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ABSTRACT

Retroviruses integrate into the host genome in
patterns specific to each virus. Understanding the
causes of these patterns can provide insight into
viral integration mechanisms, pathology and
genome evolution, and is critical to the development
of safe gene therapy vectors. We generated murine
leukemia virus integrations in human HepG2 and
K562 cells and subjected them to second-gener-
ation sequencing, using a DNA barcoding technique
that allowed us to quantify independent integration
events. We characterized >3 700 000 unique integra-
tion events in two ENCODE-characterized cell lines.
We find that integrations were most highly enriched
in a subset of strong enhancers and active pro-
moters. In both cell types, approximately half the
integrations were found in <2% of the genome,
demonstrating genomic influences even narrower
than previously believed. The integration pattern of
murine leukemia virus appears to be largely driven
by regions that have high enrichment for multiple
marks of active chromatin; the combination of
histone marks present was sufficient to explain
why some strong enhancers were more prone to
integration than others. The approach we used is
applicable to analyzing the integration pattern of
any exogenous element and could be a valuable pre-
clinical screen to evaluate the safety of gene therapy
vectors.

INTRODUCTION

Retroviruses have played important roles in pathology (1)
and genome evolution (2–4). In practice, the introduction
of exogenous DNA into host cell chromosomes has both

experimental and medical utility: it can be used to disrupt
endogenous genes, as in insertional mutagenesis screens
(5), as well as to introduce functional alleles in the
context of gene therapy (6). In both cases, an understand-
ing of the integration pattern of the vector of choice is
important for proper experimental design. Our under-
standing of the integration preferences for different
insertional elements is rapidly changing. Initially,
because of a lack of data to prove otherwise, it was
assumed that retroviral integration occurred randomly
(7,8). With the completion of the human genome and
more efficient sequencing technologies, it became
possible to map many hundreds of integration events,
and data quickly emerged that demonstrated that viral
integrations were non-random and specific to the viral
subtypes (9–12). These original findings were still
severely limited because functional genome annotation
beyond transcribed genes was essentially non-existent.
Since that time, more chromatin features have been
identified, along with tens of thousands of integration
sites (13). This has led to the inference that murine
leukemia virus (MLV) integrates near regulatory
elements like promoters and enhancers (14). Consistent
with this, previous studies have detected associations
between MLV integration and individual chromatin
marks (15,16). In addition, MLV integration data have
been correlated with areas of active chromatin represented
by DNAse hypersensitive sites (DHS) (17,18).
Annotations from the ENCODE pilot regions were

used in conjunction with pyrosequencing to analyze
human immunodeficiency virus integration site selection
(19). Now, the ENCODE consortium has carried out
detailed studies that deeply characterize and annotate
not just the pilot regions, but the entire genome of a
select number of cell lines (20,21). These data potentially
give researchers a comprehensive set of annotations that
allows for high-resolution examination of the specific
genomic features that drive viral integration site selection,
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or the site selection of any integrating element. Key to
using this data set to its fullest is the need to map large
numbers of independent integration events.
We set out to define the underlying drivers of MLV

integration site selection by generating an ultra high-
density map of integrations in two ENCODE-
characterized cell lines. We isolated and mapped >3.7
million MLV integrations, data that are �100 times
more dense than the largest published MLV data set
(14). We found that MLV exhibited a marked preference
not simply for active chromatin, but for a specific subset
of enhancers and promoters that have high enrichment for
a specific combination of histone marks. This preference
for active promoters or enhancers was >2-fold higher than
for generic markers of open chromatin such as DHS, or
for a separate class of strong enhancers defined by the
Broad ChromHMM predictions (21).

MATERIALS AND METHODS

Viral infection

TheK562 cells were a gift fromD. Bodine, andHepG2 cells
from S. Rane. The Moloney MLV was prepared as
described by Jao et al. (22). Two BD Falcon T175 flasks
of HepG2 cells, containing 3� 106 and 5� 106 cells, were
resuspended and infected with the virus-containing media
for 24 h. In the second experiment, we infected four T75
flasks of K562 cells. We infected 1� 106 and 2� 106 K562
cells with supernatant from MLV producer clone GT186
for 4 h, and then transferred the virus-containing media to
two new flasks of 1� 106 and 2� 106 K562 cells and
incubated the flasks overnight. The time from infection to
harvesting of each of the six flasks was 24 h; as such, the
cells were expected to divide no more than once. We re-
covered genomic DNA by using the DNeasy Blood &
Tissue Kit (Qiagen; Valencia, CA, USA).

Linker-mediated polymerase chain reaction

We amplified fragments containing the 30-end of the MLV
provirus using the method of Varshney et al. (5).
Integrations from HepG2 and K562 cells were amplified
separately. We split the DNA from each flask into one-
third, each of which was digested overnight with a com-
bination of MseI/PstI, BfaI/BanII (New England Biolabs;
Ipswich, MA, USA) or Csp6I/Eco24I (Fermentas;
Hanover, MD, USA). Each cocktail consisted of a 6-bp
cutter that prevents internal amplification by cutting
downstream of the MLV 50 long terminal repeat (LTR),
and a 4-bp cutter that produces a 50 TA overhang. We
pooled digested DNA and annealed 6-bp barcoded
linkers to the TA overhangs with T4 DNA ligase
(Invitrogen; Grand Island, NY, USA). Generic oligo se-
quences used to make the linkers are as follows: linker
oligo A: 50-TAGNNNNNNTATGCGCAGTTT
TTTTGCAAAAA-30 and linker oligo B: 50-GTAATAC
GACTCACTATAGGGCACGCGTGGTCGACTGCG
CATNNNNNNC-30; here, ‘N’ denotes bases in the 6-bp
barcode that varied among the 960 unique barcodes. We
pooled 480 barcoded linkers for each flask (two) of
HepG2 cells and 216 barcodes for each flask (four) of

K562 cells. We then performed linker-mediated polymer-
ase chain reaction (LM-PCR) using the pooled linkers. In
the first amplification, we used a primer specific to the 30

LTR (50-GACTTGTGGTCTCGCTGTTCCTTGG-30)
and a primer specific to the linker (50-GTAATACGACT
CACTATAGGGC-30) of MLV in a 25-cycle reaction,
which was designed to amplify only DNA fragments
that contained the 30 LTR.

