
1Copyright © 2016 The Korean Society of Cardiology

Korean Circulation Journal

Review Article

http://dx.doi.org/10.4070/kcj.2016.46.1.1
Print ISSN 1738-5520 • On-line ISSN 1738-5555

Post-Translational Modifications of Cardiac Mitochondrial Proteins  
in Cardiovascular Disease: Not Lost in Translation
Jubert Marquez, BS1, Sung Ryul Lee, PhD1,2, Nari Kim, MD1,2, and Jin Han, MD1,2

1Department of Health Sciences and Technology, Graduate School of Inje University, Busan, 
2National Research Laboratory for Mitochondrial Signaling, Department of Physiology, College of Medicine, Cardiovascular and Metabolic Disease Center, Inje University, 
Busan, Korea

Protein post-translational modifications (PTMs) are crucial in regulating cellular biology by playing key roles in processes such as the 
rapid on and off switching of signaling network and the regulation of enzymatic activities without affecting gene expressions. PTMs lead 
to conformational changes in the tertiary structure of protein and resultant regulation of protein function such as activation, inhibition, 
or signaling roles. PTMs such as phosphorylation, acetylation, and S-nitrosylation of specific sites in proteins have key roles in regulation 
of mitochondrial functions, thereby contributing to the progression to heart failure. Despite the extensive study of PTMs in mitochondrial 
proteins much remains unclear. Further research is yet to be undertaken to elucidate how changes in the proteins may lead to 
cardiovascular and metabolic disease progression in particular. We aimed to summarize the various types of PTMs that occur in 
mitochondrial proteins, which might be associated with heart failure. This study will increase the understanding of cardiovascular 
diseases through PTM. (Korean Circ J 2016;46(1):1-12) 
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Introduction

Post-translational modifications (PTMs) are changes or alterations 
in a protein occurring after the completion of the translational 
process by ribosomes that are catalyzed by numerous enzymes. 
PTMs occur either when a functional group is covalently added to a 
protein, or during the proteolytic processing and folding processes. 

Protein PTMs play a key role in several physiological and cellular 
processes including cellular differentiation,1) protein degradation,2) 
signaling and regulatory processes,3) regulation of gene expression,4)5) 
and protein-protein interactions.6)7) PTMs act as a mechanism for 
the specification of proteins, through conformational changes 
that either minutely8) or largely9)10) change the overall tertiary 
structure of a protein.11) These modifications increase the variety 
and difference of proteins.12) Protein PTM dysfunction via external 
stimuli13-15) or aberrant signaling16)17) eventually leads to disease 
progression either through aberrant signaling or impaired PTM 
crosstalk.18)19) Non-native protein PTM leads to either biochemical 
dysfunction20) or a structural modification21) in the amino acid due 
to ‘crosstalk.’12)22)

Mitochondria encompass 90% of the energy produced mainly 
by oxidative phosphorylation via electron transfer and adenosine 
triphosphate (ATP) synthase complexes.23) Subtle regulation of mito
chondrial functions is mediated PTMs24) such as phosphorylation,25) 
acetylation,26) succinylation,27) and O-GlcNAcylation of mitochondrial 
proteins.28)29) Furthermore, since mitochondria are the central hubs 
of energy production, these networks are involved in various human 
pathological phenotypes; furthermore, mitochondrial proteomic 
dysfunction is directly associated with heart diseases.30)31) The 
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availability of high-tech mass spectrometric techniques combined 
with advanced modified proteins/peptides by affinity chromato
graphy methods has resulted in breakthroughs regarding the 
role of PTMs in cellular protein, particularly in mitochondrial 
proteins. Enzymes and stimuli involved in changes of PTMs are 
equally important; however, these issues are beyond the scope of 
this review. A better understanding of PTMs helps clinicians and 
researchers alike, but also facilitates development of targeted 
strategies for disease intervention. 

