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Abstract
Nuclear factor of activated T cells (NFAT) was first described almost three
decades ago as a Ca /calcineurin-regulated transcription factor in T cells.
Since then, a large body of research uncovered the regulation and
physiological function of different NFAT homologues in the immune system and
many other tissues. In this review, we will discuss novel roles of NFAT in T
cells, focusing mainly on its function in humoral immune responses,
immunological tolerance, and the regulation of immune metabolism.
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Introduction: the NFAT transcription factor family
Nuclear factor of activated T cells (NFAT) was first identified in 
the late 1980s as part of an inducible nuclear protein complex at 
the interleukin-2 (IL-2) promoter in activated T cells1,2. It turned 
out that this nuclear complex was composed of AP-1 (formed by 
the transcription factors c-Jun and c-Fos) and a novel family of 
preformed, cytosolic transcription factors that translocate to the 
nucleus upon cell stimulation3,4. NFAT1 (also known as NFATc2 
or NFATp), the founding member of this family discovered in 
19933, and NFAT2 (NFATc1 or NFATc)4 are regulated by the  
phosphatase calcineurin, which dephosphorylates NFAT factors on 
an N-terminal regulatory domain and allows them to translocate  
to the nucleus5–7. The calcineurin inhibitors cyclosporine A (CsA) 
and FK506 prevent this dephosphorylation and NFAT nuclear 
accumulation5–13. Besides the original NFAT1 and NFAT2, 
the NFAT family comprises NFAT3 (NFATc4 or NFATx) and 
NFAT4 (NFATc3), which are also regulated by Ca2+/calcineurin 
signaling, and the more distantly related NFAT5 (TonEBP) 
that is predominantly activated by osmotic stress (reviewed in 
11,14–16). All NFAT proteins share a conserved core region 
composed of a DNA-binding REL-homology domain and  
a less conserved N-terminal regulatory domain (also known as 
NFAT-homology domain). In addition, alternative splicing and 
the usage of different promoters and polyadenylation sites result 
in several isoforms that differ in their N and C termini and thus 
their functional properties. Distinct NFAT family members and 
their isoforms have both redundant and specific (or even opposing) 
roles in lymphocyte activation, cell cycle, apoptosis, and cytokine  
expression, as discussed further below11,14,17–20.

Activation of NFAT in lymphocytes
The canonical NFAT activation pathway by Ca2+/calcineurin 
signaling has been extensively reviewed11,14,15,21, and we will 
provide only a brief overview (Figure 1A). Ligation of T- and 
B-cell antigen receptors and other receptors that are function-
ally coupled to phospholipase C (PLC) activation mediates the 
generation of the second messengers inositol-1,4,5-trisphos-
phate (IP

3
) and diacylglycerol (DAG). IP

3
 binds to and opens IP

3
  

receptor channels in the endoplasmic reticulum (ER), result-
ing in a decrease in the ER Ca2+ concentration. Dissociation of 
Ca2+ from ER-luminal EF-hand domains of stromal interaction 
molecule 1 (STIM1) and STIM2 triggers their translocation to 
ER–plasma membrane (ER–PM) junctions, where they bind to 
and activate Ca2+ release-activated Ca2+ (CRAC) channels formed 
by ORAI1 and ORAI2 proteins in T cells22,23. The subsequent 
Ca2+ influx is termed store-operated Ca2+ entry (SOCE), since 
it is regulated by the Ca2+ concentration in the ER (reviewed in 
21,24). The free cytosolic Ca2+ is bound by calmodulin, which 
activates the serine/threonine phosphatase calcineurin. Calcineurin  
dephosphorylates multiple serine residues in the regulatory 
domain of NFAT, resulting in a conformational change, exposure 
of nuclear localization signals, and translocation of NFAT into 
the nucleus (Figure 1A)15,25,26. Recent data suggest that the cal-
cineurin and NFAT interaction is controlled by a high-molecular  
signaling complex that contains scaffolding proteins (for  
example, HOMER2 and HOMER3), non-coding RNAs (for  
example, NRON), and kinases (for example, LRRK2), all of which  
are required for accurate NFAT activation18,27–29. Once in the 

nucleus, NFAT proteins are rapidly rephosphorylated by nuclear 
kinases (reviewed in detail in 14,15,18). NFAT inactivation is a 
highly coordinated process in which priming and export kinases 
within the nucleus phosphorylate different serine residues in 
the NFAT regulatory domain and initiate the export of NFAT 
into the cytoplasm. There, maintenance kinases fully phospho-
rylate NFAT and retain it in the cytoplasm. Different NFAT  
family members are rephosphorylated by distinct export kinases,  
including GSK3β (NFAT1 and NFAT2)30, CK1 (NFAT1)25, and 
DYRK1 (NFAT1 and NFAT2)31, which fine-tune the transcrip-
tional activity of different NFAT homologues by controlling their  
nuclear residence.

