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Abstract: Tumour mutations corrupt cellular pathways,
and accumulate to disrupt, dysregulate, and ultimately
avoid mechanisms of cellular control. Yet the very
changes that tumour cells undergo to secure their own
growth success also render them susceptible to viral
infection. Enhanced availability of surface receptors,
disruption of antiviral sensing, elevated metabolic activity,
disengagement of cell cycle controls, hyperactivation of
mitogenic pathways, and apoptotic avoidance all render
the malignant cell environment highly supportive to viral
replication. The therapeutic use of oncolytic viruses (OVs)
with a natural tropism for infecting and subsequently
lysing tumour cells is a rapidly progressing area of cancer
research. While many OVs exhibit an inherent degree of
tropism for transformed cells, this can be further
promoted through pharmacological interventions and/or
the introduction of viral mutations that generate recom-
binant oncolytic viruses adapted to successfully replicate
only in a malignant cellular environment. Such adapta-
tions that augment OV tumour selectivity are already
improving the therapeutic outlook for cancer, and there
remains tremendous untapped potential for further
innovation.

The Tumour: A Unique Niche for Virus Growth

Tumour progression is generally considered a stochastic

process, but is nevertheless associated with a series of hallmark

changes that include, among others, resistance to apoptosis,

metabolic deregulation, immune escape, growth independence,

and enhanced angiogenic capacity [1] (Figure 1). Either taking

certain pathways offline, or boosting their activity, disrupts cellular

homeostasis and creates a supportive environment that facilitates

exponential cancer cell growth. While such changes allow the

malignant cell a competitive survival and growth advantage over

‘‘normal’’ cells, they also render it susceptible to infection, since

many of the pathways subverted by the tumour are also necessary

for effective antiviral responses.

Once a virus penetrates a tumour cell, the malignant metabolic

infrastructure provides abundant support for viral replication.

Since the same pathways that are already boosted during cancer

cell transformation are also engaged by viral replication, tumour

cells are attractive targets for OVs, a class of cancer biother-

apeutics that includes such diverse virus families as rhabdoviridae

(e.g., vesicular stomatitis virus [VSV], Maraba virus), poxviridae

(e.g., vaccinia [VV], myxoma [MYXV]), adenoviridae (e.g.,

adenovirus serotype 5 [Ad5], Colo-Ad1), paramyxoviridae (e.g.,

Newcastle disease virus [NDV], measles virus [MV]), togaviridae

(e.g., Sindbis virus [SV]), herpesviridae (e.g., herpes simplex virus-

1 [HSV-1]), reoviridae (e.g., reovirus type III), picornaviridae (e.g.,

poliovirus, coxsackievirus), and parvoviridae (e.g., H1-parvovirus).

The current status of clinical trials for such therapeutic OVs has

recently been reviewed by Russell and colleagues [2].

In this review, we highlight the similarities between the

requirements for optimal cancer cell growth and successful viral

replication, and the mounting evidence that tumours with altered

metabolic and signaling networks provide a unique niche for OV

propagation. While some viruses are inherently oncophilic, it is

also possible to direct selective growth in cancer cells by

inactivating or deleting certain viral virulence genes whose lost

functions are complemented by mechanisms that drive malignan-

cies and distinguish tumours from normal healthy tissues. The

application of such genetic interventions and/or the potential for

coadministering pharmacological compounds to enhance OV

activity specifically in tumours will be discussed.