Mitochondria, Heart Failure, and Post-Translational 
Modifications

According to the latest report by the World Health Organization, 
cardiovascular disease (CVD) is the leading cause of mortality in 
developed countries. Despite much progress in the advancement 
in the prevention, diagnosis, and management of CVD in the past 
decades,32-35) heart failure (HF) continues to be prevalent since 
current trends do not target direct cure in HF patients (except those 
with congenital heart diseases), but only decreases in the mortality 
rates.36)

Heart failure is a multifactorial clinical condition that is charac
terized by a dysfunction in the contractility of the myocardium, 
which results to the inability of the heart to provide enough blood 
for the metabolic needs of surrounding tissues.37) Increased preload 
and afterload, neurohormonal dysregulation, cardiac ischemia, 
and intrinsic abnormalities of the myocardium are common 
etiologic factors of HF. The gradual development of CVD to HF is 
a multicomponent and a multistep process, wherein cumulative 
acute cardiovascular injuries like myocardial ischemia/reperfusion 
(I/R) result in a chronic dysfunction.38)

HF progresses partly via changes in major signal transduction 
pathways,39) dysfunction in calcium homeostasis and energy 
fluxes,40) and alterations of the contractile apparatus in the 
heart.41) The underlying principles of bioenergetics is a key in 
further understanding its effects on CVD and HF (i.e., synthesized 
myocardial ATP transfer is required to maintain the excitation-
contraction coupling, continuously supporting the optimal 
functioning of systolic and diastolic periods in the heart). Since 
cellular energetics and metabolism is heavily influenced and 
regulated by the mitochondria, there is undoubtedly a link between 
the heart and mitochondria function. Dysfunction in mitochondria 
such as oxidative damage,42) respiration impairment,43) and substrate 
utilization alterations have been reported in HF.44)

A frail heart undergoes complex changes in energy metabolism 
and substrate utilization due to mitochondrial dysfunction 

that are still unclear. These metabolic changes or remodeling 
occur when genes of interest trigger structural, functional, and 
electrical changes, which result in decreased cardiac function. One 
mechanism of this remodeling involves PTMs, which break down 
misfolded and damaged proteins in addition to proteins involved in 
contractile apparatus and hypertrophic gene expression. Likewise, 
proteins in respiratory chain and fat/glucose oxidation, which 
possess at least 1 reversible acetylation mark in complexes I, II, 
and V, and pyruvate dehydrogenase (PDH), and numerous acyl-
CoA dehydrogenases, are involved.45)46) Regulation of metabolic 
enzymes within the mitochondria by acetylation implies that 
altered acetylation states within the mitochondria could play a role 
in the pathophysiology of heart failure.47)

Protein post-translational modifications are important in the 
study and analysis of disease progression such as those involving 
CVD, since the interplay between regulatory PTMs and the induced 
changes of the organelle dysfunction including mitochondria are 
potentially important factors in CVD progression.48) Several studies 
on the relationship of mitochondrial PTM and heart failure are 
reported.49)50) O’Rourke et al.48) in a study on heart mitochondria 
isolated from HF reported that cAMP-activated protein kinase 
might be involved in the increased protein phosphorylation during 
HF. Oxidative phosphorylation brought about by subunit-specific 
phosphorylation of complex IV regulates the incorporation or 
destabilization of the supercomplexes.51) In addition, growing 
evidence shows mitochondrial protein acetylation as a common 
mechanism in response to cardiac stress. Moreover, decreased 
nicotinamide adenine nucleotide (NAD+)/nicotinamide adenine 
nucleotide (reduced) (NADH) ratio and increased mitochondrial 
protein acetylation with increased sensitivity of mitochondrial 
permeability transition pore (mPTP) are associated during calcium 
sensitization. However, whether hyper-acetylation of a single 
protein or a select group of protein targets is the main contributor 
to increased sensitivity to cardiac stress remains to be determined.52)

The mitochondria plays a significant role in the regulation of 
cellular and physiological processes, hence it is important to 
study the associated proteins. We review the most common PTMs 
occurring in select mitochondrial proteins, as well as minor PTMs 
and the complex relationship with other PTMs that contribute to 
the progression of heart disease.

