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Background and Objectives: Pancreatic cancer (PC) is one of the deadliest

cancers worldwide although substantial advancement has been made in its

comprehensive treatment. The development of artificial intelligence (AI)

technology has allowed its clinical applications to expand remarkably in

recent years. Diverse methods and algorithms are employed by AI to

extrapolate new data from clinical records to aid in the treatment of PC. In

this review, we will summarize AI’s use in several aspects of PC diagnosis and

therapy, as well as its limits and potential future research avenues.

Methods: We examine the most recent research on the use of AI in PC. The

articles are categorized and examined according to the medical task of their

algorithm. Two search engines, PubMed and Google Scholar, were used to

screen the articles.

Results: Overall, 66 papers published in 2001 and after were selected. Of the

four medical tasks (risk assessment, diagnosis, treatment, and prognosis

prediction), diagnosis was the most frequently researched, and retrospective

single-center studies were the most prevalent. We found that the different

medical tasks and algorithms included in the reviewed studies caused the

performance of their models to vary greatly. Deep learning algorithms, on the

other hand, produced excellent results in all of the subdivisions studied.

Conclusions: AI is a promising tool for helping PC patients and may contribute

to improved patient outcomes. The integration of humans and AI in clinical

medicine is still in its infancy and requires the in-depth cooperation of

multidisciplinary personnel.
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1 Introduction

Pancreatic cancer (PC) is one of the deadliest malignancies

worldwide. When all tumor stages are included, its 5-year

survival rate is 3%–15%, which is the lowest among all cancer

types (1, 2). Although pancreatic ductal adenocarcinoma is

relatively rare, with an incidence of 8 to 12 cases per 100,000

per year and a 1.3% lifetime risk of developing the disease, the

number of cancer deaths caused by PC ranks seventh overall (3).

It ranks third in the United States, second only to colon cancer

and lung cancer (1). Moreover, the incidence rate of PC has been

increasing in recent years, and the mortality rate has also been

rising over the past 10 years (1, 4). Therefore, we must actively

explore feasible methods to improve the prognosis of patients.

Wherever possible, this review focuses on pancreatic

adenocarcinoma. However, it should be understood that when

the term “pancreatic cancer” is used, the majority of instances

are pancreatic ductal adenocarcinomas.

Artificial intelligence (AI) refers to any technique involving

the use of a computer system to emulate human behavior (5).

Computer vision, convolutional neural networks, and natural

language processing have all seen tremendous advancements in

data processing and big data technology, which makes AI

become a hot spot and help innovate many fields in recent

years, including the medical field. There have been some exciting

achievements with AI in radiology, pathology, ophthalmology,

and dermatology in the medical field. The combination of AI

and modern medical treatments is where medical development

is headed in the future.

Compared with the subjects mentioned above, the

application of AI in the PC field is in its initial stages.

However, the existing research results have shown that AI has

the ability to optimize the PC diagnostic and therapeutic

processes. Our team believes that combining AI with the

diagnostic and treatment technology used today may help

improve the prognosis of patients. The goals of this study are

to summarize AI’s use in various aspects of the diagnosis and

treatment of PC cases and also to discuss its limitations and

possible future research directions.
2 Overview of AI

AI is a branch of computer science. It was formally put

forward by scientists in 1956. To avoid the question of what

“intelligence” is, Alan Turing, the father of AI, tends to test the

thinking ability of machines only by comparing the behavior of

machines and humans. Given the definition in terms of

behavior, AI is a form of technology through which people

attempt to use computers to imitate human behavior, especially

thinking and decision-making processes (Figure 1).

Machine learning (ML) and deep learning are the products

of the development of AI. ML is a subset of AI techniques that
Frontiers in Oncology 02
attempt to apply statistics to data problems to discover new

knowledge by generalizing from examples. Deep learning is a

subset of ML that uses a collection of sophisticated algorithms

known as neural networks to enable machines to analyze and

learn in the same way that humans do, allowing them to identify

text, pictures, audio, and other input (5).

Anartificialneural network (ANN) is a computingmodelmade

up of interconnected units containing a high number of neurons

(6). The most basic ANN consists of three layers (7) (Figure 2).

A feedforward neural network with a deep structure and

convolution computation is known as a convolutional neural

network (8). It has a remarkable capacity to process image

information, making it useful for AI technologies.

In general, AI is an information processing technology. In

clinical practice, some of the work performed by doctors, such as

diagnosing diseases, making treatment plans, and judging

prognosis, also involves processing and integrating existing

information. Compared with the human brain, a computer has

a larger storage space and faster processing speed. Thus,

interesting questions have emerged regarding if medical

treatment processes such as these can be carried out using AI,

as well as if this technology can perform better than humans.
3 Methods

We did a thorough analysis of the available literature on AI

applications for PC. We searched the online databases PubMed
FIGURE 1

Overview of artificial intelligence. ANN, artificial neural network;
CNN, convolutional neural network; LR, logistic regression; RF,
random forest; SVM, support vector machine; DNN, deep neural
network; GAN, generative adversarial network.
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and Google Scholar for publications containing the terms

artificial intelligence and pancreatic cancer. Only original

articles published with the complete text supplied and written

in English were selected using the filter. The abstracts of the

publications were then scrutinized for subject relevance. We

further looked through the reference lists of pertinent literature

reviews to find extra relevant papers.
4 Results

According to medical tasks addressed in the research, papers

can be grouped into four main categories: risk assessment,

diagnosis, treatment, and prognosis prediction.

