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Abstract
Study question In large multinational patient surveys, spirometry (which requires repeated, reproducible
maximal efforts) can be associated with cough, breathlessness and tiredness, particularly in those with
idiopathic pulmonary fibrosis (IPF). Oscillometry is an effort-independent test of airways resistance and
reactance. We hypothesised that oscillometry would take less time to perform and would be associated
with reduced symptom burden than spirometry.
Patients and methods Spirometry and oscillometry were performed in 66 participants with IPF and
repeated 2 weeks later. We compared time taken to perform tests, symptom burden and test–retest
reliability with Bland–Altman plots and intraclass correlation coefficients (ICCs).
Results Oscillometry took significantly less time to perform than spirometry (mean −4.5 (99% CI −6.0 to
−3.0) min) and was associated with lower symptom burden scores for cough (−1.3, 99% CI −1.7 to −0.8),
breathlessness (−1.0, 99% CI −1.4 to −0.5), and tiredness (−0.5, 99% CI −0.9 to −0.2). On Bland–
Altman analysis, all measures showed good agreement, with narrow limits of agreement and the mean bias
lying close to 0 in all cases. The ICCs for forced expiratory volume in 1 s and forced vital capacity were
0.94 and 0.89, respectively, and ranged between 0.70 and 0.90 for oscillometry measures.
Conclusion Oscillometry is quicker to perform and provokes less symptoms than spirometry in patients
with IPF.

Introduction
Respiratory oscillometry measures the mechanical properties of the respiratory system during tidal
breathing by the application of an oscillating pressure signal, usually at the mouth. Improvements in
computer processing speed have led to the development of commercial devices. Together with the
publication of technical performance standards [1], there has been interest in the wider use of oscillometry
in research settings and clinical practice [2], particularly in those who cannot perform spirometry.

As oscillometry does not require repeated maximal efforts and is independent of patient effort, potential
advantages over spirometry might be a shorter time to perform the test and placing less symptomatic
burden upon patients. In a large multinational patient survey, issues that were frequently rated as
moderately or severely problematic with spirometry included cough, feeling tired and concerns about
shortness of breath [3].
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In people with idiopathic pulmonary fibrosis (IPF), decline in spirometry, particularly forced vital capacity
(FVC), is associated with disease progression, and has frequently been adopted as a clinical trial end-point [4].
However spirometry may be particularly burdensome in IPF, with some patients unable to complete the
manoeuvre at all and 26.7% reporting difficulty with spirometry [3]. FVC has also been used as a
regulatory gatekeeper for therapy, meaning patients unable to perform the manoeuvre effectively can be
denied therapy [5]. In IPF, it has been proposed that oscillometry may have potential value in staging
disease severity and prognosis [6, 7].

The aims of the current study were to compare the performance time, symptom burden and test–retest
reliability of oscillometry and spirometry in people with IPF referred for lung function testing. We
hypothesised that oscillometry would take less time to perform and would be associated with reduced
symptom burden than spirometry.

Materials and methods
Study subjects
Potential participants were screened from those referred for pulmonary function testing at the Royal
Brompton Hospital between November 2020 and March 2022. The study was approved by the London
Bridge Research Ethics Committee (20/LO/0970) and registered on ClinicalTrials.gov (NCT04572971). All
participants gave written informed consent. Inclusion criteria were: 1) a diagnosis of IPF made by a
specialist multidisciplinary team according to international standards [8]; and 2) ability to provide written
informed consent. Exclusion criteria were any contraindication to performing conventional lung function
tests [9].

Study design
Participants were asked to attend two research visits. Visit 1 was the day of scheduled spirometry
performed as part of their routine clinical care. Respiratory oscillometry was conducted at the same visit
and always prior to spirometry at every visit. Visit 2 was scheduled 2 weeks after visit 1. Oscillometry and
spirometry assessments were repeated. The performance time of each assessment was recorded, and
participants completed the same symptom burden questionnaire immediately after oscillometry and spirometry.

Based on previous local audit data, the performance time of a spirometry session was mean±SD 15±8 min.
We estimated that 49 participants would be required to have a 95% chance of detecting, as significant at
the 1% level, a decrease in performance time from 15 min for spirometry to 10 min for oscillometry. This
significance level was chosen to account for the pre-planned multiple comparisons. To take into account
25% drop out, the minimum recruitment target was 66 participants.