Post-Translational Modifications of Mitochondrial 
Proteins

 Phosphorylation
Signaling cascades are important in the study of acute cardiac 
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pathologies, particularly in cases of I/R.12) Kinase activators and 
inhibitors are important mediators in pathological diseases.53) 
Phosphorylation is one of the well-studied PTMs that are 
responsible for altering a target protein’s conformation that leads 
to either activation or inactivation of mitochondrial functions 
(Table 1 and Fig. 1A). Protein phosphorylation is a reversible PTM 
regulated by kinases and phosphatases, which is responsible 
for the phosphorylation and dephosphorylation of substrates, 
respectively.54) Protein kinases are key enzymes in modulating 
phosphate group transfer to serine, tyrosine, and threonine residues 
of the targeted proteins and thereby generate negatively charged 
side chains, which can either attract or repel target proteins in an 
external stimulus-dependent manner.55) Protein phosphatases on the 
other hand are signal transducing enzymes that dephosphorylate 
phosphoproteins.56) 

Phosphorylation regulates the catalysis of numerous mitochondrial 
enzyme complexes by specific kinases associated with these 
complexes, making the process more efficient. One of the earliest 
studies regarding phosphorylation focuses on protein kinase 

capable of phosphorylating proteins in the rat liver mitochondria.53) 
Table 1 shows selected mitochondrial proteins from the Pagliarini 
and Dixon57) review on phosphoproteins found in the matrix, inner 
membrane, intermembrane space and outer membrane.

Pyruvate dehydrogenase complex (PDC), a kinase/phosphatase-
dependent regulatory cascade, is composed of 3 principle subunits: 
pyruvate dehydrogenase E1, dihydrolipoamide acetyltransferase 
E2, and dihydrolipoamide dehydrogenase E3. PDC links glycolysis to 
tricarboxylic acid cycle (TCA) cycle,58) catalyzing pyruvate conversion 
to acetyl CoA and is regulated by allosteric effectors and by 
reversible phosphorylation.59) E1 subunit complex phosphorylation 
at sites Ser264, 271, and 204 by pyruvate dehydrogenase kinase (PDK) 
leads to its inactivation,60)61) while dephosphorylation, via pyruvate 
dehydrogenase phosphatase results in its activation. Inhibition or 
phosphorylated state is brought about by high concentrations of 
immediate products such as acetyl CoA and NADH, and terminal 
products such as ATP levels. Thus, phosphorylation of PDC E1 by 
a phosphatase switches off the activity of the complex, thereby 
deactivating it (Fig. 1B). 

Fig. 1. Several types of post-translational modifications. (A) Reversible protein phosphorylation. Protein kinase transfers a phosphate group (P) from ATP 
(ADPP) to the target protein. A protein phosphatase is responsible for removing the phosphate group via hydrolysis. (B) Protein kinases mediate 
phosphorylation at various amino acid sites of serine, threonine and tyrosine side chains. In the example shown, PDH is a phosphorylated protein found in 
the mitochondrial matrix. PDH is a large complex made up of several units (E1, E2, and E3), which is responsible for catalyzing oxidative decarboxylation of 
pyruvate, to form acetyl-CoA. PDH is phosphprylated at Ser264, 271, and 204. (C) Reversible protein acetylation. In the given example, Sirtuin 3 (SIRT3) 
deacetylases the acetylated form of NDUFA9. (D) Redox-mediated S-nitrosylation occurs through the covalent reaction of nitric oxide (NO)-related species 
with a cysteine thiol group on the target protein. ATP: adenosine triphosphate, ADP: adenosine diphosphate, PDH: pyruvate dehydrogenase, Ser: serine, 
NDUFA9: NADH dehydrogenase subcomplex A9, NO: nitric oxide, CI: complex I, SH: thiol subunit, S: sulfur.
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Pyruvate dehydrogenase kinase (PDHK) exists mostly in 
organisms of eukaryotic lineages,62) and is notably absent only in 
organisms with reduced or absent mitochondria.61) The sequence 
of PDK bears significant similarity with histidine kinases,63)64) which 
are widely distributed sensory transducers in prokaryotes.65) PDHK 
is made up of 2 different subunits i.e., PDHK α-subunit with kinase 
activity on selective proteolytic cleavage and PDHK β-subunit, 
a regulatory subunit.66) Like phosphatase, kinase activities are 
activated by increased ratios of acetyl-CoA/CoA and NADH/
NAD+67)68) and inhibited by elevated adenosine diphosphate (ADP) 
levels69) and by dichloroacetate70) in the mitochondrial matrix. 