We will introduce the characteristics of each model and their

performance one by one in the following sections. The

performance of the models below is generally measured by
Frontiers in Oncology 03
accuracy, sensitivity, and specificity values and the area under

the receiver operating characteristic curve (AUC).

Because each study is conducted in different settings, it is not

advisable to compare the performance measurements provided

in each study. We highly advise the readers to read each article in

order to reach their own judgments.

Tables 1 and 2 describe some of the technical terminologies

that will be mentioned below.
4.1 Predicting PC through risk factors

There are two types of risk factors for PC: modifiable and

non-modifiable risk factors. Smoking, drinking, a history of

chronic pancreatitis, dietary variables, and a history of certain

infections such as hepatitis B, hepatitis C, andHelicobacter pylori

are among the modifiable risk factor (9). The latter includes age,

gender, ethnicity, blood group, gut bacteria, family history, and
TABLE 1 Performance measure terminologies.

Performance
measure

Concept

AUC AUC is a performance measure typically used in classification problems. The ROC curve consists of a plot of the true-positive rate vs. the false-
positive rate for the different threshold possibilities. The closer the AUC value is to 1, the better the model classifies.

IoU The concordance rate between the ground-truth area and the automatic segmentation area was calculated using the intersection over the union (IoU),
which is a value ranging from 0 to 1 that is calculated by dividing the area of overlap between the ground-truth area and the automatic segmentation
area by the area of union.

DSC Dice similarity coefficient measures the similarity of the prediction image and the ground-truth image. Its value range is 0–1 and the closer it is to 1,
the better the effect of the model.

C-index Concordance index refers to the proportion of all patient pairs whose predicted results are consistent with the actual results. The value of the C-index
is between 0.5 and 1: 0.5 is completely random, indicating that the model has no prediction effect, and 1 is completely consistent, indicating that the
prediction result of the model is completely consistent with the actual situation.
AUC, area under the receiver operating characteristic curve; IoU, intersection over the union; DSC, Dice similarity coefficient; C-index, concordance index.
FIGURE 2

Anatomy of an artificial neural network.
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genetic susceptibility (9). For these numerous risk factors, there

is no standard scale to determine the risk of PC in an individual.

This causes clinicians not able to analyze all risk factors together,

leading to wasted information and delayed diagnosis.

Prediagnosis symptoms include new-onset diabetes (10, 11),

weight loss (12), jaundice, upper abdominal pain, etc., and these

often appear a few months to a few years before PC is diagnosed

(13). However, because of the non-specificity of these symptoms,

doctors are often unable to link them to PC (14, 15). This also

leads to wasted information and delayed diagnosis.

One of the reasons for the high mortality rate of PC is its

lagging diagnosis. The majority (80%–85%) of people with PC

have locally progressed or distant metastasis when they are

diagnosed, and only a few patients have tumors that can be

surgically removed (15%–20%) (16). AI can help solve this

diagnosis delay problem caused by the waste of information.

After obtaining the information on the above risk factors from

the electronic health records and establishing the corresponding

algorithm, this information can be fully used as input for the

algorithm. The algorithm then weighs each risk factor and

exports the possibility of PC. Some AI algorithms, such as
Frontiers in Oncology 04
unsupervised ML (17), can even summarize risk factors from

electronic health records on their own. Using these algorithms,

high-risk groups can be identified and screened to reduce the

diagnosis time.

AI has been used in the analysis of electronic health data of a

PC patient in several research studies (18–24). The relevant

literature can be found in Table 3. Most of these studies include

AI that analyzes electronic health records to help identify PC

high-risk groups months to several years earlier than patients

who did not get the help of AI predictions.
4.2 Diagnosis of PC through imaging
pictures

The most often utilized imaging procedures in PC diagnosis

are computed tomography (CT), magnetic resonance imaging

(MRI), and endoscopic ultrasonography (EUS). In a complete

diagnostic process, the pancreas image is first obtained using

corresponding instruments and then interpreted by radiologists,

who then give the final diagnosis. The objectivity of this process
TABLE 2 Technical terminologies.

Technical
terminology

Concept

The shadowed
set theory

The shadowed set theory is mainly used for data description and data selection. Essential (core) data and boundary data can be automatically obtained
with the use of shadowed sets.

CTTA CT texture analysis is a postprocessing technique that can assess attenuation values and tumor heterogeneity in a user-defined ROI on CT images. CT
texture analysis includes parameters that quantify the spatial pattern or arrangement of pixel intensities, as well as CT histogram parameters that
characterize the shape of the histogram by using a statistical evaluation of image intensities in the ROI.

