constructed, which was validated
in the test and TCGA and ICGC sets. This prognostic signature showed more accurate
prediction for prognosis of HCC compared with tumor grade, pathological stage, and
four published signatures. Cox multivariate analysis revealed that the risk score could
be an independent prognostic factor of HCC. A nomogram that combines pathological
stage and risk score performed well compared with an ideal model. Ultimately, paired
differential expression profiles of genes in the prognostic signature were validated
at mRNA and protein level using HCC and paratumor tissues obtained from our
institute. Taken together, we constructed and validated a genomic instability–derived
gene prognostic signature, which can help to predict the OS of HCC and help us to
explore the potential therapeutic targets of HCC.

Keywords: hepatocellular carcinoma, genomic instability, prognostic signature, TCGA, ICGC

INTRODUCTION

Hepatocellular carcinoma (HCC) is the sixth most prevalent cancer, and its mortality remains the
fourth cancer-related deaths worldwide (Bray et al., 2018). The overall survival (OS) rate for HCC
remains low because of its late stage at diagnosis and high recurrence after curative treatment (Bruix
et al., 2014; Joliat et al., 2017; Zheng et al., 2017).

In the past decades, serum alpha-fetoprotein (AFP) is the traditional biomarker for diagnosis,
outcome prediction, and evaluation of response to therapy in HCC. However, the level of
AFP is influenced by other factors, such as cancer stage, tumor size, and underlying liver
disease. Currently, AFP is lack of sufficient specificity and sensitivity for diagnosis of HCC

Frontiers in Cell and Developmental Biology | www.frontiersin.org 1 October 2021 | Volume 9 | Article 728574

https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org/journals/cell-and-developmental-biology#editorial-board
https://www.frontiersin.org/journals/cell-and-developmental-biology#editorial-board
https://doi.org/10.3389/fcell.2021.728574
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3389/fcell.2021.728574
http://crossmark.crossref.org/dialog/?doi=10.3389/fcell.2021.728574&domain=pdf&date_stamp=2021-10-05
https://www.frontiersin.org/articles/10.3389/fcell.2021.728574/full
https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles


fcell-09-728574 September 29, 2021 Time: 17:21 # 2

Song et al. Genomic Instability Based Prognostic Signatures

(Bruix and Sherman, 2011; Kudo, 2015). As a result, the prognosis
of HCC patients remains highly heterogeneous. Hence, some
effective and sensitive new biomarkers are needed to improve the
prognosis of HCC patients.

It is known that genetic mutation plays an important role in
the carcinogenesis and progression of cancers. Many previous
studies have revealed that genetic mutation of some vital genes
has significant relevance to the development and prognosis
of HCC. Activating mutations in CTNNB1 are negatively
correlated with the prognosis of HCC related to alcoholic
cirrhosis (Schulze et al., 2015). While inactivating mutations
of TP53 are negatively affected the prognosis of HCC with
hepatitis B virus infection (Nishida et al., 1993). Thus, genomic
instability may serve as an important prognostic biomarker
for cancers (Suzuki et al., 2003; Ottini et al., 2006). Several
prognostic signatures based on genomic instability have been
constructed for predicting survival of patients with breast
cancer (Habermann et al., 2009; Bao et al., 2020) and ovarian
cancer (Wang et al., 2017). To date, genomic instability–
derived gene biomarkers for HCC have not been explored.
In the present study, we construct a genomic instability–
derived genes (GIGs) prognostic signature (GIGSig) to predict
the OS of patients with HCC and explore the potential
therapeutic targets of HCC based on The Cancer Genome
Atlas (TCGA) and International Cancer Genome Consortium
(ICGC) databases.

In addition, UBQLN4 is closely correlated with genomic
instability and overexpressed in various malignancies
(Jachimowicz et al., 2019). UBQLN4 may act as a biomarker
for genomic instability. Therefore, we also analyzed the
expression profile of UBQLN4 between genomic-unstable
(GU)–like group and genomic-stable (GS)–like group with the
aim to evaluate the genomic instability in different groups of
patients with HCC.