Overexpressed Tumour Antigens: Entangling
Viruses

Host cell entry is one of the first challenges that viruses must

overcome to access intracellular replication sites, and the

availability of cell surface receptors for viral attachment and

uptake is of paramount importance. Malignant cells undergo

tremendous changes in the profile of cell surface receptors they

display, and the tumour specificity of many oncolytic viruses often

begins with engaging these overexpressed antigens at the cell

surface (Figure 2). For example, poliovirus binds the cell surface

receptor, nectin-like molecule 5 (NECL-5) [3], which is expressed

at very low levels in normal tissues, but is broadly overexpressed in

several solid tumours and in the proliferating vasculature that

supports them, including glioblastoma multiforme and ovarian,

prostate, colorectal, and lung carcinomas [4–8]. This natural

biological observation has been exploited to create a potent
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chimeric OV that selectively targets a variety of tumours of

neuroectodermal origin [9]. Similarly, measles virus (MV) and the

chimeric adenovirus ColoAd1 both bind the cell surface receptor,

CD46, which is commonly upregulated by cancer cells [10,11].

MV gene expression, cytopathic effect, and oncolysis have all been

correlated with density of CD46 on the cell surface [12]. Nectin-4

can also be exploited for MV entry [13], and is highly expressed in

lung, breast, colon, and ovarian carcinomas [14–16]. The natural

oncolytic capacity of coxsackievirus A21 (CVA21) is based on high

expression of intracellular adhesion molecule 1 (ICAM-1) and/or

decay acceleration factor (DAF) on the surface of malignant cells

[17], while the uptake of coxsackievirus B3 (CVB3) and certain

oncolytic adenoviruses is particularly enhanced in medulloblasto-

ma, neuroblastoma, and endometrial carcinomas overexpressing

the host cell coxsackievirus–adenovirus receptor (CAR) [18,19].

Oncolytic Sindbis virus (SV) binds the Laminin receptor (LamR)

[20], which is modestly expressed in almost every mammalian cell,

but highly upregulated in many solid tumours [21–24]. In normal

cells, LamRs are occupied by the laminin ligand and SV

attachment is outcompeted, while in cancer cells, the overexpres-

sion of LamRs exposes a significant number of unoccupied SV

target sites [25].

OVs have also been reprogrammed to bind specific tumour

surface antigens through the display of single-chain antibodies or

polypeptide-binding ligands on the virion surface, or by fusing

scaffolding moieties within viral surface proteins (reviewed in [26]).

For example, several ligands have been successfully displayed on

the surface of MV particles, including single-chain antibodies

against EGFR [27,28], CD20 [29], CD38 [27], and the folate

receptor alpha [30]. Similarly, herpes simplex virus (HSV) and

various adenoviruses have been genetically redirected toward

tumours through the incorporation of cancer-specific receptor

binding ligands into viral surface proteins [31–35]. Finally,

increased oncotropism of VV has been achieved by fusing

targeting moieties against the Human Epidermal Growth Factor

Receptor 2 or Mucin-1 to virus envelope resident proteins [36,37].

A Dysfunctional Cellular Antiviral Defense: The
Achille’s Heel of Cancer

An estimated 65–70% of cancer cell lines have defective

interferon (IFN) responses [38]. However, both the cancerous and

stromal compartments of a tumour integrate antiviral signals to

establish a scale of IFN responsiveness, which is different for each

malignancy. The biological drivers of cancer evolution that lead to

the loss of interferon responsiveness are not completely under-

stood, but it is thought that physiological processes that favour

antiviral activity are incompatible with efficient tumour growth.

For instance, interferon and interferon-responsive genes are anti-

angiogenic [39], and are known to induce apoptosis [40], cell

growth arrest [41], and immune stimulation [42], all of which

cancer cells strive to evade. Not surprisingly, one of the most

common genetic changes in the tumour as it transitions to a stealth

phenotype is the loss of expression of genes from the interferon

pathway, and the establishment of further rounds of immune editing

that allow the cancer to become invisible to the host immune

Figure 1. Tumour Evolution. A hypothetical pathway of tumour evolution from a normal cell to an advanced-stage cancer. Mutations in key
regulatory genes lead to changes in cell physiology that favour tumour growth. Over time, these genetic defects accumulate to confer many of the
known hallmarks of cancer [131]. The sequence of these events and the timing represented here is only one example of how this might occur.
doi:10.1371/journal.ppat.1003836.g001
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system [43]. As tumours evolve to full malignancy, this elimination

or inactivation of certain interferon gene products may allow a

growth advantage, but also compromises cellular antiviral

responses to varying degrees.