The Brennan
nomogram
score

The Brennan nomogram score is a kind of nomogram that predicts the probability that a patient will survive pancreatic cancer for 1, 2, and 3 years
from the time of the initial resection, assuming that there is no death from an alternate cause.

GLRLM Gray-level run-length matrix provides the size of homogeneous runs for each gray level along a specific linear direction, which is defined by four
different directions in the 2D GLRLM, i.e., 0°, 45°, 90°, and 135°. In the GLRLM, the rows are represented by gray values, and the columns are
represented by the number of the same adjacent pixels. The gray-level non-uniformity (GLN) features were calculated from the GLRLM matrix for the
four directions.

ROI The region of interest is defined in machine vision and image processing as a box, circle, ellipse, or irregular polygon drawn from the processed
picture.
CTTA, computed tomography texture analysis; GLRLM, gray-level run-length matrix; ROI, the region of interest.
TABLE 3 Predicting pancreatic cancer through risk factors.

Ref. Instrument No. of patients Medical task Performance

Li et al. (18) ANN 4,361 PDAC prediction Accuracy of 67.62%

Appelbaum et al. (19) LR model 594 PDAC prediction AUC of 0.68

Malhotra et al. (20) RF model 1,139 PDAC prediction AUC of 0.609

Muhammad et al. (21) ANN 898 PDAC prediction AUC of 0.85

Placido et al. (22) ANN 24,000 PDAC prediction AUC of 0.91

Zhao et al. (23) BNI model 98 PDAC prediction AUC of 0.910

Hsieh et al. (24) ANN 1,324,669 NOD predicting PDAC AUC of 0.727
ANN, artificial neural network; PDAC, pancreatic ductal adenocarcinoma; NOD, new-onset diabetes; AUC, area under the receiver operating characteristic curve; LR, logistic regression;
RF, random forest; BNI, Bayesian network inference.
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will inevitably be affected by the participation of radiologists.

Unlike machines, the performance of human brains generally

varies, particularly in image recognition. Several circumstances,

such as weariness, stress, or a lack of expertise, might cause a

lesion to be missed or misdiagnosed. Applying AI can achieve

the following objectives: 1) shorten the time spent on image

interpretation and improve work efficiency, 2) reduce labor

intensity for radiologists, 3) improve the accuracy of diagnosis,

and 4) diagnose the disease in an earlier stage and improve

patient prognosis.

Compared with research focusing on electronic health

records, research on combining AI and imaging is more

prevalent and includes more mature technology. In the

following, the application of AI in EUS, CT, and MRI will

be introduced.

4.2.1 EUS
EUS is substantially better than trans-abdominal

ultrasonography (US), CT, or MRI for obtaining high-

resolution pictures of the pancreas (25). However, the

endoscopist’s expertise and technical proficiency have a

significant role in the diagnostic performance of EUS, which

affects the objectivity and stability of interpretation, and AI will

assist in resolving this issue.

As shown in Table 4, some studies reported the application

of AI for the analysis of PC EUS images (26–33). Although few

studies have been done, it has been claimed that using ML and

DL to image the pancreas with EUS can produce results that are

on par with or better than those made by endoscopists.

Intraductal papillary mucinous neoplasms (IPMNs) are

precursor lesions of PC (34). To discriminate between benign

and malignant IPMNs, Kuwahara et al. (35) designed a

convolutional neural network (CNN), and their model

achieved an accuracy of 94.0%. In a similar study, Machicado

et al. (36) designed two CNN algorithms to help with IPMN

diagnosis and risk classification. Compared with the existing

guidelines [the American Gastroenterological Association
Frontiers in Oncology 05
(AGA) and revised Fukuoka guidelines], both algorithms

yielded higher performance for diagnosis.

Zhang et al. (37) explored assistance with interpreting real-

time ultrasonograms to help doctors reduce the missed diagnosis

rate. Two algorithms were developed: one to help locate the

detector and one to help segment the pancreatic region. Using

these algorithms, the accuracy of trainee station recognition

increased from 67.2% to 78.4%.

The ROI of the above experiments was drawn manually,

typically by senior imaging scholars, while some experiments

utilized an automated drawing of the ROI. Iwasa et al. (38)

evaluated the capability of deep learning for the automatic

segmentation of pancreatic tumors on contrast-enhanced

endoscopic ultrasound video images. Their algorithm achieved

the median intersection over the union of all cases of 0.77.

4.2.2 CT
The most often utilized imaging modality for the first

examination of suspicious PC is the CT (39). Up to 34 months

before the diagnosis of PDAC, the initial signs of PC, such as

pancreatic parenchyma inhomogeneity and loss of typical fatty

marbling of the pancreas, have been documented on

retrospective CT evaluation (40). These subtle changes are

difficult to recognize with the naked eye, which further

emphasizes the necessity to possibly implement AI.

There are two phases in using AI for picture analysis of a PC.

The initial step is to use the abdominal CT picture to get the

contour of the pancreas, a process referred to as segmentation.

The second step is to analyze the region generated by

segmentation. In the following studies, most of the focus is on

the second step, while the first step is usually completed by

e x p e r i e n c e d i m a g i n g e x p e r t s u s i n g m a n u a l

segmentation methods.