Cycle conditions:

95�C, 2min
7 cycles of 95�C, 15 s; 72�C, 1min
18 cycles of 95�C, 15 s; 67�C, 1min
67�C, 4min
4�C, 1

The product was diluted 1:50 in dH20 and used as
template for a second round of PCR. We used nested
primers (nested LTR primer 50-GAGTGATTGACTAC
CCGTCAGCGGGGGTCTTTCA-30 and nested linker
primer 50-ACTATAGGGCACGCGTGGTCGACTGCG
CAT-30) to further amplify the product in a 20-cycle
reaction.

Cycle conditions:

95�C, 2min
5 cycles of 95�C, 15 s; 72�C, 1min
15 cycles of 95�C, 15 s; 67�C, 1min
67�C, 4min
4�C, 1

After the second round of PCR, we purified the sample
with a MinElute PCR purification kit (Qiagen).

High-throughput sequencing

We constructed sequencing libraries for use on Illumina
technologies, using adapters from the Paired-End DNA
Sample Prep Kit (Illumina; San Diego, CA, USA). We
ligated Illumina paired-end adapters to the products of
the LM-PCR, using T4 DNA ligase for 20 min at room
temperature. We purified the reaction with the MinElute
PCR purification kit (Qiagen) and eluted with elution
buffer (EB) buffer. We modified the adapters and
further amplified the product via PCR using Phusion
High-Fidelity polymerase in HF buffer, using the PE
primer 1.0 and PE primer 2.0 primers from Illumina.

Cycle conditions:

98�C, 30 s
15 cycles of 98�C, 10 s; 65�C, 30 s; 72�C, 30 s
72�C, 5min
4�C, 1

The libraries were purified with the MinElute PCR puri-
fication kit and eluted in 20 ml of EB each. The libraries
were sequenced on both Illumina MiSeq and HiSeq 2000
machines by the NIH Intramural Sequencing Center.

Integration site mapping

Our method is called GeIST (Genomic Integration Site
Tracker), the outline of which is presented in Figure 1.
We converted the sequencing output from both the
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Figure 1. GeIST integration site mapping workflow. The GeIST workflow is available to download from http://research.nhgri.nih.gov/software/
GeIST/. The details of each step are covered in the ‘Integration Site Mapping’ portion of the ‘Materials and Methods’ section. When the effect of a
‘no’ response is not explicitly stated, it is implied that reads failing to meet the criteria are removed from the analysis.
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MiSeq and the HiSeq 2000 machines from BAM format to
FASTQ using BamTools version 1.0.2 (23), and
concatenated the two files into a single FASTQ file. We
trimmed off LTR and linker sequences from the reads
using Cutadapt version 0.9.3, which was also used to
trim off low-quality base calls (24); we then trimmed
and recorded the barcodes using a Perl script. We dis-
carded reads that had <11 bp of genomic DNA after
removal of LTR, linker and barcode, as short reads
were unlikely to map to a unique location. We created a
human genome (hg19) reference file by concatenating
FASTA files downloaded from ftp://hgdownload.cse.
ucsc.edu/goldenPath/hg19; only the files for chr1–22,
chrX and chrM were included for the K562 sample, and
chrY was added for the HepG2 sample. We used Bowtie
version 0.12.7 to align the trimmed reads to this reference
sequence (25). We used the settings ‘-a -m 1 –best –strata’
for the alignment, indicating that the only alignments kept
would be those with a uniquely low number of mismatches
in the first 28 bp. No more than two mismatches were
allowed within the first 28 bp of each read. The above
steps were repeated for the paired reads of all aligned
reads, with the only difference being that low-quality
bases were not automatically removed by Cutadapt. We
then compared each initially mapped read with the corres-
ponding paired read; we retained only mapped reads that
were within 1 kb of, and in the correct orientation relative
to, the paired read. This allowed us to recover reads with
accurate sequence, but low reported base-call quality. We
removed reads from fragments in which the barcodes
recorded for each read were different from each other.
Next, we identified the integration site. This site is the
4 bp directly adjacent to the 30 LTR; for simplicity, the
remaining steps dealt directly with the leftmost base of
the integration site. We temporarily reduced each
fragment to a single entry, to avoid giving preference to
short fragments in which the LTR was present in both
reads. We then used the barcodes detected in previous
steps to split the reads into four groups (for K562 cells)
or two groups (for HepG2 cells), according to the flask
that had originally produced the fragment. We gave pref-
erence to integration sites with higher fragment counts:
when two integration sites from the same group were
within 5 bp upstream or downstream of each other, we
assumed that the site with fewer reads was composed of
mismapped reads from the site with more reads because of
mismatches or trimming. Therefore, we removed such in-
tegration sites, unless there was another group in which
the site to be removed had a higher fragment count than
other sites within 5 bp. We pooled the remaining sites,
returned the read counts to their actual values and
determined the total integration count by counting the
barcodes at a given site, taking into account the incuba-
tion and doubling time of the original cells. As the cells
only had time for one doubling after infection (24 h), a
given integration event could be represented by two
barcodes, at most. Therefore, we calculated the number
of integrations in a given orientation at a given site to be
the number of different barcodes detected, divided by two
and rounded up. For example, four unique barcodes from
a single grouping were taken as evidence of two

integrations, while five unique barcodes indicated three
integrations. Finally, we combined the counts from the
barcode groups to produce the total integration count.