The inner mitochondrial membrane protein branched-chain 
α-ketoacid dehydrogenase (BCKD) complex, responsible for the 
oxidative decarboxylation of 3 branched amino acids (valine, leucine, 

and isoleucine), possesses a thiamine pyrophosphate-dependent 
branched-chain α-ketoacid decarboxylase (E1). Inactivation of 
this complex occurs via serine 193 phosphorylation through BCKD 
kinase (BCKDK).71) Branched chain amino acid levels are maintained 
during protein starvation by BCKDK-mediated phosphorylation and 
complex inhibition, a pathological characteristic of maple syrup 
urine disease that presents with severe neurological dysfunction.72)

End-stage heart failure may be partly due to reduced 3’,5’-cyclic 
adenosine monophospate (cAMP)-dependent phosphorylation in 
various oxidative phosphorylation (OXPHOS) subunits.73) cAMP-
dependent phosphorylation regulates OXPHOS activity by elevating 
cAMP levels, which leads to increased nicotinamide adenine 
dinucleotide dehydrogenase (ubiquinone) Fe-S protein 4 (NDUFS4) 
phosphorylation complex I (CI) activity by twofold.74) In line with 

Table 1. Brief outline of phosphorylation in mitochondrial proteins 

Protein and references Localization Phospho site(s) Function Effect on function

PDC E1α127)

Mitochondrial matrix Ser
Oxidative decarboxylation  

of pyruvate
Acute modulation of active PDC,128) delays 
reactivation through dephosphorylation128)

PDHK129-131) Mitochondrial matrix
Ser
Thr
Tyr

OXPHOS to glycolysis  
switch

Unknown

BCKAD25)132) Mitochondrial matrix
Ser
Thr
Tyr

Leucine oxidation ↓Complex activity71)

MDH133)134) Mitochondrial matrix
Ser
Thr
Tyr

Reversible malate to  
oxaloacetate conversion, 

malate-aspartate 
Unknown

CI: ESSS133)135)136) Matrix arm of CI Ser CI assembly ↑CI activity in bovine hearts74)

CI: 10 kDa135) Intermembrane of CI Ser CI assembly
↑CI activity, ↓ ROS production in bovine 

hearts137)

CIV I
135) Mitochondrial inner 

membrane
Tyr

Cyt c oxidation, oxygen 
reduction 

↓CIV activity138)

CIV Vb139) Intermembrane
side of CIV

Ser CIV regulation ↓CIV activity, ↑ROS production78)

CV β
140) CV matrix

(F1)
Thr

ATP synthesis from ADP  
and Pi

↓CIV activity141)

NAD (P) transhydrogenase 
142-144)

Mitochondrial inner 
membrane

Tyr H+ pump Unknown

ANT142)145) Mitochondrial inner 
membrane

Tyr
Adenine transmembrane 

transporter
↑Cellular respiration146)

Phosphate carrier pro-
tein132)142)147)