4.2.2.1 Research focusing on analyzing the ROI

A summary of the most recent works describing the

combination of AI with CT images to diagnose PDAC can be
TABLE 4 Diagnosis of pancreatic cancer by endoscopic ultrasonography.

Ref. AI instrument Medical task Patient Performance

Norton et al. (26) ANN PDAC vs. CP 21 Accuracy of 89%

Tonozuka et al. (27) CNN PDAC vs. NP vs. CP 76 AUC of 0.940

Saftoiu et al. (28) ANN PDAC vs. CP 68 Sensitivity of 94.64%

Saftoiu et al. (29) ANN PDAC vs. CP 258 Accuracy of 84.27%

Saftoiu et al. (30) ANN PDAC vs. CP 167 Sensitivity of 94.64%

Ozkan et al. (31) ANN PDAC vs. NP 332 Accuracy of 87.5%

Udristoiu et al. (32) CNN PDAC vs. PNET vs. CPP 30 AUC of 0.98

Marya et al. (33) CNN PDAC vs. AIP 292 Sensitivity of 91%
ANN, artificial neural network; CNN, convolutional neural network; AUC, area under the receiver operating characteristic curve; PDAC, pancreatic ductal adenocarcinoma; CP, chronic
pancreatitis; NP, normal pancreas; CCP, chronic pseudotumoral pancreatitis; PNET, pancreatic neuroendocrine tumor.
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found in Table 5 (41, 42, 44–46). The performance of these

models in the table is satisfying.

Some experiments have also explored the possibility of using

CT images to predict the malignant potential of IPMNs. Qiu

et al. (47) employed a support vector machine (SVM) to

discriminate different histopathological grades of PDAC. The

SVM achieved an overall accuracy of 86%. Hanania et al. (48)

conducted a texture analysis of pancreatic images of IPMN

patients. Within the gray-level co-occurrence matrix (GLCM),

they discovered 14 imaging biomarkers and established

corresponding logistic regression models to predict

histopathological grade within cyst contours. The best logistic

regression yielded an AUC of 0.96. In another similar

experiment, Permuth et al. (49) combined a plasma-based

miRNA genomic classifier data with radiomic features, and

their algorithm revealed an AUC = 0.92.

Due to its strong computing power, AI processes

information very quickly. Liu et al. (46) employed a faster

region-based convolution network model to accurately read

CT images and diagnose PC. Their system was able to acquire

medical reports in about 200 ms per picture, which is much less

time than imaging professionals take for diagnosis, and the AUC

was 0.9632.

4.2.2.2 Research focusing on dividing ROI

Segmentation of the pancreas is often not satisfactory

because while comprising just a small proportion of CT

pictures, this organ is typically very changeable in form, size,

and placement.

The richer feature convolutional network (RCF) is an

algorithm used for the automated segmentation of images, but

its ability to segment the pancreas is poor. Fu et al. (50) extended

the RCF and generated a novel pancreas segmentation network.

Finally, their algorithm achieved a 36% Dice similarity

coefficient (DSC) value in testing data. Zhou et al. (51) built a

fixed-point model that shrank the input region using an

anticipated segmentation mask. Their algorithm achieved

82.37% DSC.

Muscle atrophy and decreased muscle density 2 to 4 months

after diagnosis were linked to a worse survival rate in individuals

with advanced PC (52). However, manual measurements of
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body composition are too time-consuming. Hsu et al. (53)

designed an ANN that was able to quantify the tissue

components. The detector analysis took 1 ± 0.5 s and the DSC

values for visceral fat, subcutaneous fat, and muscle were 0.80,

0.92, and 0.85, respectively. This algorithm can help doctors save

a lot of time while maintaining considerable accuracy.

4.2.2.3 Research focusing on dividing and analyzing
the ROI

Chu et al. (54) conducted an experiment that divided PC

diagnosis into two steps. Firstly, the algorithm recognized the

boundaries of all organs in the abdomen and then identified the

PC tissue (54, 55). In the first step, the algorithm’s pancreas

segmentation accuracy was 87.8% ± 3.1%. In the second step, the

algorithm had 94.1% sensitivity and 98.5% specificity. Liu et al.

(56) also proposed a two-stage architecture in which the

pancreas was first segmented into a binary mask, then

compressed into a shape vector, and anomaly classification

was conducted. Finally, they achieved a specificity of 90.2%

and a sensitivity of 80.2%. It even picked up on a few difficult

instances that radiologists would normally overlook, which

showed promise for clinical applications.

4.2.3 MRI
Compared with CT, there are still few studies using MRI

images as input data.

Corral et al. (57) employed a deep learning protocol to

classify IPMNs. According to the malignant degree of the lesion,

IPMNs can be classified as healthy pancreas, low-grade IPMN,

or high-grade IPMN with adenocarcinoma. In their algorithm, a

whole pancreas image was used as the input, with the malignant

degree of the pancreas being the output. Their algorithm’s

sensitivity and specificity for detecting dysplasia were 92% and

52%, respectively. Their method has a sensitivity and specificity

of 75% and 78%, respectively, for detecting high-grade dysplasia

or malignancy. According to this study, deep learning may offer

diagnostic accuracy comparable to, if not greater than, existing

radiographic recommendations for identifying IPMNs.