The IFN pathway is part of the innate immune response

triggered upon pathogen entry by a limited number of cellular

immune receptors recognizing broadly conserved pathogen-

associated molecular patterns (PAMPs). Most wild-type viruses

encode gene products that antagonize interferon response

signaling, and can robustly infect tumour and normal cells alike.

Some ‘‘natural’’ OVs have evolved to infect nonmammalian

organisms (e.g., Newcastle disease virus (NDV) in avian hosts) and

thereby lack virulence genes that can effectively antagonize

mammalian antiviral responses; such viruses only prosper in

tumour cells that acquire mutations in interferon response genes

[44]. For other viruses, it is necessary to engineer defects in

virulence gene products that normally antagonize interferon

responses to confer a robust growth response in cancer cells but

an inability to productively infect normal tissues [45–47] (Figure 2).

The recognition that interferon signaling is in large part critical

to OV selectivity made it clear that manipulation of this cellular

response could be a target for therapeutic intervention. Tumour

cells that have completely lost their interferon response provide an

ideal substrate for OV replication. Such tumours can easily be

cured with a ‘‘single shot’’ of virus [48]. However, most human

tumours are genetically and architecturally heterogeneous, and

thus the extent of their antiviral responsiveness can be variable and

provide a significant barrier to OV therapy [49]. This problem

can be biologically addressed by enhancing the potency of existing

OVs [50,51], selecting inherently more potent virus backbones

(such as Maraba, which outperforms several related OVs [e.g.

VSV] in terms of replication speed, viral productivity, and lytic

Figure 2. Oncolytic Viruses Are Designed to Grow in the Tumour Niche. There are at least six key critical features of tumour cell growth that
can be targeted by oncolytic viruses. These include changes in the expression of viral-host cell receptors, the antiviral response, nucleotide and
protein synthesis, cell proliferation, and apoptosis. A number of engineered or selected oncolytic viruses exist that can exploit one or more of these
malignant characteristics.
doi:10.1371/journal.ppat.1003836.g002
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capacity across multiple cancer cell lines [52]), or coinfecting

tumours with distinct attenuated OVs that can complement each

other’s growth in a hostile tumour environment [53]. Coinfection

of tumours with an oncolytic vaccinia virus (VV) that expresses the

IFN-scavenging protein, B18R, can significantly enhance the

ability of attenuated, interferon-sensitive vesicular stomatitis virus

(VSV) to spread through tumours exhibiting partial defects in their

antiviral defenses, resulting in improved oncolytic activity com-

pared to either virus alone [53].

Several pharmacological strategies have aimed to improve OV

therapy by disrupting IFN responses in resistant tumour cells. Our

group, and others, have previously shown that histone deacetylase

inhibitors (HDIs) can improve the oncolytic activity of OVs both in

vitro and in vivo, including VSVD51, several strains of VV, and

herpes simplex virus (HSV) [54–56]. HDIs profoundly impact

cellular epigenetics, and inhibit the IFN response by blocking the

transcriptional upregulation of IFN-stimulated genes following

viral infection or IFN signalling [57,58]. A related strategy has

been to coadminister small molecules, selected on the basis of their

ability to enhance viral oncolysis. Using this method, we recently

identified a class of viral sensitizer compounds (VSe1–15) specifically

selected for their superior activity in comparison with the clinically

approved HDI, Vorinostat. Such viral sensitizers robustly enhance

VSVD51 growth in IFN-resistant tumour cells [59]. Importantly,

the ‘‘proviral’’ effects of both HDIs and novel viral sensitizers only

occur in tumour cells, which may be attributable to the tumour

microenvironment already being conducive to viral growth.