Methods
Baseline spirometry was performed using Vyaire Vyntus BODY equipment (Vyaire Medical, Inc.,
Mettawa, IL, USA). Spirometry was performed according to American Thoracic Society/European
Respiratory Society (ERS) 2019 updated Spirometry Technical Statement [10]. Per cent predicted and
standardised residuals were calculated using (ethnicity-adjusted) reference equations from the Global Lung
Function Initiative [11].

Impulse oscillometry (Vyaire Vyntus iOS; Vyaire Medical, Inc.) was performed according to ERS
technical standards for respiratory oscillometry [1]. iOS equipment was verified using a 3-L syringe and
reference module prior to each testing session. Participants were asked to make a tight seal with the lips on
a mouthpiece whilst they wore a nosepeg and with their hands supporting their cheeks and the floor of the
mouth. Acquisitions were made over 30 s during tidal breathing according to technical standards [1] with
the view to recording at least three acceptable attempts (no leak at mouthpiece, occlusion from tongue,
coughing or swallowing during recorded portion). Acquisitions were repeated until three attempts with a
coefficient of variation <10% in area under the reactance curve (AX), resistance of the respiratory system
at 5 Hz (R5) and resistance of the respiratory system at 20 Hz (R20) were recorded. The mean of these
three attempts was used in the analysis. Variables recorded from oscillometry were: R5, R20, AX,
reactance at 5 Hz (X5), resonant frequency (Fres) and total respiratory impedance (Z5). Per cent predicted
and standardised residuals were calculated, where available, from the reference equations from OOSTVEEN

and colleagues [12]. All oscillometry measurements were performed by the same operator.

Performance time of the assessment was recorded using a stopwatch. Timing for each test was started
when the instructions were given to the participant, and stopped when an acceptable test was obtained.
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The symptom burden questionnaire was created and designed by eight members of a patient advisory
group, all of whom had chronic respiratory disease and had undergone previous spirometry testing. The
patient advisory group used the results of a previous multi-country survey conducted by the European
Lung Foundation [3] to develop the components of the questionnaire. The design was determined by
presenting the patient advisory group with five established and validated respiratory health related quality
of life questionnaires to review: the COPD Assessment Test, Chronic Respiratory Questionnaire, King’s
Brief Interstitial Lung Disease, St. George’s Respiratory Questionnaire and the Leicester Cough
Questionnaire. The final questionnaire was designed to be self-administered on paper, and comprised six
simple statements relating to cough, breathlessness, clarity on how to perform the test, tiredness, ease of
performing the test and confidence in the technician. The design was based on the COPD Assessment Test
but comprised a scale from 1–5 (rather than 0–5 in the COPD Assessment Test), where 1 was lowest level
of symptoms and 5 was the highest level of symptoms (figure 1).
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FIGURE 1 Symptom Burden Questionnaire.
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Analysis
Statistical analysis was performed using Graphpad Prism 10 (GraphPad Software, Boston, MA, USA) and
Stata 18 BE (StataCorp LLC, College Station, TX, USA).

Performance time and symptom burden for spirometry and iOS were compared using paired-t-test. The
relationship between oscillometry and spirometry variables were analysed using Pearson R correlation
coefficient. Agreement between measures taken at visit 1 and visit 2 were assessed using Bland–Altman
plots, and correlations between the measures taken at the two timepoints. Intraclass correlation coefficients
(ICCs) were calculated for spirometry measures (FVC and forced expiratory volume in 1 s (FEV1)) and for
all oscillometry measures. To compare the test–retest reliability of FVC (the spirometric variable most
widely used to assess disease severity and progression in IPF) with iOS variables, we performed a z-test
on Fisher z-transformed correlation coefficients [13].

Results
201 people with a diagnosis of IPF were approached. Reasons for non-recruitment included: death or
hospitalisation before first visit (n=10), declined to participate in research (n=36), did not want to attend
two visits (n=38), unable to contact (n=12), clinical lung function appointment cancelled (n=16), unable to
provide informed consent (n=7), unable to perform spirometry (n=1), researcher unavailable (n=3).
66 participants consented and returned for visit 2, with a mean±SD of 18±7 days between visits. Two of
the 66 participants who returned for visit 2 were unable to provide spirometry values: one due to recent
cataract surgery (contraindicated: <1 week since procedure), and one due to persistent cough during all
spirometry attempts resulting in no accurate results being obtained.

Baseline characteristics of the 66 participants are described in table 1.