GeIST is available to download from http://research.
nhgri.nih.gov/software/GeIST/ . This software is
designed specifically for one of the experiments described
in this article (i.e. MLV detection in K562 cells using
barcoded linkers) and can be used to reproduce our
mapping results with the appropriate SRA files [accession
number SRS392021]. Slight modifications were made to
run GeIST with the HepG2 data, such that the script
treated the integrations as being from two groups
instead of four. The general workflow of GeIST is applic-
able to mapping various types of integrated elements; as
such, modifications to the code, such as the sequence
trimmed by Cutadapt, can be made to apply the
software to other elements. GeIST and the scripts for
generating in silico matched random controls, as well as
BED files of the integrations, are available at http://
research.nhgri.nih.gov/software/GeIST/.

Generation of matched in silico random controls

Our approach is adapted from the approach described by
Hematti et al. (12). The scripts are available to download
from http://research.nhgri.nih.gov/software/GeIST/,
along with files to generate additional matched controls
to the K562 integrations. We used Bowtie to identify the
location of all MseI, BfaI and Csp6I restriction enzyme
sites. We then calculated the distance from each integra-
tion to the nearest of the three restriction sites that could
have produced an alignable fragment, defined here as a
sequence that could be aligned by Bowtie using the same
settings with which the sequencing reads were initially
aligned. If the distance was too long to fit within a
single simulated read, we used a Perl script to split it
into two paired-end reads with appropriate orientation.
We required that both reads aligned.

We used these distances to generate 10 000 files each for
both cell types; each file contained one matched random in
silico integration of the same distance and same restriction
site as each experimental integration. For each experimen-
tal integration, we randomly selected an instance of the
given restriction site using the Perl ‘rand’ function. The in
silico integration was defined as being the same distance
away from the random restriction site as the actual inte-
gration was from the actual restriction site. The orienta-
tion of the random in silico site was also selected with the
‘rand’ function; it is unrelated to the orientation of the
actual site on which the random site location is based.
We converted all the random reads from BED to
FASTA format using BEDTools version 2.16.2 (26).
Random reads too long to fit on a single read length
were split into paired ends, as above. We aligned the
reads with Bowtie using the same settings as in the experi-
mental workflow, with the addition of the ‘-f’ option to
indicate that the random sequences were in FASTA
format instead of FASTQ. Random sites that aligned
were added to an output file, and the experimental sites
that did not yet have an associated alignable random site
were subjected to another loop through the above steps
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until all sites were accounted for. We repeated this process
10 000 times. In this way, the random sites account for two
potential sources of bias: distance from restriction sites
and alignability of the read.

Enrichment analysis

We compared the experimental and random in silico inte-
grations with the chromatin state segmentation track,
using ‘BEDTools intersect’ to detect overlap of at least
one base of the 4-bp integration site with a given state
(21,26). We calculated the enrichment by dividing the
number of actual integrations in a state by the number
of random in silico control integrations in that state. We
repeated this calculation for each of the 10 000 random
control data sets; the mean value of this measure is
reported as the enrichment beyond random. The files
used for enrichment analysis are displayed in Table 1.
The state segmentation files used for the analysis were
downloaded from http://genome.ucsc.edu/cgi-bin/hgTra
ckUi?g=wgEncodeBroadHmm (27). A similar analysis
was used to calculate the enrichment within 5 kb of tran-
scription start sites (TSS). Sites were calculated using
RefSeq transcripts (release 56) downloaded from the
University of California, Santa Cruz (UCSC) table
browser (28). The peak files used for DNase sensitivity
analysis were downloaded from the UCSC track ‘Open
Chromatin by DNaseI HS from ENCODE/
OpenChrom’. The file used for DNA–DNA interacting
regions in K562 cells was created by using ‘BEDTools
merge’ to identify regions shared by the files
wgEncodeGisChiaPetK562Pol2InteractionsRep1.bed and
wgEncodeGisChiaPetK562Pol2InteractionsRep2.bed,
both from the UCSC track ‘Chromatin Interaction
Analysis Paired-End Tags (ChIA-PET)’.

We also used BEDTools to perform comparisons of the
integrations with the component factors of the state seg-
mentation track and used peak files from the ‘Histone
Modifications by ChIP-seq from ENCODE/Broad
Institute’ track on the UCSC browser (29). All his-
tone modification files were downloaded from the UCSC
genome browser at http://genome.ucsc.edu/cgi-bin/hgTra
ckUi?g=wgEncodeBroadHistone (27). We used
‘BEDTools intersect’ to test enrichment for regions in
which more than one type of chromatin mark peak was
present.

Sequence motif analysis

We analyzed the sequence of integration sites by using
BEDTools to generate the FASTA sequence of both the
experimental integrations and the random in silico
controls. We examined both the 4- and 5-bp integration
sites as well as the sequences flanking the site in either
direction, taking into account the orientation of the inte-
gration. Two of the 10 000 random data sets for K562
encountered problems with reads assigned to chrM
because taking the 5-bp upstream of the site resulted in
negative position values; we resolved this by manually
correcting the sequence to take the circular nature of
chrM into account. Some of the random data sets for
HepG2 encountered a similar problem on linear chromo-
somes; these data sets were removed from the analysis,
and the Bonferroni correction was adjusted accordingly.
We determined the base composition by counting the
presence of each base at each position using regular ex-
pressions and arrays in the UNIX program AWK and
dividing those counts by the total number of integrations.
We used bootstrapping to determine the significance of the
differences between experimental and random control