Unsupervised learning is the process of solving pattern

recognition problems using training samples with unknown

categories. Because radiologists are needed to get annotations
TABLE 5 Diagnosis of pancreatic cancer by computerized tomography.

Ref. Instrument Patient Medical task Performance

Chu et al. (41) RF 190 PDAC vs. NP AUC of 99.9%

Park et al. (42) RF 93 PDAC vs. AIP Accuracy of 95.2%

Liu et al. (43) CNN 238 PDAC vs. NP AUC of 0.92

Ren et al. (44) LR 79 PDAC vs. MFP AUC of 0.98

Qureshi et al. (45) NBC 36 PDAC vs. NP Accuracy of 86.0%
AUC, area under the receiver operating characteristic curve; PDAC, pancreatic ductal adenocarcinoma; CP, chronic pancreatitis; NP, normal pancreas; AIP, autoimmune pancreatitis;
CNN, convolutional neural network; MFP, mass-forming pancreatitis; LR, logistic regression; RF, random forest; NBC, naive Bayes classifier.
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for the majority of medical imaging operations, obtaining labels

to develop machine learning models is time-consuming and

costly. Hussein et al. (17) explored an unsupervised learning

algorithm. They proposed a new clustering algorithm and tested

it for the categorization of IPMNs. The accuracy, sensitivity, and

specificity to identify benign or malignant tissues were 58.04%,

58.61%, and 41.67% respectively. Although the performance of

their algorithm was not satisfying, this is one of the earliest and

largest studies of an IPMN classification computer-aided

diagnostic system.

In general, it is difficult to obtain medical images. It leads to a

small training set for developing an AI algorithm, negatively

affecting its performance. A generative adversarial network

(GAN) is an image augmentation technology that can generate

high-quality synthetic images from existing ones (58). Gao et al.

(59) employed this technique to process their training set and

expanded the initial 10,293 patches intercepted from MRI

imaging to 35,735. With the help of GAN, they optimized

their network.

A three-dimensional (3D) image of a tumor provides vital

information about the tumor phenotype and microenvironment.

However, making reasonable use of 3D picture information is

tough. A 3D neural network, on the one hand, necessitates a

significant number of processing resources due to its multiple

parameters and complex connections between these parameters.

The information in two-dimensional (2D) slices, on the other

hand, is insufficient to completely reflect the 3D properties of a

tumor. Chen et al. (60) developed a method for the automatic

prediction of TP53 mutations in PC. While converting 3D

images to 2D images, their spiral transformation technology

could reduce the computation for the 3D image but still utilize

its information. Finally, their algorithm achieved an AUC of

0.74. Their methods for using 3D information with a small

sample size and successful multimodal fusion are possible

medical imaging analysis paradigms.

Some research has focused on the automatic segmentation of

pancreatic MRI images. Zheng et al. (61) proposed a 2D deep

learning-based method to segment such images. Based on the

shadowed set theory, the suggested technique defined the

uncertain regions of pancreatic MRI images. Finally, they

achieved a DSC of 84.37%.
4.3 AI for PC treatment

Liu et al. (62) employed a method to help with pancreatic

adaptive radiotherapy, which can enhance treatment accuracy and,

as a result, reduce gastrointestinal toxicity. They developed this

method for cone-beam CT to synthetic CT generation, and the

synthetic CT pictures may be able to produce accurate dosage

calculations that are equivalent to the planning CT images.

Patients with advanced PC may benefit from echoendoscopic

celiac plexus neurolysis as treatment for cancer pain. The efficiency
Frontiers in Oncology 07
of this procedure is limited; it frequently necessitates repeating

therapy, and the outcome of such therapy is not consistent (63, 64).

Facciorusso et al. (65) built anANNmodel to predict pain response

in a patient who underwent repeat echoendoscopic celiac plexus

neurolysis (rCPN). They classified the treatment response as

effective or ineffective according to the change degree and

duration of the visual simulation scale (VAS). Their algorithm

achieved an AUC of 0.94. It meant that this algorithm can identify

accurately patients likely to benefit from rCPN and exclude those

who are not sensitive to the treatment.

Nasief et al. (66) developed a delta-radiomic process for early

prediction of PC treatment response based on ML. They

analyzed daily CTs recorded during standard CT-guided

chemoradiation treatment for PC patients to derive delta-

radiomic characteristics. They added a new feature to standard

deviation difference termed normalized entropy (NESTD). This

new feature can be utilized to enhance organ boundary

recognition and offer a method for standardizing contour

validation. The output of their model is good or bad response,

and their best-performing prediction model achieved an AUC

of 0.94.
4.4 AI for predicting PC prognosis

PC is among the most lethal cancers. Even if surgery is

performed, the estimated survival time is quite limited (67, 68).