Dysregulated Tumour Metabolism: Fueling the
OV Fire

Exploiting Increased Nucleotide Pools
As tumours expand and develop, metabolic activity on a per-cell

basis increases to sustain cellular output and fuel biosynthetic

processes. Many cancer cells meet this demand by reprogramming

energy production from mitochondrial phosphorylation to aerobic

glycolysis, a phenomenon known as the ‘‘Warburg effect’’ [60].

Since efficient virus replication and virion assembly is a similarly

energy demanding process fueled by the host cell, certain viruses

may act to skew cellular metabolism toward glycolysis to divert

glycolytic intermediates into biomachinery programs that synthe-

size viral macromolecules. For example, the VV N1L gene encodes

a multifunctional protein that targets different cellular kinases, one

of which influences ATP levels during virus replication [61].

While a metabolic boost increases overall levels of biomolecules

in host cells, several viruses also directly impact the size of these

biosynthetic pools. Large DNA viruses achieve replicative self-

sufficiency by encoding enzymes involved in the de novo synthesis of

deoxynucleotides (dNTPs). For example, herpes- and orthopox-

viruses encode both large (R1) and small (R2) subunits of

ribonucleotide reductase (RR), a key enzyme involved in

catalyzing the conversion of ribonucleotides to dNTPs [62]. Other

oncolytic poxviruses encode at least one RR subunit. In the

absence of virally supplied RR proteins, successful virus replication

depends on host cell RR activity, which is reportedly enhanced in

malignant cells [63] and acts together with elevated levels of

dNTPs to enable viral tumour selectivity. Selective deletions in

viral genes encoding RR subunits serve to enhance the oncotrop-

ism of OVs. For example, HSV-1 and HSV-2 mutants with

deletions in the ICP6 gene, which encodes the large subunit of RR,

often preferentially replicate in actively dividing cells [64],

although some reports have shown replication in quiescent cells

with mutations in p16 [65]. Herpes- and poxviruses also encode

the enzyme thymidine kinase (TK), which is primarily responsible

for phosphorylating thymidine, a key step in DNA synthesis.

Deletion or inactivation of TK in VV or HSV-1 leads to

preferential viral replication in host cells with high levels of TK,

such as tumour cells (Figure 2). Inactivating viral products involved

in nucleotide metabolism has been a widely utilized and successful

strategy to generate tumour-selective viruses: two of the top three

current clinical OV candidates, OncoVEX GM-CSF and JX-594,

contain such deletions and/or mutations [66,67].

Relatively few attempts have been made to pharmacologically

exploit the nucleotide synthesis pathway and simultaneously

address the issue of tumour heterogeneity for OV growth. One

example comes from Passer et al. [68], who identified inhibitors of

equilibrative nucleoside transporter 1 (ENT1), a glycoprotein that

mediates cellular uptake of nucleosides, from a small library screen

of approved pharmacological agents as capable of augmenting

oncolytic HSV infection. The ENT1 inhibitors, dilazep and

dipyridamole, increased the spread and subsequent oncolytic

ability of HSV by increasing ribonucleoside activity in many

cancer cell lines but not in normal epithelial cells, an effect that

required defective viral ICP6.

Taking Over the Protein Synthesis Machine
While enhancing metabolic activity, suppressing antiviral

signaling, and increasing nucleotide levels are all necessary and

potentially rate-limiting steps for optimizing cancer growth or viral

infection, the translation of proteins ultimately represents the final

hurdle that ensures either cellular growth/division or the

production of viral particle components. Dysregulation of trans-

lational control is one of the key events that promotes cellular

transformation, and enhanced ribosome biogenesis, elevated levels

of initiation factors, and changes in transcriptional repressors are

found in a broad spectrum of cancers [69]. Since all eukaryotic

viruses are fully dependent on host cell translational machinery to

synthesize viral proteins, virus-host cell interactions that regulate

translation, both globally and for specific mRNAs, contribute to

the oncotropism of certain OVs (Figure 2). Generally, changes in

the expression or availability of translational machinery compo-

nents in cancer cells increase the overall rate of protein production

(including viral polypeptides) [70,71], and therefore enhance OV

replication in tumours compared to normal tissues [72,73].