MATERIALS AND METHODS

Data Source
The transcriptomic profiling of RNA sequencing data, simple
nucleotide variation data, and clinical data of HCC patients were
collected from the TCGA database. The patients were randomly
categorized into a training (n = 186) and test (n = 184) set.
The demographic characteristics of the training, test and TCGA
sets were shown in Table 1. The clinicopathological variables
were not significantly different between the training and test
sets. To externally validate the predictive value of the prognostic
signature, the simple nucleotide variation data and the LIRI-JP
data set from the ICGC database were used.

Identification of Genomic
Instability–Derived Genes in the Cancer
Genome Atlas and International Cancer
Genome Consortium Data Sets
The mutations that cause amino acid changes are defined as
gene mutations. The cumulative numbers of gene mutations

TABLE 1 | Clinicopathological parameters of HCC patients in the training, test,
and TCGA data sets.

Covariates Type Total Training Test P-value

Age ≤65 years 232 (63%) 111 (60%) 121 (66%) 0.2703

>65 years 138 (37%) 75 (40%) 63 (34%)

Unknown 0 (0%) 0 (0%) 0 (0%)

Gender Female 121 (33%) 63 (34%) 58 (32%) 0.7108

Male 249 (67%) 123 (66%) 126 (68%)

Grade G1–2 232 (63%) 112 (60%) 120 (65%) 0.4063

G3–4 133 (36%) 71 (38%) 62 (34%)

Unknown 5 (1%) 3 (2%) 2 (1%)

Stage I–II 256 (69%) 122 (66%) 134 (73%) 0.2433

III–IV 90 (24%) 50 (27%) 40 (22%)

Unknown 24 (6%) 14 (8%) 10 (5%)

T T1–2 274 (74%) 132 (71%) 142 (77%) 0.282

T3–4 94 (25%) 52 (28%) 42 (23%)

Unknown 2 (1%) 2 (1%) 0 (0%)

M M0 266 (72%) 132 (71%) 134 (73%) 0.6144

M1 4 (1%) 3 (2%) 1 (0.5%)

Unknown 100 (27%) 51 (27%) 49 (26.5%)

N N0 252 (68%) 125 (67%) 127 (69%) 0.6143

N1 4 (1%) 3 (2%) 1 (0.5%)

Unknown 114 (31%) 58 (31%) 56 (30.5%)

for each sample in the TCGA and ICGC sets were calculated
by the Perl software. Subsequently, samples were ranked and
classified into GU-like group (the top 25% of patients) and
GS-like group (the last 25% of patients) according to the
number of gene mutations. Then, differentially expressed gene
analyses between GS-like and GU-like group were performed
using the Limma R package; | log2 fold change| > 1 and
false discovery rate <0.05 were set as the cutoff values. Genes
differentially expressed in both the TCGA and ICGC data sets
were defined as GIGs. The Gene Ontology (GO) and Kyoto
Encyclopedia of Genes and Genomes (KEGG) function analyses
were performed to explore the potential molecular function of
these GIGs. Based on GIGs, hierarchical cluster analyses of TCGA
and ICGC sets were performed using Euclidean distances and
Ward’s linkage method.

Development and Validation of the
Genomic Instability–Derived Gene
Prognostic Signature
We then developed a GIGSig in the training set and validated
in the test and TCGA and ICGC sets. The OS was selected
as the primary efficacy end point in this study. Cox univariate
analysis was performed in the training set to identify the OS-
related GIGs; P < 0.05 was selected as the cutoff value. Least
absolute shrinkage and selection operator (LASSO) analysis was
performed to avoid overfitting the prognostic signature. Cox
multivariate analysis was performed to construct a GIGSig.
Kaplan–Meier curves were plotted to compare the OS of high-
and low-risk groups. The receiver operating characteristic (ROC)
curve was plotted, and the area under the ROC (AUC) was
calculated to evaluate the predictive efficacy of this signature.
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TABLE 2 | The primers of genes.