Table 1. ENCODE files used in enrichment analysis

File/data set GEO ID Analysis

Analysis files
wgEncodeBroadHmmK562HMM.bed GSM936088 State segmentation
wgEncodeBroadHmmHepg2HMM.bed GSM936090 State segmentation
wgEncodeOpenChromDnaseHepg2Pk.narrowPeak GSM816662 DNAse sensitivity (HepG2)
wgEncodeOpenChromDnaseK562PkV2.narrowPeak GSM816655 DNAse sensitivity (K562)
wgEncodeGisChiaPetK562Pol2InteractionsRep1.bed GSM970213 DNA–DNA interaction
wgEncodeGisChiaPetK562Pol2InteractionsRep2.bed GSM970213 DNA–DNA interaction
wgEncodeBroadHistoneHepg2CtcfStdPk.broadPeak GSM733645 Chromatin mark enrichment (HepG2)
wgEncodeBroadHistoneHepg2H3k04me1StdPk.broadPeak GSM798321 Chromatin mark enrichment (HepG2)
wgEncodeBroadHistoneHepg2H3k4me2StdPk.broadPeak GSM733693 Chromatin mark enrichment (HepG2)
wgEncodeBroadHistoneHepg2H3k4me3StdPk.broadPeak GSM733737 Chromatin mark enrichment (HepG2)
wgEncodeBroadHistoneHepg2H3k9acStdPk.broadPeak GSM733638 Chromatin mark enrichment (HepG2)
wgEncodeBroadHistoneHepg2H3k27acStdPk.broadPeak GSM733743 Chromatin mark enrichment (HepG2)
wgEncodeBroadHistoneHepg2H3k27me3StdPk.broadPeak GSM733754 Chromatin mark enrichment (HepG2)
wgEncodeBroadHistoneHepg2H3k36me3StdPk.broadPeak GSM733685 Chromatin mark enrichment (HepG2)
wgEncodeBroadHistoneHepg2H4k20me1StdPk.broadPeak GSM733694 Chromatin mark enrichment (HepG2)
wgEncodeBroadHistoneK562CtcfStdPk.broadPeak GSM733719 Chromatin mark enrichment (K562)
wgEncodeBroadHistoneK562H3k4me1StdPk.broadPeak GSM733692 Chromatin mark enrichment (K562)
wgEncodeBroadHistoneK562H3k4me2StdPk.broadPeak GSM733651 Chromatin mark enrichment (K562)
wgEncodeBroadHistoneK562H3k4me3StdPk.broadPeak GSM733680 Chromatin mark enrichment (K562)
wgEncodeBroadHistoneK562H3k9acStdPk.broadPeak GSM733778 Chromatin mark enrichment (K562)
wgEncodeBroadHistoneK562H3k27acStdPk.broadPeak GSM733656 Chromatin mark enrichment (K562)
wgEncodeBroadHistoneK562H3k27me3StdPk.broadPeak GSM733658 Chromatin mark enrichment (K562)
wgEncodeBroadHistoneK562H3k36me3StdPk.broadPeak GSM733714 Chromatin mark enrichment (K562)
wgEncodeBroadHistoneK562H4k20me1StdPk.broadPeak GSM733675 Chromatin mark enrichment (K562)
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base compositions. Although most bases had significantly
different frequencies than random, most differences were
not large. As such, we based our description of the motif
on bases with >10% change relative to random.

Statistical analysis

We carried out most analyses by bootstrapping. We
looked for the values of a given random control data set
that were more extreme (with respect to the mean of the
random sets) than the corresponding value in the experi-
mental set and repeated this process n=10000 times. For
example, if a chromatin state was found to have more
integrations in the experimental set than the mean value
of the random sets, we would count the number of
random sets in which there were more integrations in
that state than had been for the experimental set. The
sum, divided by 10 000 (the number of random tests), is
the P-value; Bonferroni correction was used in situations
that required multiple tests. To ensure an unbiased
analysis, we calculated P-values for both enrichment and
depletion in every category. For example, when analyzing
the 15 chromatin states, this resulted in 30 tests, so we
divided the significance threshold by 30. For simplicity,
we only report the relevant P-values here: the P-value
for enrichment if the sample was enriched relative to
the mean of the random sets, and likewise for depletion.
The significance threshold is P=0.05, unless modified by
Bonferroni correction.
The differences in the enrichment values were deter-

mined by analysis of variance and Tukey’s test. These
analyses were carried out in R version 2.14.2, using the
aov() and TukeyHSD() methods (30).

Figures

Figure 2 is a composite of graphs made in R and modified
versions of images downloaded from the UCSC genome
browser (31). Figures 3A, 4 and 5, Supplementary Figures
S1A, S2 and S3 were generated using the ggplot2 package
in R (32).

RESULTS

We took advantage of high-throughput sequencing and
DNA barcoding to generate >100 times as many MLV
integrations as any previous study, and developed an
analysis pipeline to map and quantify the integrations.
We first infected two flasks of human HepG2 cells and
four flasks of human K562 cells with MLV and recovered
the proviral integration sites in a high-throughput manner
(5) (see details in ‘Materials and Methods’ section). We
harvested DNA from cells, subjected it to restriction
digests and used ligation-mediated PCR to amplify frag-
ments that contained the 30-end of the integrated provirus.
We used linkers containing 6-bp barcode sequences,
allowing us to pool the DNA into a single sequencing
sample per cell type and detect independent integration
events even if they occurred at identical genomic coordin-
ates. We sequenced both pooled integration libraries on
Illumina MiSeq and HiSeq 2000 sequencers, and then used
a new software package we created (the Genomic

Integration Site Tracker, or GeIST) to analyze the
sequencing data (Figure 1). In HepG2 cells, we obtained
16 954 554 mappable sequences representing 3 382 718 in-
dependent integration events in 2 620 203 unique integra-
tion sites; K562 cells yielded 6 397 337 sequences
representing 315 810 integrations in 230 960 unique sites.
The 6-bp barcode sequences enabled us to ascertain that
19.4% of HepG2 integration sites (defined as a single
genomic location) were represented by multiple independ-
ent integrations, and 32% of K562 sites met this criterion.
The most extreme example was observed in HepG2 cells at
position chr2:191540751-191540755 (hg19), where we
recorded 248 independent integration events. Genome in-
tegration hotspots (within a 20-kb window) are shown in
Table 2 and Supplementary Table S1. To determine
whether the MLV integration pattern differs from what
would be expected by chance, we generated two sets of
10 000 control integration data sets in silico, each contain-
ing a number of matched random control integrations
equal to those in the corresponding cell type. In silico
controls were designed to control for bias introduced by
both restriction enzyme fragmentation and the ability to
align the sequenced fragment. We also used the in silico
controls to compare the GC content of HepG2 experimen-
tal reads with the percentage expected by chance. We
found that the GC content of the pre-adapter LM-PCR
fragments was higher than that of the control fragments
(51.9 versus 48.2%; bootstrapping, P< 0.0001). The dif-
ference is significant, but slight, and we consider it unlikely
that PCR-based skewing had a substantial effect on our
ability to recover integration sites.