Additionally, adverse reactions are commonly encountered with

surgery, chemotherapy, and radiotherapy (69–71). Therefore,

predicting the prognosis of patients according to existing

information, measuring the risks and benefits brought by

treatment, and then choosing an appropriate treatment

scheme are of great importance for improving the health and

wellbeing of people. For decision-making, many predictive

evaluation methods or risk scores have been established,

including perioperative mortality risk (72), postsurgery

complications (73), and survival prediction (74, 75). However,

the performance of these systems did not meet expectations, and

some clinical data were obtained using invasive operations such

as surgery. Additional reliable prognostic indicators are urgently

needed. The powerful data processing ability of AI gives it the

potential to solve these problems. There are studies describing

the computer-based quantitative evaluation of tumor

morphology on diagnostic imaging in various cancer types,

and it is progressively showing promise in describing the

underpinning of tumor biology (76–79).

CT texture analysis is a postprocessing technique that can

assess attenuation values and tumor heterogeneity in a user-

defined ROI on CT images. In patients with non-small cell lung

cancer, esophageal cancer, and metastatic renal cell carcinoma,

baseline and first posttherapy alterations in CT texture analysis

parameters of tumors have been linked to survival (80–82). This

technology is used in many of the studies introduced below.
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4.4.1 Predicting patient outcomes after
the operation

Mu et al. (83) developed a deep learning model based on

preoperative CT to anticipate clinically relevant postoperative

pancreatic fistula (CR-POPF) following pancreatoduodenectomy

and investigate the biological foundations of their model. Within 1–

2 min, the model could generate output (with CR-POPF or not)

with exceptional performance (AUC of 0.90). In a similar study,

Kambakamba et al. (84) and their best classifier “REPTree”

achieved an AUC of 0.95.

Lee et al. (85) used AI approaches to analyze the recurrence

of PC after surgery. They compared the random forest model

with the Cox proportional hazards model. The random forest

and Cox model’s C-index averages were 0.68 and 0.77,

respectively, in this study. This is the first study to use AI and

multicenter registry data to forecast disease-free survival

following PC surgery. The results of this methodological

investigation show that AI can be a useful decision-support

system for patients undergoing PC surgery.

4.4.2 Survival time prediction
Chakraborty et al. (86) quantified the heterogeneity of

PDAC in CT images using texture analysis to predict patient

2-year survival rates. The proposed features obtained an AUC of

0.90 using a customized feature selection approach and a naive

Bayes classifier.

Tong et al. (87) established ANN models to predict the 8-

month survival rates of PC patients with unresectable tumors

using clinical factors. Their ANN model with the best result

achieved an AUC of 0.92. In a similar study, Walczak et al. (88)

developed an ANN model that predicts PC patients’ 7-month

survival, and their algorithm achieved 91% sensitivity and

38% specificity.

Integrating mRNA profiling, DNA methylation, and

corresponding clinical information together, Tang et al. (89)

established CNN models to predict the 5-year survival rates of

PC patients, and their best algorithm achieved an AUC of 0.937.

Yue et al. (90) stratified the risks of PCpatients by performing a

quantitative analysis of pre- and postradiotherapy positron

emission tomography-computed tomography (PET-CT) images

and determining the predictive usefulness of textural differences in

predictingpatients’ therapeutic response. Based on themultivariate

analytic risk score, the patients were divided into two groups: a low-

risk group with a longer mean OS (29.3 months) and a high-risk

group with a shorter mean OS (17.7 months). With log-rank

P = 0.001, the multivariate analysis resulted in substantial risk

stratification. In a similar study, Cozzi et al. (91) appraised the

abilityof a radionics signature thatwas extracted fromCT images to

anticipate patient outcomes following stereotactic body radiation

(SBRT). The patients were stratified into two groups based on the

radiomics signature—a low-risk group with a longer mean OS

(14.4 months) and a high-risk group with a shorter mean OS

(9.0 months)—and their best model achieved an AUC of 0.73.
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Smith et al. (92) offered a unique Bayesian statistical method

and used it to predict real lymph node ratio statuses and OS in

patients who underwent radical oncologic resection. The

predictor variables were obtained from the NCI SEER cancer

registry. The C-index for the predictive performance was 0.65,

which showed that its accuracy was low. They also developed a

web application with a point-and-click interface for entering

patient baseline data and seeing the posterior estimated survival

statistics, such as median survival time and survival rate, and the

LNR from their model.

Kaissis et al. (93) developed a supervised ML algorithm to

predict OS in patients with PC by employing diffusion-weighted

imaging-derived radiomic features. For the prediction of OS,

their algorithm has a sensitivity of 87%, specificity of 80%, and

AUC of 90%.

4.4.3 Exploring the factors related
to prognosis

We separated the subsequent experiments into three groups

based on the treatment received by the test subjects: In the first

group, all of the patients underwent surgery. In the second

group, none of the patients underwent surgery but received

radiotherapy and chemotherapy. In the third group, some

patients underwent surgery and some underwent radiotherapy

and chemotherapy.