Genes Forward primers Reverse primers

SLCO2A1 5′-ACTCTTCGTCCTGGTGGTCCTG-3′ 5′-CTGCTGAGGTGCCATACTGCTTC-3′

SLC2A5 5′-GGATGAGGTGGCTTTGAGTGATGG-3′ 5′-ACTGGTGGCTGTCATTGCTATGC-3′

SEMA6A 5′-GCAGGACATAGAGCGTGGCAATAC-3′ 5′-CTGGGCAAGAGGGAACTGGAATG-3′

PDZD4 5′-CTGAAAGCCCGTGCCCTGAAG-3′ 5′-TTCCGCTCCTCCTTGCTCCAG-3′

MAGEA6 5′-GCATGAGTGGGCTTTGAGAGAGG-3′ 5′-CGTCACAGGAGGCAGTGGAAAC-3′

EPHB6 5′-CGACAGCCCTGACAGCGTTTC-3′ 5′-GCAGAGGAAGAAGAGGAGGAGGAG-3′

CST2 5′-CCCAGGAGGAGGACAGGATAATCG-3′ 5′-ACTCGCTGATGACAAAGTGAAGGG-3′

RPS6KA2 5′-GAGGAGGATGTCAAGTTCTACC-3′ 5′-CTCAGGCTTCAGATCTCTGTAG-3′

MARVELD1 5′-CCCAGGATGAGCGACGAGTTTG-3′ 5′-CAAGACAACCGAGCACAGAGAGAC-3′

GAPDH 5′-ACAACTTTGGTATCGTGGAAGG-3′ 5′-GCCATCACGCCACAGTTTC-3′

The clinicopathological features and risk score were analyzed
by univariate and multivariate Cox analyses to explore the risk
factors that affected the survival of HCC patients. Subgroup
analysis and the correlation analysis between the risk score and
clinicopathological characteristics were performed.

Development and Validation of a
Nomogram for Predicting OS of
Hepatocellular Carcinoma
A nomogram that integrated the independent prognostic factors
selected from multivariate regression analysis was developed to
predict the OS of HCC patients at 1, 3, and 5 years. The prediction
accuracy of this nomogram was validated by comparing the
observed actual probability with the calibration curve.

Tissue Samples
Thirty HCC tissues and paired adjacent non-cancerous liver
tissues were collected from patients who underwent liver
resection in the First Affiliated Hospital of Sun Yat-sen University
from June 2019 to December 2019. The samples were snap-frozen
in liquid nitrogen and stored at −80◦C before RNA and protein
extraction. This study was approved by the Ethics Committee of
the First Affiliated Hospital of Sun Yat-sen University [Approval
number (2021)158].

Quantitative Real-Time Reverse
Transcription Polymerase Chain
Reaction
Total RNA was isolated from the tissues using TRIZOL reagent
(Invitrogen, CA, United States) according to the manufacturer’s
instructions. Complement DNAs (cDNAs) were reverse
transcribed using SuperScript First-Stand Synthesis system
(Invitrogen, Carlsbad, CA, United States). The synthesized
cDNAs were used for real-time polymerase chain reaction (PCR)
with reverse transcriptase–PCR System (Roche, LightCycler480
II, Switzerland), and the conditions were performed according
to the manufacturer’s instructions. The primers of GAPDH
were used as internal loading control. All primers are shown
in Table 2. Samples were normalized to internal housekeeping
genes. All the values were standardized with 2−1 1 CT method.

Western Blot
We extracted proteins by using RIPA lysis buffer with 1%
proteinase inhibitor and quantified by a BCA kit (Thermo,
United States). Equal amounts of proteins (20 µg) were separated
by 7.5, 10, or 12.5% sodium dodecyl sulfate–polyacrylamide gel
electrophoresis based on the molecular weight of the proteins and
transferred onto polyvinylidene fluoride membranes (Millipore,
United States). After blocking for 2 h with 5% skim milk powder
at room temperature, membranes were incubated with primary
antibodies at 4◦C overnight. The primary antibodies are shown
in Supplementary Table 1. The membranes were then incubated
with horseradish peroxidase (HRP)–conjugated goat anti-
rabbit secondary antibody (1:5,000, Abcam, United Kingdom)
for 11/2 h and visualized using the Immobilon Western
Chemiluminescent HRP Substrate (Millipore, United States).