We found strong clustering of integrations in a small
total percentage of the genome demonstrating clear influ-
ences on integration site selection. Figure 2 shows the
MLV integration pattern around the LMO2 gene; integra-
tions in this region caused leukemia in some recipients of
gene therapy (33,34). The K562 integration profile in this
region serves as a representative example of the overall
integration pattern we observed genome-wide and is con-
sistent with previous observations (10): in both cell lines,
integrations were typically enriched near TSS and showed
non-random intergenic patterns. However, this region
near LMO2 reveals a cell-type-specific difference in inte-
gration that cannot be explained by proximity to TSS or
underlying primary sequence. To more precisely define the
driver of integration site selection, we compared integra-
tion sites with the ENCODE chromatin state segmenta-
tion annotations produced for these cell lines (21,27).
Ernst et al. used a hidden Markov model (HMM) to
divide the human genome into different ‘states’, based
on the observed chromatin immunoprecipitation
sequencing (ChIP-seq) frequency of nine chromatin
factors. Comparing our integrations with this model
allowed us to detect associations with groups of chromatin
marks (rather than individual marks) in a biologically
meaningful context.

We detected a striking association, finding that MLV
specifically integrated into strong enhancers and pro-
moters in both cell lines (Figure 3 and Supplementary
Figure S1). To quantify this association, we used
bootstrapping of integration counts in experimental
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versus in silico random data sets. The depth of the inte-
gration data allowed us to detect that enrichment of inte-
grations was significantly different from random for all
states (P< 0.0001 each, significance threshold=0.0017;
Figure 3A and Supplementary Figure S1A). Notably, all
seven enhancer and promoter states showed a significant
increase of integrations relative to in silico control integra-
tions in both cell lines (Figure 3A and Supplementary
Figure S1A). These associations are sufficient to explain

the cell-type differences near LMO2. The states in and
near LMO2 with the most integrations were defined as
promoters and enhancers by ENCODE in the blood-
derived K562 cells (Figure 2). In contrast, the region
near LMO2 in liver-derived HepG2 cells was annotated
as repressive and heterochromatin. Despite containing
identical sequence, this region had few integrations in
HepG2 cells (Figure 2B). This observation is consistent
with the inference that LMO2 was a preferred site of

Figure 2. Integration pattern near LMO2 in K562 and HepG2 cells. (A) Integrations in K562 cells. Bars indicate the sum of unique integration
events color-coded to match the genomic state in which they integrated (left axis); there are 471 events represented in this �110-kb span. Bar tops are
highlighted with a black line and a dot for visibility. The right axis indicates the rate of integration in a 1-kb sliding window for both experimental
integrations (blue) and a representative in silico random control (gray). The location of LMO2 is represented in the lower right of the figure.
Approximately 0.15% of the 315 810 integrations scored landed in this LMO2 interval, which comprises 0.0036% of the genome. The colored track
below the integrations is the chromatin state segmentation track (21); colors correspond to different states, as indicated. (B) Integrations in HepG2
cells. The scales are the same as in (A). There are 19 integrations in this region. Experimental integrations are significantly depleted relative to
random control integrations in this region (bootstrapping; P< 0.0001). Note that the number of random integrations per kilobase tends to be higher
for HepG2 than K562 cells. This is because there are >10-fold as many integrations in HepG2 relative to K562, resulting in a corresponding increase
in the number of random control integrations. This figure clearly shows the cell-type-specific differences in the raw number of experimental inte-
grations in the LMO2 region between K562 and HepG2 cells. These differences can likely be attributed to the presence of active LMO2 enhancers
and promoters in K562 cells and their absence in HepG2 cells.
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integration in the bone marrow-derived hematopoetic
stem cells used in the gene therapy trials because of
highly active elements in the region (hematopoetic stem
cell gene expression is more likely to be related to K562
gene expression than HepG2).