Translation of most viral mRNA depends on the cellular cap-

dependent program, where the rate-limiting initiation step

represents a prime target for viral control. Viral dsRNA activates

cellular protein kinase R (PKR), which inactivates the translation

initiation factor eIF2 to limit host cell growth and initiate antiviral

responses. As eIF2 phosphorylation dramatically reduces the

efficiency and rate of viral translation, several viruses directly or

indirectly prevent PKR activation. For example, HSV-1 encodes

both US11, which directly inactivates PKR, and ICP34.5, which

recruits cellular phosphatases to oppose PKR [74]. Similarly, VV

encodes a PKR-binding protein (E3L) and a PKR pseudo-

substrate (K3L) [74,75]. There is evidence that eIF2 phosphor-

ylation is dysregulated during tumourigenesis and, as a result, the

inactivation of viral gene products involved in modulating PKR

responses can generate an oncotropic virus. Most notably, a

version of VSV expressing a catalytically inactive version of eIF2B-

epsilon has a reduced ability to grow in benign cells compared to

the parental VSV, but retains the ability to grow in malignant cells

[76].

The mammalian target of rapamycin signalling complex 1

(mTORC1) is a master regulator of cell growth and metabolism;

as such its activation promotes various anabolic processes in

the cell, including protein biosynthesis. Notably, mTORC1

stimulates protein translation by inhibiting the translational
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repressor eIF4E-binding protein 1 (4EBP1) [77]. Herpes-, adeno-,

and poxviruses encode viral products that ultimately inactivate

4EBP1, often through the mTORC1 pathway, and thus promote

viral protein synthesis. For example, the HSV-1 protein kinase,

US3, directly phosphorylates and inactivates 4EBP1 [78]. Since

the mTORC1 pathway is almost always constitutively activated in

malignant disease [79], US3-deficient HSV-1 mutants have a

strong specificity for translationally active cancer cells [80]. The

pharmacological manipulation of mTOR in combination with

OVs has been explored using rapamycin, a well-tolerated and

well-characterized mTOR inhibitor. Rapamycin and other

‘‘rapalogues’’ prevent the phosphorylation and activation of S6K

and eIF4e, and retain the translational repressor, 4EBP1, in an

active form. Rapamycin therefore hampers translation of both

viral and cellular transcripts, but particularly negatively affects

cellular mRNAs with complex secondary structures, such as those

encoding the antiviral effectors, IFN and interferon regulatory

factor 7 (IRF7), thereby favouring viral spread [81–84]. Inhibiting

mTOR decreases activity of the downstream S6K, which in turn

relieves its inhibitory effects on phosphatidylinositide 3-kinases

(PI3K) and Akt signalling. For some viruses, such as myxoma virus

(MYXV), increased activation of Akt improves replication and

oncolytic activity in several mouse, rat, and human tumour models

[85–87]. While systemic immunosuppressive effects of rapamycin

or rapalogues also likely play a key role, such drugs have

nevertheless been successfully used with several OVs, including

adenovirus, HSV, VSV, MYXV, and VV, to improve their

control of tumour progression [81,86,88–90].

Under conditions of cellular stress (e.g., hypoxia) where levels of

eIF4E are low, tumours can also drive the expression of key

malignancy-associated genes using a cap-independent (IRES-

mediated) mechanism. Cap-independent translation often requires

extremely high levels of eIF4G, which are typically found in

transformed cells [91,92]. Notably, several oncolytic picornavirus-

es (e.g., poliovirus and coxsackieviruses) lack the m7-cap required

for normal translation, and thus encounter a strategic translational

advantage in malignant cells [93]. Functional studies indicate that

the rate of interaction between IRES and eIF4G may be an

important factor that determines oncolytic poliovirus selectivity

and enhanced propagation in certain tumour cells, such as

glioblastoma [93]. In addition, recent studies showed that several

noncanonical factors are recruited to bind the poliovirus IRES to

modulate translation, and may play a role in cancer cell specificity

[94].