Statistical Analysis
All the statistical analysis was performed by R software (version
3.6.1) and Perl software (version 5.30). P < 0.05 was set as the
cutoff value of significance.

RESULTS

Identification of Genomic
Instability–Derived Genes and
Development of a Genomic
Instability–Derived Gene Prognostic
Signature
A total of 363 samples of TCGA and 270 samples of ICGC data
set were identified as gene mutation samples. Gene differential
expression analysis identified 656 down-regulated and 58 up-
regulated genes in the TCGA set (Figure 1A) and 1,853
down-regulated and 176 up-regulated genes in the ICGC set
(Figure 1B). Subsequently, 509 genes were identified to be
differentially expressed in both the TCGA and ICGC sets, which
were defined as GIGs in the present study (Figure 1C).

Gene Ontology analysis of these GIGs revealed that
“extracellular matrix organization,” “collagen-containing
extracellular matrix,” and “extracellular matrix structural
constituent” were the most frequently involved biological
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FIGURE 1 | Identification of GIGs and construction of a GIGSig. (A,B) Heatmaps of the top 20 differentially expressed genes between GS-like and GU-like group of
the TCGA and ICGC profiles, respectively. (C) Intersect of GIGs of the TCGA and ICGC sets. (D) The results of LASSO analysis of OS-related GIGs. (E) Univariate
Cox regression analysis of GIGs to identify 27 OS-related GIGs. (F) Multivariable Cox regression analysis to construct a nine-gene-based prognostic signature for
HCC.

terms under the biological processes, cellular components, and
molecular functions, respectively (Supplementary Figure 1A).
In the KEGG analysis, the main pathways related to these GIGs
were the PI3K-Akt pathway, the Wnt pathway, and the MAPK
pathway (Supplementary Figure 1B).

Based on the expression levels of the 509 GIGs, unsupervised
hierarchical clustering analysis was performed on 374 samples
of the TCGA set (Supplementary Figure 1C) and 237
samples of the ICGC set (Supplementary Figure 1D). The
samples were categorized as the GS-like and GU-like groups.
Somatic mutations counts were significantly higher in the GU-
like group than that in the GS-like group in both TCGA
(Supplementary Figure 1E) and ICGC sets (Supplementary
Figure 1F). UBQLN4 is one of the key genes driving biological
process of genomic instability. Therefore, the expression levels

of UBQLN4 between the GS-like and GU-like groups were
measured. Higher expression of UBQLN4 was identified in
the GU-like group when compared to the GS-like group in
both the TCGA (Supplementary Figure 1G) and ICGC sets
(Supplementary Figure 1H).

Among them, 27 of 509 GIGs identified by the Cox
univariate analysis were correlated with the OS in the training
set (Figure 1E), and 14 of 27 OS-related GIGs were suitable
to establish a prognostic signature based on the LASSO
analysis (Figure 1D). Finally, 9 of 14 GIGs were selected
by the Cox multivariate analysis to construct a prognostic
signature (Figure 1F).

The prognostic signature was presented as a risk
score that was calculated by multiplying the gene
expression levels and Cox regression coefficients.
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FIGURE 2 | Evaluation of the GIGSig in the training, test, TCGA, and ICGC sets. The expression patterns of GIGs in GIGSig and the distribution of somatic mutation
count distribution and UBQLN4 expression for patients in high- and low-risk groups in the training set (A), test set (B), TCGA set (C), and ICGC set (D). The
distribution of somatic mutation and UBQLN4 expression in patients of high- and low-risk groups in the training set (E,I), test set (F,J), TCGA set (G,K), and ICGC
set (H,L). Box plot of correlation between the risk score and clinical stages in the training set (M), test set (N), TCGA set (O), and ICGC set (P). Box plot of
correlation between the risk score and tumor grade in the training set (Q), test set (R), and TCGA set (S). Horizontal lines: median values.