Although active regulatory regions were generally
enriched for integrations, some regions were substan-
tially better targets than others. The most extreme en-
richment of integrations was in one of two states
annotated as strong enhancer (chromatin state 4).
These regions were >41 times more likely to contain
integrations than would be expected by chance in
HepG2 cells, respectively, and similar levels of enrich-
ment were detected in K562 cells (Figure 3A and
Supplementary Figure S1A). Both cell types also ex-
hibited substantial enrichment in state 1, annotated as
active promoters. These two states are characterized by
high enrichment of four to five chromatin marks, all of
which are associated with enhancers and/or promoters
(21) (Figure 3B and Supplementary Figure S1B). In
addition to having the greatest enrichment, state 4
contains the largest number of integrations among the
15 states. State 4 regions contained 22.4% of HepG2
integrations and 32.9% of K562 integrations, despite
accounting for only 0.64 and 0.90%, respectively, of
the 2.83Gb covered by the state segmentation track.
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Figure 3. Enrichment of integrations in chromatin segmentation states
in HepG2 cells. (A) The mean value of 10 000 ratios of experimental
integration versus in silico random integration; error bars represent the
standard deviation of these ratios. The dotted line separates entries
with more integrations than expected by chance from those with
fewer. The experimental integration counts in all states are significantly
different from random, as determined by bootstrapping (significance
threshold=0.0017; all differences from random each have
P< 0.0001). The enrichment values in each state are all significantly
different from each other, as determined by analysis of variance
(P< 2� 10�16) and Tukey’s multiple comparisons of means (all pairs
differ with adjusted P< 10�7). (B) Percentage observed frequency of
chromatin marks for each of the 15 states across the genome in
HepG2 cells [modified from Ernst et al. (21)]. Darker blue cells
indicate a higher observed frequency than lighter cells. The states are
sorted by mean enrichment versus random; the horizontal dashed line
separates states with more integration sites than expected by chance
from states with as many or fewer, and the chromatin marks to the
right of the vertical dashed line are most associated with strong enhan-
cers. Numerical values for this table are in Ernst et al. (21). Txn, tran-
scription; lo, low signal; CNV, copy number variation.
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Figure 4. Enrichment of integrations in ChIP-seq peaks of chromatin
marks in HepG2 cells. We compared experimental integrations and
integrations in the 10 000 matched random control data sets to ChIP-
seq peaks from the ENCODE project (29). We calculated enrichment as
described in the caption of Figure 3. The error bars represent the
standard deviation of the enrichment ratio. The dotted line indicates
the level of enrichment expected by chance. The experimental integra-
tion counts for all marks are significantly different from random
(determined as above, by bootstrapping; significance thresh-
old=0.0028; all differences from random have P< 0.0001). The enrich-
ment values for each mark are all significantly different from each
other, as determined by analysis of variance (P< 2� 10�16) and
Tukey’s multiple comparisons of means (all pairs differ with adjusted
P< 10�7).
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However, not all enhancers and promoters are created
equal; it appears that high enrichment of specific
chromatin marks is a better indicator of integration pref-
erence than annotation as an enhancer or promoter per se.

For example, although states 4 and 5 are both annotated
as strong enhancers (21), state 5 regions are less than half
as likely to be selected for integration as state 4 (HepG2:
21.8� versus 41.0�; K562: 16.7� versus 39.4�; analysis of
variance with Tukey’s test, P< 10�7 for both compari-
sons; Figure 3 and Supplementary Figure S1). This is a
general trend: the states that have a greater number and
frequency of the five factors that define state 4 had a
greater enrichment of MLV integrations (Figure 3B and
Supplementary Figure S1B). Turning the analysis around,
the MLV preference for state 4 strong enhancers over state
5 strong enhancers proves that the ChromHMM predic-
tions are identifying real biologically meaningful differ-
ences between the two categories of strong enhancers.
We repeated the integration enrichment analysis with

each of the nine chromatin marks individually (Figure 4
and Supplementary Figure S2). We found that the highest
enrichment observed was in spans of H3K4me3 in HepG2
cells and H3K4me2 in K562 cells, respectively, with 15.9�
and 16.2� enrichment beyond the value that would have
been expected if integrations were randomly distributed.
Although this is a substantial enrichment, it is well below
the �40� enrichment detected in state 4 enhancers;
overall, the HMM in both cell types produced three chro-
matin states with higher enrichment than the highest of
the individual marks. Thus, the integrated information
from multiple marks in the HMM states are better indi-
cators of integration site selection than their individual
components. This suggests that chromatin conformation
is influencing MLV site selection, although it does not
exclude integrase interaction with a protein ‘tether’ that
preferentially binds to areas containing the highest content
of the five chromatin marks.
The integrated data from the ChromHMM track are a

superior predictor to simply combining preferences from
individual chromatin marks. Santoni et al. previously
reported an association between MLV integration and
multiple chromatin marks similar to our findings (35).
They found that regions that contained H3K4me1,
H3K4me3 and H3K9ac were good predictors of MLV

Table 2. A 20-kb window was used to identify the regions with the most integrations; the top 10 regions are shown

Chromosome Start (base pairs) End (base pairs) Integrations Mean random
integrations±SD

Nearby genes

HepG2 integration hotspots
chr14 31720463 31740463 2438 19.60±4.41 Downstream of HEATR5A
chr14 31492094 31512094 2123 26.75±5.23 STRN3 and SP4S1
chr20 48290780 48310780 1841 26.18±5.05 B4GALT5
chr20 46079011 46099011 1834 16.65±4.07 Upstream of NCOA3
chr19 47597773 47617773 1825 19.44±4.43 ZC3H4
chr20 371219 391219 1731 17.46±4.21 Downstream of TIRB3, upstream of RBCK1
chr20 32916489 32936489 1634 15.94±3.99 Upstream of AHCY and ITCH
chr12 50915923 50935923 1623 21.62±4.69 DIP2B
chr16 15721516 15741516 1616 26.97±5.13 KIAA0430 and NDE1
chr12 69178983 69198983 1598 22.15±4.72 Upstream of LOC100130075 and MDM2