TABLE 1 Baseline characteristics (n=66)

Age years 73.2±7.6
Sex, male 56 (85)
Body mass index kg·m−2 27.6±5.0
MRC dyspnoea score 3±2
Antifibrotic use 37 (56)
Smoking history
Never 31 (46)
Current 3 (4.5)
Ex-smoker 32 (48.5)

FEV1 L 2.21±0.53
FEV1 % predicted 83.8±21.6
FEV1 SR −1.00±1.20
FVC L 2.74±0.77
FVC % predicted 79.8±22.3
FVC SR −1.29±1.37
FEV1:FVC 0.80±0.08
PEF L·s−1 8.32±1.88
Z5 kPa·L−1·s−1 0.40±0.12
X5 kPa·L−1·s−1 −0.12±0.06
X5 % predicted 113.0±55.0
R5 kPa·L−1·s−1 0.38±0.12
R5 % predicted 137.3±42.9
R20 kPa·L−1·s−1 0.28±0.07
R20 % predicted 107.0±23.2
R5-R20 kPa·L−1·s−1 0.10±0.08
AX kPa·L−1 1.02±0.89
Fres Hz 18.90±5.47
Fres % predicted 150.9±50.3

Data are presented as n (%) or mean±SD. Per cent predicted and standardised residuals for FEV1 and FVC were
calculated using the Global Lung Function Initiative reference equations. Per cent predicted and standardised
residuals for oscillometry measures were calculated, where available, from the reference equations from
OOSTVEEN and colleagues [12]. MRC: Medical Research Council; FEV1: forced expiratory volume in 1 s; SR:
standardised residual; FVC: forced vital capacity; PEF: peak expiratory flow; Z5: impedance at 5 Hz; X5:
reactance at 5 Hz; R5: resistance at 5 Hz; R20: resistance at 20 Hz; AX: area under the reactance curve; Fres:
resonant frequency.
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Oscillometry took significantly less time to perform than spirometry (table 2) and was associated with
lower symptom burden scores for cough, breathlessness and tiredness (table 2). Oscillometry was also
reported by participants as being easier to perform than spirometry (table 2). Subgroup analysis did not see
any difference in time taken to perform the tests or symptom burden scores between those with the lowest
quartile FVC % predicted (mean FVC 52.9% predicted) and those with FVC % predicted above the lowest
quartile (mean FVC 88.6% predicted) (supplementary table S1).

Relationship between oscillometry and spirometry measures
The relationship between the oscillometry and spirometry measures are summarised in table 3. AX was the
oscillometry parameter with the strongest correlation with FVC (r= −0.638) and FEV1 (r= −0.632).

Test–retest reliability
On Bland–Altman analysis, FEV1, FVC, Z5, X5, R5, R20, AX and Fres showed good agreement of
measures taken 2 weeks apart, with narrow limits of agreement and most values lying between this
(figure 2). The plots also demonstrated even spread, with no heteroskedasticity and the mean bias lying
close to 0 in all cases (table 4).

From the spirometry performed at visit 2 (n=66), mean±SD coefficient of variation of the three closest FEV1,
FVC and peak expiratory flow attempts were 2.35±2.21%, 2.48±2.77% and 6.22±5.62%, respectively. The
mean±SD coefficient of variations for oscillometry parameters were 3.51±2.32%, 12.12±10.32%,
4.19±2.56%, 4.88±3.03%, 7.07±2.94% and 3.59±2.44% for Z5, X5, R5, R20, AX and Fres, respectively.

There was also good correlation between the measures taken 2 weeks apart. R (95% CI) for FEV1, FVC,
Z5, X5, R5, R20, AX and Fres were 0.968 (0.947–0.981), 0.957 (0.929–0.975), 0.842 (0.750–0.902),
0.894 (0.829–0.935), 0.828 (0.730–0.893), 0.775 (0.652 to 0.859), 0.877 (0.803–0.924) and 0.781 (0.661–
0.863), respectively (figure 3).

The ICCs for FEV1 and FVC were 0.94 and 0.89, respectively. The ICCs for oscillometry measures Z5,
R20, R5, X5, AX and Fres were 0.87, 0.80, 0.74, 0.89, 0.90 and 0.86, respectively. Compared with the
ICC for FVC, there were no significant differences in ICC for Z5, R20, X5, AX and Fres (all p>0.05).
However the ICC for R5 was lower than for FVC (p=0.0081; 95% CI 0.122–0.675).