The formula was as follows: risk score = (expression
level of SLCO2A1 × −0.1137) + (expression level of
RPS6KA2×−0.2461) + (expression level of EPHB6× 0.0503) +
(expression level of SLC2A5 × 0.0441) + (expression level of
PDZD4 × −0.9111) + (expression level of CST2 × 0.1804)
+ (expression level of MARVELD1 × 0.1193) + (expression level
of MAGEA6× 0.0266) + (expression level of SEMA6A× 0.0645).

Evaluation and Validation of the Genomic
Instability–Derived Gene Prognostic
Signature
Hepatocellular carcinoma patients of the training, test, TCGA,
and ICGC sets were categorized into the high- and low-risk
groups by the median value of the risk score in the training set.
The heatmap analysis indicated that six GIGs were positively
related to the risk score, and the other three GIGs were
negatively associated with the risk score. Somatic mutation count
and UBQLN4 expression of patients were positively related to
the risk score (Figure 2). Furthermore, patients in the high-
risk group have a higher somatic mutation count and higher
UBQLN4 expression compared with those in the low-risk group
in the training, test, TCGA, and ICGC sets (Figure 2). Clinical
correlation analysis revealed that the risk score was related to
pathological stage and tumor grade in the training and TCGA
and ICGC sets (Figure 2).

Patients in the high-risk group had a significantly poorer OS
than those in the low-risk group in the training (Figure 3A), test
(Figure 3B), TCGA (Figure 3C), and ICGC sets (Figure 3D).

The AUCs of the GIGSig in the training (Figure 3E), test
(Figure 3F), TCGA (Figure 3G), and ICGC sets (Figure 3H)
were 0.781, 0.711, 0.746, and 0.794, respectively. Furthermore,
the AUCs of the GIGSig were markedly higher than the AUCs
of pathological stage and tumor grade, respectively.

Cox univariate and multivariate analyses revealed that the risk
score and pathological stage were independent prognostic factors
for patients in the training, test, ICGC, and TCGA sets (Table 3).

Performance Comparison of the
Genomic Instability–Derived Gene
Prognostic Signature With Previous
Gene Signatures for OS Prediction in
HCC Patients
To further evaluate the predictive efficacy of GIGSig on OS,
we compared the AUC of OS at 3 years of GIGSig with other
four published gene signatures using the same TCGA data set.
These four signatures included a six-gene-based signature by Liu
et al. (2019), a nine-immune-gene-based signature by Wang et al.
(2020), a 6-immune-gene-based signature by Xu et al. (2021),
and a 4-gene-based signature by Yan et al. (2019). The AUC of
OS at the 3-year of GIGSig was 0.713, which was higher than
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FIGURE 3 | Evaluation and validation of the predictive values of GIGSig. Kaplan–Meier analysis of OS of patients in high- and low-risk groups predicted by the
GIGSig in the training set (A), test set (B), TCGA set (C), and ICGC set (D). ROC curve analysis of the GIGSig of the training set (E), test set (F), TCGA set (G), and
ICGC set (H).

TABLE 3 | Univariate and multivariate cox regression analysis of the GIGSig and clinicopathologic factors in different patient sets.

Variables Univariate analysis Multivariate analysis

Hazard ratio (95% CI) P-value Hazard ratio (95% CI) P-value

Training set (n = 186)

Age 1.006 (0.983–1.029) 0.587 NA NA

Gender Male/female 1.322 (0.751–2.329) 0.333 NA NA

Tumor grade G1/G2/G3/G4 1.315 (0.898–1.926) 0.160 NA NA

Pathologic stage I/II/III/IV 1.706 (1.270–2.291) <0.001 1.519 (1.112–2.075) 0.008

Risk score High/low 1.219 (1.145–1.298) <0.001 1.187 (1.112–1.267) <0.001

Test set (n = 184)