4.4.3.1 The first group

Mucins (MUC) are important in pancreatic tumor

development and invasion. Yokoyama et al. (94) built models

based on the methylation state of three mucin genes (MUC1,

MUC2, and MUC4), and they found that their model

outperformed tumor size, lymph node metastasis, distant

metastasis, and age in predicting OS and can be used to

supplement the TNM staging system’s prognostic value.

Cassinotto et al. (95) assessed the effectiveness of

quantitative imaging biomarkers for evaluating pathologic

tumor aggressiveness and predicting disease-free survival

(DFS) by employing CT texture analysis. They concluded that

on CT scans tumors that are more hypoattenuating in the portal

venous phase are more likely to be aggressive, with a higher

tumor grade, more lymph node invasion, and a shorter DFS.

Attiyeh et al. (96) generated a survival prediction model for

resected PDAC patients using preoperative serum cancer

antigen 19-9 levels, CT texture features, and the Brennan

score. Finally, the concordance index of their model was 0.73.

In another similar study, Choi et al. (97) measured texture

analysis parameters from T2-weighted images of patients. In

their study, following the multivariate Cox analysis, only tumor

size continued to be a significant predictor.

Yun et al. (98) conducted a texture analysis of preoperative

contrast-enhanced CT imaging of patients undergoing curative

resection. They discovered that weaker CT texture analysis

scores are linked to a reduced chance of survival. In a similar
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study, Eilaghi et al. (99) found that longer OS is connected with

less inverse difference normalized and greater dissimilarity. Kim

et al. (100) analyzed the gray-level non-uniformity (GLN) values

of their images, and they found that GLN values were correlated

with recurrence-free survival.

Ciaravino et al. (101) assessed how useful CT texture

analysis was for evaluating tissue changes in PC that had been

shrunk and removed after chemotherapy. At least two CT scans

were necessary for the patients in this investigation (one before

chemotherapy and one after chemotherapy), and patients

received surgical treatment after chemotherapy. They found

that the only parameter that was statistically different between

CT 1 and CT 2 was kurtosis. In a similar study, Kim et al. (102)

found that higher subtracted entropy and lower subtracted

GLCM entropy are predictors of a favorable outcome. These

two studies showed that patients’ prognoses can be predicted

by quantitative analysis of PC pictures before and

after chemotherapy.

4.4.3.2 The second group

Sandrasegaran et al. (103) evaluated the efficacy of CT

texture analysis (CTTA) in forecasting the prognosis of

patients with unresectable PC. The mean value of positive

pixels (MPP), kurtosis, entropy, and skewness were selected as

the CTTA parameters. In a multivariate Cox proportional

hazard analysis, MPP was the only CTTA parameter that

showed significance. Additionally, Kaplan–Meier statistics

suggested that patients with high MPP and high kurtosis

values had worse prognoses. In a similar study, Cheng et al.

(104) found that higher standard deviation (SD) values were

closely linked to progression-free survival and OS, indicating

higher intratumoral heterogeneity. This could help predict better

survival outcomes in patients with unresectable PC.

Cui et al. (105) did a quantitative study of PET-CT scans for

patients who had locally progressed PC and were receiving SBRT

and generated a signature. After multivariate analysis, the

suggested signature was shown to be the sole relevant

prognostic indicator, scoring 0.66 on the C-index.

4.4.3.3 The third group

Hayward et al. (106) constructed predictive models for the

clinical performance of PC patients using ML techniques and

compared the results with those of the linear and logistic

regression techniques. They concluded that for most target

attributes, such as survival time, Bayesian techniques provided

the best overall performance.

During the administration of chemoradiation treatment for

PC, Chen et al. (107) looked into radiation-induced alterations

in quantitative CT characteristics of malignancies and reported

that patients with good responses tended to have different

texture features (such as volume, skewness, and kurtosis)

compared with those with poor tumor responses.
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5 Discussion

5.1 Future perspectives

In the 21st century, computer science is progressing

exponentially. This has brought great changes to many other

fields, including the medical field. The combination of big data

and AI is referred to by some as the fourth industrial revolution

(108). Daily diagnosis and treatment activities produce a large

variety of medical data, such as imaging, vital signs, laboratory

examination results, and more. For physicians, it is difficult to

manually integrate all data and conduct a comprehensive

analysis. Such situations that involve processing a large

amount of data are the strength and advantage of using AI.

For the role of AI in the future, one possibility is that this

technology will serve as an assistant to physicians that can

provide advice and assist with their final decision-making.

This could be very helpful when physicians are fatigued and

stressed, and may also contribute to medical education. A second

possibility is that AI will fully substitute for a physician. The

abovementioned studies demonstrate that AI has the potential to

surpass human beings, and in this situation, doctors can be

replaced. When AI can completely replace humans in this

regard, these individuals may feel liberated to do other work.

Moreover, as a kind of software, these technologies can be easily

shared worldwide and bring advanced technologies to areas with

underdeveloped medical technology.
5.2 Challenges

Although the future of AI looks promising, a series of

problems need to be addressed to efficiently achieve these goals.