TABLE 2 Comparison between mean patient symptom scores during oscillometry and spirometry, and mean
time taken to perform the test

Oscillometry,
mean±SD

Spirometry,
mean±SD

Difference mean
(99% CI)

Time taken to perform test min 7.0±2.3 11.5±4.5 −4.5 (−6.0 to −3.0)
Cough during test 1.1±0.5 2.4±1.4 −1.3 (−1.7 to −0.8)
Breathlessness during test 1.5±0.1 2.4±1.2 −1.0 (−1.4 to −0.5)
Tiredness during test 1.1±0.6 1.7±1.1 −0.5 (−0.9 to −0.2)
Understanding of how to perform the test 1.0±0.2 1.1±0.3 0.0 (−0.2 to 0.1)
Ease of performing test 1.1±0.4 2.3±1.3 −1.2 (−1.6 to −0.8)
Confidence in technician 1.1±0.5 1.2±0.8 −0.1 (−0.3 to 0.1)

TABLE 3 Pearson R correlations between oscillometry and spirometry parameters

FEV1 L FVC L PEF L·s−1 FEV1:FVC MEF75 L·s−1 MEF50 L·s−1 MEF25 L·s−1

Z5 kPa·L−1·s−1 −0.581** −0.450** −0.486** −0.051 −0.384** −0.331* −0.075
R20 kPa·L−1·s−1 −0.331* −0.195 −0.422** −0.160 −0.455** −0.350** −0.020
R5 kPa·L−1·s−1 −0.507** −0.391* −0.448** 0.050 −0.391** −0.288* −0.049
X5 kPa·L−1·s−1 0.577** 0.482** −0.460** 0.046 0.300* −0.286* 0.150
AX kPa·L−1 −0.665** −0.634** −0.541** 0.132 −0.321* −0.195 −0.130
Fres Hz −0.548** −0.498** −0.325* 0.111 −0.209 −0.185 −0.085

FEV1: forced expiratory volume in 1 s; FVC: forced vital capacity; PEF: peak expiratory flow; MEF75: maximum expiratory flow at 75% vital capacity;
MEF50: maximum expiratory flow at 50% vital capacity; MEF25: maximum expiratory flow at 25% vital capacity; Z5: impedance at 5 Hz; R20:
resistance at 20 Hz; R5: resistance at 5 Hz; X5: reactance at 5 Hz; AX: area under the reactance curve; Fres: resonant frequency. *: p<0.05; **: p<0.01.
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Discussion
This study demonstrates that respiratory oscillometry takes less time to perform and provokes less
symptoms than spirometry in people with IPF. Test–retest reliability of oscillometry measures were
excellent, with reactance measures having a similar ICC to FVC. Due to the simplicity and low patient
burden associated with the procedure, the data would support further exploration of the potential of
respiratory oscillometry as a longitudinal measure of lung mechanics in people with IPF.
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In individuals with IPF, there is an excessive production of extracellular matrix within the lungs, resulting
in a gradual development of fibrosis, the loss of lung units and increased stiffness of the lung tissue. These
factors collectively contribute to a reduction in FVC, and change in FVC is the most commonly used
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end-point in clinical trials [4]. Although it is a noninvasive measure, spirometry does require repeated
forced maximal manoeuvres and is dependent on patient effort.

X5, the reactance at 5 Hz and AX, the area of reactance, are parameters that comprise two components,
inertance and elastance. Reactance refers to how easily the lung can respond to changes in airflow during
breathing; inertance is related to the lung’s resistance to changes in airflow velocity, especially during
quick breaths, and elastance refers to the elastic properties of the lung, that is, the lung’s ability to bounce
back or resist stretching when air is breathed in. As the elastic properties of the lung are predominantly
impacted in the peripheral airways, X5 is dependent on lung volume and X5 becomes “more negative” in
fibrotic lung diseases when compared to health [14]. AX is an integrative measure that evaluates reactance
over a range of frequencies, but is dominated by the lower frequency components of reactance and
therefore determined predominantly by elastance. It has the advantage of having positive rather than
negative units, and increases with fibrotic lung disease [15]. Therefore, a loss of lung volume on
spirometry, e.g. fall in FVC, would also result in a more negative X5 or more positive AX. Our study
confirms previous findings to demonstrate moderate strength correlations between spirometric variables and
X5 and AX in IPF [7, 15–17].