Age 1.013 (0.994–1.033) 0.187 NA NA

Gender Male/female 0.470 (0.279–0.793) 0.004 0.496 (0.293–0.837) 0.008

Tumor grade G1/G2/G3/G4 1.013 (0.722–1.422) 0.94 NA NA

Pathologic stage I/II/III/IV 1.737 (1.284–2.352) <0.001 1.693 (1.251–2.292) <0.001

Risk score High/low 1.135 (1.039–1.294) <0.001 1.097 (1.015–1.171) 0.006

TCGA set (n = 370)

Age 1.01 (0.996–1.025) 0.174 NA NA

Gender Male/female 0.776 (0.531–1.132) 0.188 NA NA

Tumor grade G1/G2/G3/G4 1.133 (0.881–1.457) 0.329 NA NA

Pathologic stage I/II/III/IV 1.680 (1.369–2.061) <0.001 1.672 (1.363–2.052) <0.001

Risk score High/low 1.075 (1.04–1.111) <0.001 1.079 (1.041–1.120) <0.001

ICGC set (n = 232)

Age 1.003 (0.973–1.034) 0.841 NA NA

Gender Male/female 0.516 (0.277–0.961) 0.037 0.40 (0.212–0.756) 0.004

Pathologic stage I/II/III/IV 2.138 (1.481–3.087) <0.001 2.316 (1.602–3.348) <0.001

Risk score High/low 1.219 (1.096–1.356) 0.005 1.118 (1.056–1.268) <0.001

Liu’s (0.622), Wang’s (0.699), Xu’s (0.688), and Yan’s signature
(0.694) (Figure 4). These results suggested that the predictive
performance of the present GIGSig is more accurate than the
above four published gene signatures.

Subgroup Analysis
Subgroup analysis of the training, test, TCGA, and ICGC
sets were performed based on age (>65 and ≤65 years),
gender (female and male), tumor grade (grades 1–2
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FIGURE 4 | The AUC at 3 years of OS for the GIGSig and the four previously
reported gene-based signatures.

and grades 3–4), pathological stage (stages I–II and III–
IV), tumor stages (T1–2 and T3–4), distant metastasis
status (M0), and lymph node metastasis status (N0).
In each subgroup of the training set (Supplementary

Figure 2), TCGA set (Supplementary Figure 4), and
ICGC set (Supplementary Figure 2), subgroup analysis
showed that GIGSig performed well in predicting OS
of HCC patients. While in subgroup analysis of the test
set, except for patients in subgroups of age >65 years
and G3–4, patients of other subgroups in the high-risk
group have poorer OS than those in the low-risk group
(Supplementary Figure 3).

Construction of a Nomogram for
Predicting OS of Hepatocellular
Carcinoma
As shown in Figure 5, we developed a 1-, 3-, and 5-year
OS predictive nomogram by integrating the risk score and
pathological stage. Calibration plots showed that our nomogram
performed well in OS prediction.

Paired Differential Expression Analysis of
Genes Included in Genomic
Instability–Derived Gene Prognostic
Signature
We performed paired differential expression analysis to explore
the aberrant expression of the nine genes recruited in GIGSig
between HCC samples and non-tumor liver samples in the
TCGA and ICGC sets. Fifty paired tissues in the TCGA
set and 198 paired tissues in the ICGC set were included.

FIGURE 5 | Construction of an OS predicted nomogram. (A) A nomogram integrates the risk score of GIGSig with pathological stage to predict the OS at 1, 3, and
5 years of HCC. Calibration curves of OS at 1 (B), 3 (C), and 5 years (D).
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FIGURE 6 | Paired differential expression analysis of genes in the GIGSig. (A,B) Paired differential expression profiles of genes in the TCGA samples. (C,D) Paired
differential expression profiles of genes in the ICGC samples. (E,F) Paired differential mRNA expression of genes in the HCC tissues from our institute.