Mitochondrial inner 
membrane

Ser
Thr
Tyr

Phosphate group transporter Unknown

Proteins presented are adapted from the Table in a 2006 review by Pagliarini and Dixon57) with more relevant and recent sources, including a cross-refer-
ence to PhosphoSite Plus studies and a more specific function. General phosphorylation sites are described due to space limitations. Up and down ar-
rows indicate increase and decrease, respectively. PDC: pyruvate dehydrogenase complex, Ser: serine, PDHK: pyruvate dehydrogenase complex kinase, 
OXPHOS: oxidative phosphorylation, Thr: threonine, Tyr: tyrosine, BCKAD: branched-chain alpha-keto acid dehydrogenase, MDH: malate dehydrogenase, 
CI: complex I, ESSS: ESSS subunit of NADH:Ubiquinone oxidoreductase (complex I), kDa: kilodalton, ROS: reactive oxygen species, CIV: complex IV, Cyt c: 
cytochrome C oxidase, CV: complex V, ATP: adenosine triphosphate, F1: fraction 1, ADP: adenosine diphosphate, NAD: nicotinamide adenine dinucleotide 
transhydrogenase, P: phosphate, ANT: adenine nucleotide translocase
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this, CI reportedly undergoes cAMP-responsive phosphorylation at 
the 10 and 18-kDa subunits.75) Mass spectrometry technique also 
shows that purified CI possesses phosphorylation sites at the 42-
kDa subunit in addition to the B16.6, B14.5a, and B14.5b subunits 
of CI.

76) Complex IV (CIV) subunit phosphorylation is considered 
not only beneficial, but critical for CIV activity in healthy and 
pathological cardiac mitochondria. Hypoxia and ischemia increase 
protein kinase A-dependent phosphorylation of IVi1 and Vb 
subunits of CIV,

77) which are associated with lower CIV activity and 
increased reactive oxygen species (ROS) production.78) 

Currently, phosphorylation is known to regulate proteins in the 
different mitochondrial compartments in a very specific manner, 
and its regulation leads to alterations that either directly or indirectly 
cause heart failure. However, the kinases and phosphatases involved 
during mitochondrial protein phosphorylation, including its 
subunits are not fully understood. In addition, the phosphorylation 
events regulating mitochondrial functions or dysfunctions in vivo 
remain to be confirmed. 

Acetylation
Acetylation occurs when an acetyl group is introduced into a 

compound, wherein the hydrogen atom of a hydroxyl group is 
exchanged with an acetyl group yielding acetate.79) Studies have 
suggested that non-histone-acetylases and deacetylases are both 

involved in cardiac remodeling (Table 2 and Fig. 1C). 
Sirtuins (SIRTs) are NAD+-dependent protein deacetylases that 

play key roles in regulation of mammalian metabolism. Cells have 
7 different SIRTs, 3 of which are localized in the mitochondria: 
SIRT3, SIRT4, and SIRT5.80) When SIRT3 is abolished, mitochondrial 
proteins become hyperacetylated and exhibit altered function that 
eventually leads to mitochondrial dysfunction.81) SIRT3 targets 
many enzymes, which is suggestive of its role in heart failure. For 
example, mitochondrial protein acetyl-CoA synthetase 2 (AceCS2) 
activities are directly regulated by SIRT3 in an NAD+-dependent 
manner.82)83) SIRT3 in neonatal rat ventricular myocytes (NRVMs) 
deacetylates nuclear protein Ku70, preventing mitochondrial 
translocation of Bax and enhancing H2O2 tolerance.84) SIRT3 also 
deacetylates FOXO3a responsible for increasing manganese-
dependent superoxide dismutase (MnSOD, SOD2) expression, 
which in turn diminishes mitochondrial superoxide.85) A new study 
has shown the role of SIRT3 in fatty acid oxidation (FAO), wherein 
it deacetylates Lys42 of the 8 acetylation site on long-chain acyl-
CoA dehydrogenase (LCAD) leading to FAO pathway activation.86) 
Aside from AceCS2 and LCAD, acetylation also regulates other 
mitochondrial components such as malate dehydrogenase87) and 
isocitrate dehydrogenase88) in the TCA cycle. Mitochondrial malate 
dehydrogenase (MDH2) becomes acetylated at Lys185, Lys301, 
Lys307 and Lys314 and Lys314, resulting in increased activity (rapid 

Table 2. Brief outline of acetylation in mitochondrial proteins 

Protein and references Localization Lysine (K) acetyla-
tion site(s) Function Effect on function

AceCS283) Mitochondrial matrix K64283) Acetate/CoA ligation Deacetylation ↑acetate conversion

ALDH2148) Mitochondrial matrix K377*149) Acetaldehyde metabolism
Deacetylation by SIRT3 allows  