Limited research has been performed on the burden of spirometry from a patient-focused perspective.
Qualitative work from a primary care setting in France reported participants describing the spirometry test
as “strange, unsettling and painful” [18]. In an international survey organised by the European Lung
Foundation, a significant proportion of the 1760 respondents rated several symptoms as moderately or
seriously problematic during spirometry: “being told to keep blowing when they felt nothing is coming
out” (31.4%), coughing (30.4%), tiredness (26.3%) and shortness of breath (20.1%) [3]. In this survey,
people with IPF were particularly highlighted as a group who found spirometry problematic, with 26.7%
finding it not acceptable (compared with 17% for all respondents) [3]. This is corroborated by observations
from clinical trials where missing follow-up FVC data occurs in about 20% of participants with IPF [19, 20].

Respiratory oscillometry measures the mechanical properties of the respiratory system during quiet tidal
breathing by the application of an oscillating pressure signal (input or forcing signal), most commonly at
the mouth. As it does not require repeated forced manoeuvres, it has been proposed that oscillometry may
have some advantages over spirometry in terms of reduced performance time and less burden on the
patient. However, until now there has been little objective data to support this claim. To our knowledge,
this is the first study to quantitatively compare performance time and symptom burden of oscillometry and
spirometry, and the first to quantify test–retest reliability of oscillometry specifically in IPF. Other strengths
of the study include an adequately powered sample size and the active involvement of patients in the study
through the design of the symptom burden questionnaire.

There were limitations. This was a single centre study, using one specific oscillometry measuring device,
in people with IPF. Therefore, the results need to be corroborated by data from other centres, on other
oscillometry devices and in other patient groups. Due to the nature of the procedures and the outputs from
spirometry and oscillometry, it was not possible to blind participants or researchers. As there are no
validated instruments to assess symptom burden associated with pulmonary function tests, we used a
co-design approach with patients to develop a short questionnaire. This was completed by all the
participants in the study without assistance and was sufficiently sensitive to detect a quantifiable difference
in symptom burden between oscillometry and spirometry. Whereas participants were naïve to oscillometry,

TABLE 4 Bland–Altman mean±SD bias and 95% limits of agreement for measures taken 2 weeks apart

Variable Mean±SD bias 95% limits of agreement

FEV1 L 0.043±0.137 −0.225 to 0.311
FVC L −0.001±0.231 −0.452 to 0.451
Z5 kPa·L−1·s−1 0.001±0.068 −0.133 to 0.135
X5 kPa·L−1·s−1 −0.0003±0.027 −0.053 to 0.053
R5 kPa·L−1·s−1 −0.005±0.079 −0.160 to 0.151
R20 kPa·L−1·s−1 0.001±0.051 −0.098 to 0.100
AX kPa·L−1 0.042±0.391 −0.723 to 0.808
Fres Hz 0.538±3.498 −6.318 to 7.393

FEV1: forced expiratory volume in 1 s; FVC: forced vital capacity; Z5: impedance at 5 Hz; X5: reactance at 5 Hz;
R5: resistance at 5 Hz; R20: resistance at 20 Hz; AX: area under the reactance curve; Fres: resonant frequency.
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they were well accustomed to spirometry, and this may have led to a selective study population and
introduced bias to our results (but in favour of spirometry). Previous familiarity with spirometry may also
potentially explain why the test–retest reliability of oscillometry was not better than spirometry, despite
oscillometry being less burdensome for participants. This is confirmed by the few patients unable to
perform reproducible spirometry at visit 2 (two out of 66).

Our study has focused on specific aspects of oscillometry testing (namely performance time, symptom
burden, test–retest reliability). We also showed that oscillometry parameters show moderate strength
correlations with FVC in this cohort of individuals with IPF, corroborating previous cross-sectional
observational studies [15, 16, 21]. There is increasing data to support oscillometry as a potentially useful
clinical tool in IPF. MORI and colleagues [6] demonstrated that reactance measures may predict lung
function decline in patients with IPF, whilst ISHIKAWA et al. [7] demonstrated that X5, Fres and AX had a
significant impact on survival independent of age, sex and other prognostic factors. Further studies are
needed to establish the potential clinical value of oscillometry in IPF. However, given the simplicity of the
procedure as well as the low symptom burden for patients, we speculate that oscillometry may find a role
providing supplementary information to spirometry (for example regarding prognosis), or as an alternative
means of monitoring lung function in patients with IPF unable to perform spirometry.

In summary, our study has demonstrated that respiratory oscillometry is quicker to perform and provokes
less symptoms (such as cough, shortness of breath and fatigue) than spirometry in people with IPF and has
excellent test–retest reliability. We propose that oscillometry has potential as a longitudinal measure of
lung mechanics in IPF.
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