The results showed that the mRNA expressions of seven
genes in both TCGA and ICGC sets were significantly
different between HCC samples and non-tumor samples,
including six genes (CST2, EPHB6, MAGEA6, SEMA6A,
SLC2A5, and SLCO2A1), and were highly expressed in HCC
samples and one gene (PDZD4) expressed low in HCC
samples (Figure 6).

Validation of the mRNA and Protein
Expression Profile of Genomic
Instability–Derived Gene Prognostic
Signature in Clinical Tissues
We further validated the differential mRNA expression level of
the above nine genes in 30 pairs of HCC tissues and adjacent non-
cancerous liver tissues collected from our hospital. The results

showed that the mRNA levels of five genes (CST2, EPHB6,
MAGEA6, SEMA6A, and SLCO2A1) were significantly elevated
in the HCC tissues, whereas PDZD4 was down-regulated in
the HCC tissues when compared with those in the paratumor
tissues (Figure 6). These results were consistent with the results
of TCGA and ICGC profile. In addition, the protein levels of
the above nine genes in six pairs of HCC tissues and paratumor
tissues were detected by using Western blot. As shown in
Figure 7, the protein level of CST2 was significantly elevated
in the HCC tissues of patients 1, 2, 4, 5, and 6, whereas it
was decreased in patient 3. The protein level of EPHB6 was
significantly elevated in the HCC tissues of patients 3, 4, 5, and 6
and decreased in patients 1 and 2. The protein level of MAGEA6
was significantly elevated in the HCC tissues of patients 1, 2, 4,
and 5 and decreased in patients 3 and 6. The protein level of
SEMA6A significantly elevated in the HCC tissues of patients
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FIGURE 7 | Protein expression profiles of genes in the GIGSig analyzed based on normal and tumor tissues from six patients diagnosed with HCC in the institute of
The First Affiliated Hospital of Sun Yat-sen University between the years June 2019 to December 2019. N, normal tissue; T, tumor tissue.

1, 2, 3, 4, and 5 and decreased in patient 6. The protein level
of SLCO2A1 was significantly elevated in the HCC tissues of
patients 1, 3, 4, and 5 and decreased in patient 2, and there
was no significant difference in patient 6. The protein level of
PDZD4 was significantly decreased in HCC tissues of patients
1, 3, 4, and 6 and increased in patients 2 and 5. The protein
levels of RPS6KA2, MARVELD1, and SLC2A5 had no significant
difference between the HCC tissues and paratumor tissues.

DISCUSSION

Genomic instability plays an important role in the development,
progression, and recurrence of various cancers (Bartkova et al.,
2005; Gorgoulis et al., 2005; Kronenwett et al., 2006; Mettu et al.,
2010; Negrini et al., 2010). Therefore, genomic instability could
be a promising biomarker to predict the oncological outcome
of patients with cancers. In this present study, we constructed a
novel survival predictive model for HCC patients by using nine
genes derived from genome instability.

With a series of bioinformatics analysis by using the HCC
database in TCGA, a novel OS predictive model, namely, GIGSig,
based on the nine genes derived from genome instability was
generated. Clustering analysis revealed that patients in the GU-
like group have higher somatic mutation count and higher
UBQLN4 expression than those in the GS-like group. Somatic
mutation count and UBQLN4 expression level are positively
correlated with genome instability process (Jachimowicz et al.,
2019). Our results of clustering analysis revealed that these genes
are associated with genome instability. In addition, GO and
KEGG functional analysis revealed that the biological functions
of these genes are mainly correlated with the development and
progression of cancers. These results reveal that genes derived
from genome instability may play a vital role in HCC prognosis
and could be used to construct a prognostic signature.

According to GIGSig score, HCC patients could be divided
into two distinct groups: the high-risk group and the low-risk
group. Patients in the high-risk group had poorer OS, higher
somatic mutation count, and higher UBQLN4 expression than
those in the low-risk group. Subgroup analysis indicated that
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GIGSig can discriminate patients with poor OS, even though
they were with early-stage tumor classified by conventional TNM
staging. The AUC of GIGSig is the highest compared with the
pathological stage, tumor grade, and the four published gene-
based prognostic signatures. These results collectively supported
that our GIGSig is an effective prognostic signature to predict the
OS of HCC patients.