The start and end points are presented as they would be in a BED file (0-based start). Mean random integrations±SD indicates the mean value and
standard deviation of the integration count over 10 000 matched random control data sets, and represents the number of integrations expected by
chance. Genes with at least part of one RefSeq transcript within the 20-kb window are displayed in the final column; nearby downstream genes that
are outside the window are also indicated.
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Figure 5. Comparison of integration enrichment across various
genomic features in HepG2 cells. We compared the enrichment at
features that are associated with MLV integration to measure their
ability to explain non-random integration. We calculated enrichment
as described in the caption of Figure 3. The error bars represent the
standard deviation of the enrichment ratio, and the dotted line indicates
the level of enrichment expected by chance. The enrichment values for
each feature are all significantly different from random (determined as
above, by bootstrapping; significance threshold=0.00625; all differ-
ences from random have P< 0.0001), and different from each other,
as determined by analysis of variance (P< 2� 10�16) and Tukey’s
multiple comparisons of means (all pairs differ with adjusted
P< 10�7). Labels: state 4, the state 4 strong enhancers; DNAse,
DNAse-sensitive regions; TSS, regions within 5 kb of a transcription
start site; sequence, sites matching the TNVNNBNA motif.
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integration in HeLa cells, and that adding in a require-
ment for H3K4me2 formed a good predictor in CD4+T
cells. We tested the enrichment of MLV in regions that
contained the three HeLa marks on the ENCODE ChIP-
seq tracks. We found MLV to be significantly enriched in
both HepG2 and K562 cells (20.9� and 20.0�, respect-
ively; P< 0.0001 each, significance threshold=0.00625).
Enrichment was further bolstered by adding in require-
ments for both H3K4me2 and H3K27ac, the other two
marks strongly associated with state 4 in the HMM.
Doing so increased enrichment to 25.7� in HepG2 cells
and 27.5� in K562 cells (significantly enriched versus
random with P< 0.0001). The fact that this enrichment
is considerably greater than expected by chance, but
remains substantially lower than enrichment in state 4
alone, indicates that the HMM is better able to identify
the most relevant subset of integration targets than simply
taking the intersect of ChIP-seq peaks. This suggests that
the observed frequency of the marks, not just their
presence, is important for determining MLV integration
targets.
Taken together, it appears that the most frequent

targets for MLV integration are largely determined by
the presence and observed frequency of five different
marks of enhancers or promoters—H3K4me1,
H3K4me2, H3K4me3, H3K27ac and H3K9ac. These
criteria are a substantially better predictor of MLV inte-
gration than previously proposed characteristics. The
enrichment over random integration within 5 kb of TSS,
previously proposed to be a major driver of MLV integra-
tion patterns, is only 4.9� in HepG2 and 6.6� in K562
cells (Figure 5 and Supplementary Figure S3). While the
enrichment near TSS is significantly greater than random
(bootstrapping; P< 0.0001 for both comparisons), it is
more than eight times lower than the enrichment in
strong enhancers in HepG2 cells; it is likely that this en-
richment near TSS is caused by the presence of the highly
preferred strong proximal regulatory regions. DNAse-sen-
sitive regions have also been proposed to be the chief
feature behind MLV integration (17,18); although our
results confirm such regions have significantly higher
enrichment than random, the magnitude of enrichment
is only 11.7� in HepG2 and 14.5� in K562, three and a
half times less than we see for strong enhancers. This
strongly suggests that traditional concepts such as MLV
preferring ‘open chromatin’ are inaccurate, and there are
much more specific influences on integration site selection.
Other genomic characteristics, such as regions that
interact through a Pol2 intermediary, have similar
results (5.2� enrichment in K562 cells; bootstrapping, dif-
ferent than random with P< 0.0001; Supplementary
Figure S3) (36,37). While it appears that MLV integration
can be somewhat promiscuous in terms of chromatin
features, one-third to half of all integration sites can be
predicted purely by using two of the ChromHMM-
predicted chromatin states: state 4 strong enhancers and
state 1 active promoters. Together, these two states
comprise <2% of the genome.
We considered the role of primary sequence in

influencing integration and found that it had a statistically
significant, but relatively minor, role. Previous studies

have reported that primary sequence plays a role in
determining MLV integration sites (13,38). Wu et al.
reported that MLV integrated in a weak palindromic
motif, abbreviated TNVTABNA. We performed a com-
parable analysis on our much deeper integration data and
found similar motifs in both cell types: TNVNNBNA in
HepG2 and TNVTNBNA in K562 (Figure 6 and
Supplementary Figure S4). The motif occurred in 18.6
and 6.64% of integrations in the experimental data sets,
respectively, significantly more often than in random
controls (bootstrapping; P< 0.0001 for both compari-
sons). However, the increase was of relatively small
effect, with a mean of 4.57� and 5.27� enrichment, re-
spectively (Figure 5 and Supplementary Figure S3). We
interpret this to indicate that DNA sequence influences
the final location of MLV integration to a small degree,
but most likely after the major region of integration has
already been determined. Our data suggest a model in
which the large-scale integration preference of MLV is
associated with marks of strong enhancers and active pro-
moters; within those regions, primary sequence may influ-
ence the fine-scale integration location.

DISCUSSION

Our collection of almost 3.7 million independent MLV
integrations, coupled with the ENCODE chromatin
HMM, has provided new insight into the drivers of
MLV integration. The data presented show that MLV
has a strong integration bias toward strong enhancers of
a specific type and active promoters. Essentially 50% of all
integrations occur in &1.6–2.0% of the genome, and both
cell types examined showed �40� enrichment to a subset
of regions annotated as strong promoters. The effect we
see when examining marks of active chromatin in aggre-
gate is substantially stronger than examining them indi-
vidually, and produces a higher enrichment than
previously reported determinants of MLV integration,
such as DNAse sensitivity, TSSs or primary sequence.
Although both cell lines are karyotypically abnormal
(39,40), the abnormalities are on a scale that is not
relevant to the analysis and comparisons performed
here. The ChromHMM tracks from ENCODE are
based on 200-bp bins and identify location-specific
features. Copy number variations might increase the
total number of integrations in a particular location, but
they would not change the preferences for enhancers or
promoters we describe.