NAPQI binding to ALDH2, ↓ activity

ATP5A1150) Mitochondrial inner 
membrane

K427, K531,  
K539150)

Produces ATP from ADP in the
presence of a proton gradient 

↑ETC activity

IDH2151) Mitochondrial matrix K155, K180152) Oxidative decarboxylation of 
isocitrate to 2-oxoglutarate

↓Catalytic activity

LCAD153) Mitochondrial matrix K254154) Mitochondrial fatty acid oxidation ↑Lipid processing

MDH2153) Mitochondrial matrix K16587)
Reversible malate to oxaloacetate 

conversion, malate-aspartate  
shuttle

↑Malate export, ↑Gluconeogenesis 
and hyperglycemia

NDUF9A52) Mitochondrial matrix K89*155) Accessory subunit of NADH 
dehydrogenase CI

↑CI 

SOD2156) Mitochondrial matrix K68*156) Destroys superoxide anion radicals ↓Enzymatic activity

The examples are adapted from the Table in a 2014 review by Papanicolaou, et al.26) The Table is updated with the addition of acetylation/deacetylation 
on function. Common acetylation sites among rat, mouse, and guinea pig samples are chosen as representative acetylation site(s) due to space limita-
tions. *Indicates acetylation in liver. Up and down arrows indicate increase and decrease, respectively. K: lysine, AceCS2: acetyl-CoA synthetase 2, ALDH2: 
aldehyde dehydrogenase 2, SIRT: sirtuins, NAPQI: N-acetyl-p-benzoquinone imine, ATP5A1: ATP synthase subunit 5A alpha subunit isoform 1, ATP: adenos-
ine triphosphate, ETC: electron transport chain, ADP: adenosine diphosphate, IDH2: isocitrate dehydrogenase 2, LCAD: long-chain acyl-CoA dehydrogenase, 
MDH: malate dehydrogenase, NDUF9: NADH dehydrogenase subcomplex A9, CI: complex I, NADH: nicotinamide adenine dinucleotide (reduced), SOD2: su-
peroxide dismutase 2 
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reduction of oxaloacetate to malate when coupled with high NADH) 
during the hyperacetylated MDH2 state,89) thereby increasing 
gluconeogenesis and hyperglycemia risks.87) On the other hand, 
SIRT4 and SIRT5-deficient mice do not show any significant changes 
in their acetylation status,90) and thus both SIRT4 and SIRT5 have 
limited deacetylase activities.91)

S-nitrosylation
S-nitrosylation is the specific attachment of nitric oxide (NO)-

related species to a thiol group to form S-nitrosothiol, which also 
serves as a cellular signal due to its similar nature with phosphoryla
tion.92) The actions of denitroylases are thought to be similar with 
those of the phosphatases in kinase signaling; in addition, they are 
considered as major regulators of the cytosolic and mitochondrial 
thioredoxin reductases.93)94)

In mitochondria, regulation of oxidative phosphorylation and 
glycolysis by NO-mediated protein S-nitrosylation is important 
in both physiologic and pathophysiologic conditions (Fig. 1D). 
S-nitrosylation of mitochondrial aldehyde dehydrogenase 2 
family, involved in NAD+-dependent oxidation of the different 
aldehydes produced during intermediary metabolism, leads to 
reversible inhibition.95) Creatine kinase, responsible for conversion 
of creatine, uses ATP to produce phosphocreatine and ADP; it is 
inhibited by S-nitrosoglutathione (GSNO) dose-dependently via 
transnitrosylation96) and reversibly regulated through S-nitrosylation 
of Cys283 in adult rat ventricular myocytes.97) Another study using 
isolated rat heart mitochondria as a model shows inhibition of 
complex I by the S-nitrosylation of the 75-kDa subunit through 
the exogenous addition of GSNO. In an endothelial cell model, 
the inhibition of mitochondrial complex IV/cytochrome c oxidase 
possibly occurs by S-nitrosylation at Cys196 and Cys200, which are 
both active residues.98) However, the exact mechanism of this PTM 
in vivo, briefly described as the addition of NO to reactive cysteines, 
still remains largely unknown.99)100)