In addition, the present signature was validated externally
and internally, whereas the published gene-based signatures
were validated only externally. We also performed subgroup
analysis to further validate the predictive value of the
signature for HCC patients in different statuses classified
by clinical features. The results showed that the signature
performed well. This result indicated that the gene signature
we developed is more clinically meaningful compared with
published articles.

To integrate GIGSig with other OS predictive factors, a
nomogram model was proposed. Because the GIGSig score and
pathological stage were independent OS predictors for HCC,
we constructed a nomogram by integrating the GIGSig score
and pathological stage to predict the OS of HCC. The GIGSig-
based nomogram performed well in OS prediction, which was
proved by the calibration curve. Therefore, our GIGSig-based
nomogram may be a potential accurate predictive model for
predicting the OS of HCC.

Nine genes in GIGSig were SLCO2A1, RPS6KA2, EPHB6,
SLC2A5, PDZD4, CST2, MARVELD1, MAGEA6, and SEMA6A.
These genes and their biological functions have been studied
in some tumors. SLCO2A1 has been reported to promote the
development of colon cancer by PGE2 uptake into the endothelial
cells (Nakanishi et al., 2017). Metabolic abnormalities of EPHB6
promote cancer development and progression, which was proven
in invasive melanoma (Hafner et al., 2003) and prostate, gastric,
and ovarian cancers (Eph Nomenclature Committee, 1997).
SLC2A5 is an oncogene and up-regulated in some cancers, that
is, lung cancer (Weng et al., 2018) and acute myeloid leukemia
(Zhao et al., 2018). Previous studies showed that CST2 was
expressed higher in breast cancer tissues compared with normal
mammary tissues (Egland et al., 2003). High CST2 expression led
to a poor prognosis in gastric cancer patients (Zhang et al., 2020).
MAGEA6 was identified as an oncogene and can promote tumor
progression via activating the AMPK signaling pathway (Pineda
et al., 2015). PDZD4 is up-regulated in synovial sarcomas, and
high expression of PDZD4 promotes the proliferation capacity of
synovial sarcomas cells (Nagayama et al., 2004).

SEMA6A is down-regulated in lung cancer cells. High
expression of SEMA6A suppressed cancer cell migration
(Chen et al., 2019). Although in the work of Yu et al.
(2012), MARVELD1 was down-regulated in HCC tissues, and
high expression of MARVELD1 suppressed proliferation and
enhanced chemosensitivity of HCC cells, our results showed that
there was no significant differential expression of MARVELD1
in both TCGA and ICGC paired tumor and normal samples.
Genetic variation of RPS6KA2 was related to the carcinogenesis
of colorectal cancer (Slattery et al., 2011). RPS6KA2 was also
identified as a cancer suppressor gene in epithelial ovarian cancer
(Bignone et al., 2007).

We validated the expression profiles of the nine genes in
the GIGSig at mRNA and protein levels using paired HCC and
paratumor tissues from our department. The results showed that
the mRNA expressions of six genes (CST2, EPHB6, MAGEA6,
PDZD4, SEMA6A, and SLCO2A1) were differentially expressed
between the HCC tissues and paratumor liver tissues from the
TCGA, the ICGC, and our clinical samples. In addition, we also
validated the protein expression level of these nine GIGs by using
Western blot. The protein expression patterns were consistent
with the mRNA. Notably, the expression profiles of these nine
genes in HCC were somewhat different from their expression
patterns in other cancers. This may be due to the different disease
entities and the small sample size of our validated cohort.

Although preliminary in vitro experiments have verified the
differential expression of these GIGs in HCC and paratumor liver
tissues, the small sample size used for protein validations is the
limitation of our research. Therefore, further in vivo and in vitro
experiments are needed to explore the molecular mechanism of
these GIGs in HCC.

To conclude, we constructed and validated a GIGSig that can
help in predicting the OS of patients with HCC and may help us
to explore the potential therapeutic targets of HCC.
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