1) The total amount of data is relatively small. The incidence

rate of PC is very low (109), whichmakes it difficult to collect cases.

Furthermore, many existing clinical data are not labeled or

annotated. As a result, most PDAC experiments are retrospective

and single center and have small sample sizes, making them

vulnerable to selection bias and recall bias. To address this

problem, a multi-agency cooperative model must be established,

and prospective, double-blind, multicenter studies can be

conducted. This would allow training sets to be representative

and improve the performance of AI. Various data augmentation

algorithms, such as GAN, can also help solve such problems and

increase the amount of the original data.

2) Existing data are not fully utilized. With CT images as an

example, most existing studies select the ROI within the section

with the largest tumordiameter, resulting inonly a 2Dsectionbeing

analyzed. The tumor is a 3D structure, so a 2D section cannot fully

represent it. This may be a contributing factor to why the existing

models do not performwell. 3D structures are not utilized as input

data because ROI selection is done completely manually. The
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selection of a 2D structure has taken some time (about 3 min per

imaging) and would take even longer for a 3D structure.

Additionally, 3D structures would provide a very large amount of

data. Even a strong computerwould need a considerable amount of

time to process such data. Therefore, to solve this problem,we need

to optimize the algorithm, improve computing power, and develop

automatic segmentation of 3D ROIs. Moreover, the existing

research often only analyzes imaging results and does not

consider the additional data. In fact, we can combine imaging

with clinical features (such as weight loss, jaundice, and upper

abdominal pain) and laboratory examination (such as CA199) to

formhybrid biomarkers to optimize the performance of themodel.

3) There is no unified standard for each process involved with

obtaining and processing data. For example, standards involved

with contrast-enhanced CT images frequently differ, including the

type, concentration, and injection speed of the contrast agent; the

equipment forobtaining images; scanningparameters; the selection

of final images; the format and pixels transformed into analyzable

data; and the selection of ROIs. This variability in standards

prevents meaningful comparisons between experimental results

and makes cooperation among institutions quite difficult.

Therefore, experts should establish a reasonable and unified

standardized process, which would greatly accelerate the progress

of AI in the diagnosis and treatment of PC.

4) The ethical issues involved with medical data also require

attention. In most of the abovementioned studies, the data are

typically anonymized and the informed consent step is omitted.

This would not be an issue in small sample retrospective studies

but could be if AI is widely used in clinical practice. AI is an

evolving and iterative system that requires the addition of data

from new patients in the clinic. While being diagnosed and

treated by AI, new patients also expose their data to AI, and the

developers of the technology can profit from it. This raises the

questions of how benefits should be distributed and if new

patients should receive a share.

The storage, sharing, and management of patient data also

require urgent attention. Three different models, the centralized,

federated, and hybrid models, have been established for data

exchange, each with its own set of benefits and drawbacks (see

references for details) (110–114). For instance, the biggest

disadvantage of the centralized model is that storing

information on a server can increase the danger of a security

breach because the individual source no longer has control over

the data.

5) AI output interpretability is not satisfactory and is

referred to as the “black box” (115). The black box model is a

system that does not reveal its internal mechanism. In machine

learning, black box models describe models that cannot be

understood by looking at parameters, such as deep neural

networks. People can only directly observe data input and the

resulting output from the model, and it is difficult for people to

fully understand how the data are being processed. This makes it

difficult for people to modify the internal structure of the model
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to improve the performance of the algorithm. It also makes it

difficult for AI to gain the trust of professionals and patients.

Some studies (116) employed new technologies, such as the

visual analysis approach and eye tracker to increase the

interpretability of the model, providing us with a good solution.

6)Theprocess is not automated enough.People’s impressionof

AI is always linked to full automation, but at this stage, most

experiments can only be defined as semiautomatic. Humans often

participate in some part of the process. For example, most ROI

selections in CT images are manually produced by senior imaging

experts.This takes a considerable amount of time,which is contrary

to one of the original intentions of usingAI. Although some studies

have already focused on the segmentation of abdominal organs (50,

51, 54, 55, 61, 117–121), the performance of these algorithms is far

below the level of imaging experts. If complete automation is to be

achieved, emphasis should be placed on researching accurate organ

segmentation methods.

7) The functions of existing AI are too limited. Ideally, AI, like

human beings, can interpret pancreatic images to judge the

occupied space, the location and nature of this space, and

whether surgery is possible. Combined with other clinical

information, AI can judge the prognosis of patients. However, AI

in the existing research often has only one function. In future

studies, we can aim to combine multiple models for AI to be more

comprehensive in the PC diagnostic and treatment processes.
5.3 Conclusions

AI has the potential to help PC patients and contribute to

improved patient outcomes. However, the integration of AI and

human intelligence in clinical medicine is still in its infancy.

Research to date has reported that the performance of AI could

be superior to the standard statistical methods or even humans.

Yet, AI still has its limitations, including those that we discussed

above. Solving these problems requires the in-depth cooperation

of multidisciplinary personnel. In the future, these limitations

will be individually addressed, and AI will become an

indispensable clinical auxiliary tool.
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