Riding the Tumour Cell Cycle
Dysregulation of the cell cycle to allow unchecked proliferation

is a critically important step in tumourigenesis. Many of the key

checkpoint proteins that normally regulate and restrict cell cycle

progression, such as p53, RB, and myc, are actively disengaged,

destabilising cells and priming them for further genetic mutations

[95]. The successful replication of many wild-type viruses,

including adenovirus, HSV, VV, MYXV, and reovirus, also

requires effective targeting of central hubs of the proliferative

signaling circuitry (Figure 2). While many viruses are capable of

entering into and even initiating virus transcription in quiescent

and terminally differentiated cells, the host cell must often enter

the cell cycle to complete the viral replication cycle [96–99]. Viral

proteins have therefore evolved to induce cell cycling, ensuring the

activation of cellular biosynthetic machinery and mobilization of

substrates necessary for the production of viral progeny. For

example, the adenovirus E1A protein plays a key role in activating

proliferation and cell cycle progression by binding and abrogating

the activity of the retinoblastoma (RB) protein family [100,101].

Since cancer cells almost uniformly downregulate such tumour

suppressive proteins to release proliferation control, partial

deletion of the E1A viral gene generates a specific oncolytic

adenovirus [102]. MYXV and reovirus are also able to efficiently

replicate and lyse a wide variety of human tumour cell lines with

dysfunctional tumour suppressor genes, such as RB and TP53

[103].

Increases in the frequency of mitogenic signals received through

receptors such as epidermal growth factor receptor (EGFR) and its

main downstream signaling transduction partners, PI3K/AKT

and RAS/Mitogen-Activated Protein Kinase Kinase/Mitogen-

Activated Protein Kinase (RAS/MEK/MAPK), also drive trans-

formed or infected cell proliferation. Both herpes- and poxviruses

activate the EGFR during their replication cycle [104,105]. For

example, VV encodes vaccinia growth factor (VGF), an early

secreted protein that binds EGFR and conditions surrounding cells

for subsequent viral infection [106]. Since EGFR is often

constitutively activated in gliomas and carcinomas of the lung,

colon, head and neck, pancreas, and breast [107], such tumours

are rendered hypersensitive to VV replication. Numerous OVs,

including MYXV, VV, coxsackievirus B3, and HSV-1, target the

PI3K/AKT signal transduction pathway [85,108–110]. For

example, MYXV encodes the M-T5 host range factor, which

induces the phosphorylation of cellular AKT and creates a

growth-favourable environment for virus replication [111]. While

mutant MXYV viruses lacking M-T5 replicate poorly in most

cells, tumour cells where AKT is constitutively activated are

permissive to these viruses [112]. Several viruses also target the

Ras signaling cascade. Replication of HSV-2 is facilitated by the

viral ICP10 gene–encoded serine/threonine protein kinase (PK)

domain, which activates the Ras/MEK/MAPK pathway. Dele-

tion of this PK domain converts HSV-2 into a potent oncolytic

agent, exhibiting preferential replication in and lysis of tumour

cells with a constitutively activated Ras signaling pathway [113].

Exploitation of the Ras cascade is also a critical step for reovirus

particle uncoating, infectivity, and release, and Ras transformation

is necessary to realize potent oncolytic effects [114,115]. Activation

of the Ras pathway has also been linked to repression of the

antiviral response by interfering with PKR, Retinoic Inducible

Gene I (RIG-I), and IFN signaling [46,115].