Cross-talk with various protein post-translational modifications
The respective actions of each PTM are clearly essential modulators 

of protein structure-function relationships. The numerous PTMs 
are potentially related, forming networks, as evident in different 
biological systems.101) Three criteria are suggested in crosstalk of 
PTMs: 1) similar site competition; 2) modification that facilitates 
conformational change in the second site accessibility that allows 
another PTM to occur, and; 3) direct alteration of the modifying 
enzyme of the other PTM.102) One of the earliest studies concerning 
potential PTM crosstalk focuses on the potential sites of O-linked 
β-N-acetylglucosamine (O-GlcNAc), which is modification of 
serine or threonine hydroxyl moieties by β-N-acetylglucosamine, 

or phosphorylation modification, which both target serine and 
threonine dynamically and transiently in nature.28) However, a 
recent study shows that the location of the O-GlcNAcylation 
machinery within the cell partially dictates its function. The 
regulation of O-GlcNAcylation through subcellular redistribution 
of OGT/OGA and functional consequences that have immediate 
therapeutic potential to improve cardiac contractility posits a 
new concept in PTM cross-talk.103) Furthermore, PTM sumoylation 
is the covalent protein modification by addition of ubiquitin-like 
polypeptides. Crosstalk between sumoylation and phosphorylation 
is also suggested, since the small ubiquitin-like modifier (SUMO) 
attachment lysine site is located 4 sites from a phosphorylated 
serine in numerous sumoylated proteins.104)105)

Phosphorylation and lysine acetylation are likewise involved in 
crosstalk.23) For example, adenosine monophosphate-activated 
protein kinase and the SIRT family. A study shows that there is 
an approximately 80% overlap between the interacting sites of 
mitochondrial lysine acetylation and succinylation; for instance, 
approximately 25% of known SIRT5 target sites were also modified 
by SIRT3.106) These findings indicate the possible cooperation 
between proteins in order to maintain balance in the mitochondria. 

Crosstalk also signals degradation, as shown in I/R injury where 
myosin light chain 2 is reduced between a deamidated asparagine 
and a phosphorylated serine, exhibiting 3 PTMs occurring within 2 
amino acids. Similarly, there is a complicated relationship between 
S-glutathionylation and major PTMs. S-glutathionylation, in which 
protein cysteine residues are modified during glutathione addition, 
has 2 main mitochondrial roles i.e., oxidant stress defense and redox 
signaling. During the oxidation of the mitochondrial glutathione, 
the cysteine-rich 75-kDa subunit of complex I becomes the main 
target.107) Glutathionylation/oxidation acts as a buffer against ROS 
under these conditions, keeping protein thiols away from the gradual 
oxidation to sulfinic acid and sulfonic acid, which might lead to 
irreversible protein dysfunction (Fig. 1).108)109) Another study108) shows 
that glutathionylation of Complex I (CI) due to diamide-induced 
glutathion depletion inhibits CI activity; however, ROS levels remain 
unchanged during nitrosylation on the same subunit. CI undergoes 
nitrosylation and glutathionylation, hence, mitochondrial complex 
II (CII) is a protein that persistently undergoes glutathionylation. In 
an I/R model induced by coronary ligation, the 70-kDa subunit of CII 
undergoes markedly reduced glutathionylation that is related with 
the loss of electron transfer activity. Thus, glutathionylation likely 
plays a key role in the maintenance of CII function.110)

Limitations of mitochondrial protein post-translational  
modification studies

With the technological advancements of recent years, 
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hundreds of mitochondrial proteins are identified through mass 
spectrometry-based proteomics. This has led to a completely novel 
way of understanding CVD. Extensive validation of PTM sites on 
mitochondrial proteins and the correlation with protein function 
remains to be done. A full understanding of the intricate web of 
post-translational signaling and regulation in the mitochondria, 
as well as the identification of target proteins, should be the next 
step before further development of strategies to combat CVD. 
However, integrative approaches including computational biology, 
protein arrays, and biochemical analyses will quickly advance the 
progress of studies. Hofer and Wenz111) raised several questions  
whether PTMs are regulatory in nature given the small percentage 
of target proteins that are modified during the process; and if so, 
the regulatory mechanisms involved need to be elucidated. In 
addition, it is not clear whether all regulatory PTMs are beneficial to 
the continued functioning of the system, or detrimental. Moreover, 
questions regarding tissue-specificity and time-dependence 
should be considered during experimentation. Addressing these 
issues will greatly aid in understanding disease mechanisms and 
suggest targeted strategies for disease intervention.