Our findings have important implications for both
genome evolution and gene therapy. The marked prefer-
ence for strong enhancers and active promoters suggests
these regions are beneficial for MLV survival and propa-
gation. This pattern may give the provirus a higher prob-
ability of access to transcriptional machinery than would a
random integration pattern. We have previously shown
that the LTR10 and MER61 classes of endogenous retro-
viral retroelements caused the emergence of new tp53
binding sites (4). Although retroviruses like MLV tend to
be selected against if they are near genes (41), those with a
propensity for integrating into active enhancers and
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promoters could alter gene expression by disrupting or
adding transcription factor binding sites. By having a pro-
pensity for integrating into areas specifically dedicated to
gene regulation, there would be a substantial enrichment in
the odds of adding new DNA binding sites with new func-
tionality. Transmitted through the germline, these changes
become drivers of evolutionary change. In addition,
because of the particular preference of MLV integrations
for strong enhancers and promoters, high-density mapping
of MLV integration sites might prove to be an efficient
technique for rapidly identifying regulatory elements
throughout the genome in cells or organisms where
ENCODE data are not available. As multiple types of
active chromatin marks are preferred by MLV, it may be
possible to determine the relative activities of each element
based on the frequency of integrations per kilobase.

At the same time, this integration pattern can be detri-
mental to the host, although our mapping approach
provides a way to reduce the risk to gene therapy
patients. In the mouse, MLV integrations cause tumors
at a high frequency, probably because the viruses are
most likely to integrate in an active enhancer or
promoter, and the LTRs contain enhancers with strong
activity in mice (42). This results in occasional misregula-
tion of genes that are oncogenic. In the context of human
gene therapy, several integrations near the LMO2 gene led
to leukemia (33,34). The approach outlined here provides
a way to predict the safety of future gene therapy vectors
before they are introduced into patients. Infection of the
relevant (or at least closely related) cell type and massively
parallel sequencing facilitates the identification of integra-
tion preferences, and the use of barcodes introduces a
direct means of quantifying or counting specific integra-
tions without PCR-induced skewing. Our method is
suitable for determining the distribution of any genomic
feature that can be amplified by ligation-mediated PCR,
and can be used to track changes in clonal populations
over time. We anticipate that such screening will allow
researchers to design safer vectors and monitor potentially

problematic integration events, thus reducing the risk to
patients.
Recent findings have suggested that bromodomain and

extraterminal domain (BET) proteins may serve as tethers
that guide the integration of MLV (43–45). These reports
indicated a role for BET proteins in causing MLV to in-
tegrate near TSS. Our findings reveal that regions with
high enrichment of multiple marks of active chromatin,
such as state 4 strong enhancer regions, are better pre-
dictors of MLV integration than TSSs (Figure 5 and
Supplementary Figure S3). If BET proteins do serve as
MLV integration tethers, perhaps their interaction with
the genome is guided by multiple marks of active chroma-
tin. It would be interesting to see the extent to which BET
proteins are associated with such regions. For example,
one might use ChIP-seq to compare the occupancy of a
BET protein, such as Brd4, in state 4 versus its occupancy
in other states.
In conclusion, we demonstrated that MLV integration

site selection is substantially more specific than the percep-
tion that the retrovirus preferentially integrates in or near
DHS, or near enhancers in general (14,17,18). The
extremely high volume of integrations we analyzed—
almost 3.7 million—greatly enhances the power of our
tests and accuracy of these results. Similarly, the compre-
hensive genome annotation produced by the ENCODE
consortium is substantially better than what was available
to previous studies, revealing connections between inte-
gration and chromatin that were previously undetectable.
The virus has a strong preference for a specific subset of
strong enhancers representing <1% of the genome, and it
is likely that other additional factors remain to be dis-
covered. In addition, we have outlined a method
amenable to inexpensively detecting hundreds of thou-
sands of unique integrations in a high-throughput
manner. We feel the use of this approach as a preclinical
screen may help confirm the safety of future gene therapy
vectors, and potentially as a mechanism to quickly identify
active promoters or enhancers.

Base -5 -4 -3 -2 -1 1 2 3 4 5 6 7 8 9

A 0.3134 0.3134 0.3135 0.3136 0.3137 0.3126 0.3128 0.3129 0.3130 0.3130 0.3131 0.3131 0.3132 0.3132

C 0.1881 0.1881 0.1881 0.1881 0.1878 0.1888 0.1889 0.1888 0.1887 0.1886 0.1885 0.1884 0.1883 0.1882

G 0.1872 0.1871 0.1870 0.1869 0.1868 0.1882 0.1876 0.1875 0.1874 0.1873 0.1871 0.1870 0.1868 0.1867

T 0.3113 0.3113 0.3114 0.3114 0.3117 0.3104 0.3107 0.3108 0.3110 0.3111 0.3113 0.3115 0.3117 0.3119

Base -5 -4 -3 -2 -1 1 2 3 4 5 6 7 8 9

A 0.3234 0.2859 0.2346 0.2500 0.2365 0.3089 0.2191 0.3348 0.1715 0.2161 0.4953 0.3049 0.2178 0.2319

C 0.1907 0.2146 0.2774 0.1062 0.2395 0.2814 0.1992 0.2010 0.2409 0.2774 0.1248 0.2161 0.2703 0.2816

G 0.2401 0.2550 0.2582 0.0711 0.2577 0.2918 0.1734 0.2262 0.2792 0.2777 0.1616 0.2623 0.2544 0.1903

T 0.2458 0.2445 0.2299 0.5727 0.2663 0.1179 0.4083 0.2381 0.3084 0.2288 0.2184 0.2166 0.2576 0.2962
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Figure 6. Bias of primary sequence at MLV integration sites in HepG2 cells. We ascertained the sequence of experimental and random in silico
inserts with ‘BEDTools getfasta’, taking strand orientation into account (26). (A) Base composition of random control integrations. Integration
occurs in positions 1–4 (black box); positions are relative to the 50 base of the integration site. The values are the mean proportion of the ratio of the
base in question at that position >9 920 random control data sets (80 random controls contained a site in which the 5 bp flanking sequence extended
off the end of the chromosome; these controls were removed). (B) Base composition of experimental integrations. All proportions are significantly
different from random (bootstrapping; significance threshold=0.0004; P< 0.0001 for each). The values that differ from the mean random value by
�10% are highlighted (green, 10% more than random; magenta, 10% less; gray, not significantly different from random).
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