To Kill or Not to Kill: Balancing Apoptosis

The activation of the apoptotic pathway is a potent homeostatic

tool for the early suppression of malignant cell outgrowth, while in

infected cells, it represents a highly effective host response to

curtail the infection cycle. Cellular changes that allow the

avoidance of programmed cell death are essential for both tumour

cell and virus host cell survival. Cancer cells employ multiple and

diverse strategies to bypass the apoptotic death pathway normally

induced by various stressors, and this evasive ability likely

contributes to the survival and prolonged replication of naturally

occurring or recombinant OVs. Yet while malignant apoptotic

resistance supports optimal oncolytic virus growth, it can also

compromise therapeutic efficacy, particularly given the impor-

tance of cytotoxic T cell–mediated killing of both infected and

noninfected cancer cells for eliciting therapeutic responses

following OV administration [116–119]. As such, a significant

number of genetic strategies have aimed to improve direct and

indirect cell killing upon OV infection. Multiple viruses encode

viral proteins that target and regulate key steps in apoptotic

pathways, balancing the maximum output of viral progeny with

the necessity of keeping infected cells alive until successful

transmission is achieved (Figure 2). For example, VV encodes
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several genes that modulate apoptosis, including F1L and SPI-1

(B22R), which directly inhibit pro-apoptotic Bcl-2–like proteins

and caspase activation, respectively. Deletion of these viral genes

enhances tumour selectivity compared with wild-type VV [120].

The adenoviral E1B-19K gene product performs a similar

function, blocking apoptosis by sequestering and inhibiting

numerous pro-apoptotic Bcl-2–like proteins. Multiple lines of

evidence indicate that E1B-19K-deficient adenoviruses selectively

replicate and kill tumour cells in vitro and in vivo, with no effects in

normal cells [121].

The loading of OVs with suicide transgenes has also been

employed by several groups to enhance killing of both infected and

uninfected tumour cells. Successful virally encoded suicide

payloads include TNF-related apoptosis-inducing ligand (TRAIL)

[122], Fas ligand (FasL) [123], yeast cytosine deaminase (in

combination with 5-FC) [124], HSV thymidine kinase (in

combination with gancyclovir) [125], Drosophila melanogaster multi-

substrate deoxyribonucleoside kinase [126], uracil phosphoribo-

syltransferase (in combination with 5-FU) [127], carboxypeptidase

G2 (in combination with ZD2767P) [128], and carboxylesterase

(in combination with irinotecan) [129].

Drugs can also be used to increase virus-induced tumour cell

death. For example, while HDIs impact the cellular IFN response

(as discussed above), they also increase virus-induced apoptosis

[58]. Another example comes from an elegant study by Mahoney

et al., who identified that knockdown of several proteins involved in

the unfolded protein response significantly increased oncolytic

Maraba virus–induced cell death following a genome-wide siRNA

screen [130]. Knockdown of one of these genes, IRE-1, hampered

the ability of cancer cells to cope with unfolded protein

overload within the ER, effectively priming cancer but not benign

cells to undergo virally induced apoptosis. A salicylaldehyde-

based drug inhibitor of IRE-1 was subsequently synthesized and

used to improve oncolytic Maraba efficacy in a resistant tumour

model.

Future Perspectives

With OV cancer therapeutics entering advanced-stage trials and

showing clinical efficacy, strategies that further broaden OV

targeting and replication capacity to address the heterogeneous

nature of tumours and their associated vascular and stromal

architecture will be extremely useful. Since such heterogeneity not

only exists between patients but also within a given tumour/

patient, where the metabolism, signal transduction, and antiviral

states of cancer cells can be variably abnormal and, therefore,

variably support OV replication, combinatorial strategies will be

essential to promoting reliable tumour control and regression.

Finally, continued efforts to identify components innate to the

complex tumour microenvironment that promote OV replication

will be critical to further improving OVs and developing new

engineering strategies.
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