A Clinical Perspective of Mitochondrial Protein 
Post-Translational Modification for Combating Car-
diovascular Disease

Current therapies do not directly address the treatment of CVD, 
but rather, are aimed at slowing its progress to HF. For example, 
statins that slow the formation of atherosclerotic lesions,112) 
antianginals targeting ischemic tissues,113) and antiplatelet or 
anticoagulation agents which hinder the formation of a clot.113) 
Cardiac ischemia can at times be predicted, such as in the cases 
of cardiac surgery or balloon inflation employed in percutaneous 
coronary intervention.114) More recently, preconditioning (PC) of 
the heart has emerged in clinical practice,115) wherein the heart is 
subjected to short intermittent I/R cycles before index ischemia 
that reduces the infarct size and improves postischemic function.116) 
Targeting the MPTP is a new trend with more promising effect.

MPTP opening is a key factor that drives necrotic cell death in I/R 
injury.117) The key components of MPTP are still unclear, but transgenic 
animal models show that adenine nucleotide translocase as the 
phosphate carrier can regulate the pore opening.118) Cyclophilin D119) 
and voltage-dependent anion channel (VDAC)120) are associated 
with MPTP but their roles remain unclear. Other proteins related 
with MPTP include hexokinase II,121) which serves as a connection 
between the pore and cellular metabolism and mitochondrial 
translocator protein, which communicates with VDAC.122) 

PC can act on MPTP either directly on the MPTP to inhibit its 
opening123) and/or by reducing calcium or ROS levels that trigger 
MPTP.117) Considering that cardioprotective signaling pathways are 
activated through direct MPTP inhibition, these signaling pathways 
are capable of modifying MPTP components. Thus, we can expect 
that cardioprotective signaling leads to mitochondrial protein PTM.

The importance of epigenetics in gene regulatory mechanisms 
leading to cardiovascular complications have also been widely 
studied (particularly histone and DNA modifications) as a therapeutic 
target for CVD. Factors such as diet, environmental changes, and 
activity affect gene expression in an entity and its offspring via 
epigenetics, without affecting the genomic sequence. A clinical 
study124) conducted by the Diabetes Control and Complications Trial/
Epidemiology of Diabetes Interventions and Complication (DCCT/
EDIC), show that patients on constant intensive therapy have lower 
cardiovascular complications, as compared to those who are first 
on conventional therapy and then switched to intensive therapy. 
This supports the evidence that a history of hyperglycemia possibly 
leads to long-lasting molecular changes that ultimately puts the 
patients on the fast-track to the development and progression 
of CVD. Thus, PTM-mediated regulation of the cardiac proteome 
can serve as a foundation laid early in life or transmitted from the 
parental units.125) 

HF is a multifactorial syndrome that progresses largely due 
to myocardial dysfunction brought about by mitochondrial 
modifications. Therefore, it is important to understand mitochondrial 
cytopathy in HF as a potential foundation for therapeutic strategies 
to maintain mitochondrial integrity, enhance substrate metabolism, 
protect and reduce oxidative stress in the environment, and improve 
the myocardial contractility.126) These changes are undoubtedly 
related to the modification of mitochondrial proteins through 
various PTMs. Some novel mitochondrial targets of phosphorylation, 
S-nitrosylation, and acetylation are elucidated, most of which are 
linked to single protein activity or total mitochondrial function. 
Collectively, the understanding of mitochondrial PTMs will provide 
an insight into controlling mitochondria-related conditions such as 
HF, but more systemic and long-term research is needed.
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