While all NFAT homologues (except NFAT5) are activated by 
Ca2+/calmodulin and calcineurin-mediated dephosphorylation, 
NFAT1 and NFAT4 were recently shown to require distinct sub-
cellular Ca2+ and IP

3
 signals for their activation. Whereas Ca2+ 

influx across the PM is sufficient for NFAT1 activation, NFAT4 
requires in addition Ca2+ release from the nuclear envelope trig-
gered by the engagement of IP

3
 receptors32–34. Moreover, differ-

ent NFAT homologues differ in their inactivation kinetics. NFAT1 
was found to be rephosphorylated more slowly on its regulatory 
domain than NFAT4, resulting in prolonged NFAT1 activation and 
residence in the nucleus33. In addition to phosphorylation, NFAT 
activity can be regulated by protein acetylation35, proteolytic  
cleavage by caspase 336, and SUMOylation by the small  
ubiquitin-like modifier (SUMO)37–39. In T cells, SUMOylation of 
the C termini of NFAT1 and NFAT2 promotes nuclear export of  
NFAT138 and dampens NFAT2-mediated IL-2 transactiva-
tion by chromatin condensation37, respectively. The finding that  
individual NFAT proteins have distinct Ca2+ dependencies for 
their activation32–34, different inactivation kinetics33 and are regu-
lated individually by post-translational modifications35,37–39 sug-
gests that NFAT homologues are selectively activated on the 
basis of the strength and type of agonist stimulation40 and the  
cellular context.

More recently, an alternative NFAT activation pathway inde-
pendent of Ca2+/calcineurin signaling has been described  
(Figure 1B). The common γ (γ

c
) chain cytokine IL-7 can trigger 

NFAT2 nuclear translocation in double-negative (DN) thymocytes 
which lack pre-T cell receptor (pre-TCR) signals41–43. Cytokine-
mediated NFAT nuclear translocation was insensitive to CsA, 
suggesting that the underlying NFAT activation is fundamentally 
different from the canonical Ca2+/calcineurin signaling pathway. 
In fact, Janus kinase 3 (Jak3) downstream of the IL-7 receptor  
directly phosphorylates a single tyrosine residue within the 
regulatory domain of NFAT2 that induces its nuclear transloca-
tion and NFAT-dependent Bcl-2 expression in DN thymocytes42  
(Figure 1B). It remains to be elucidated whether NFAT fam-
ily members besides NFAT2 are regulated in a similar fashion 
and whether other γ

c
 cytokines (for example, IL-15 in memory  

T cells) have similar effects on NFAT activation. Besides post-
translational regulation of NFAT activation described above,  
NFAT activity is further subject to transcriptional regulation of 
its own expression. The Nfat2 gene locus encodes six differ-
ent NFAT2 isoforms (reviewed in 44), including a short NFAT2  
isoform (NFAT2/αA) that lacks the C-terminal domain typical of 
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Figure 1. Canonical and alternative NFAT activation in T cells (A) Antigen receptor stimulation leads to the production of inositol-
1,4,5-trisphosphate (IP3), which opens IP3 receptor channels in the endoplasmic reticulum (ER). The subsequent decrease in the ER Ca2+ 
concentration activates stromal interaction molecule 1 (STIM1) and STIM2, which then bind to and open Ca2+ release-activated Ca2+ (CRAC) 
channels formed by ORAI1 and ORAI2 proteins in the plasma membrane. Ca2+ influx through CRAC channels activates calmodulin (CaM) 
and the serine/threonine phosphatase calcineurin. Calcineurin dephosphorylates multiple serine/threonine residues in the regulatory domain 
of NFAT, resulting in a conformational change, exposure of nuclear localization signals, and nuclear import of NFAT. (B) Janus kinase 3 (Jak3) 
downstream of the interleukin-7 (IL-7) receptor phosphorylates a single tyrosine residue within the regulatory domain of NFAT2, which induces 
nuclear translocation and activation of NFAT2 independent of Ca2+ signals and calcineurin in thymocytes. CsA, cyclosporine A; NFAT, nuclear 
factor of activated T cells.

other NFAT proteins44–49. The expression of NFAT2/αA occurs 
within hours after TCR stimulation and is dependent on NFAT bind-
ing to the isoform-specific P1 promoter (Figure 2A)44. NFAT2/αA  
then acts in a positive auto-regulatory loop to induce  
NFAT-dependent gene expression and T-cell activation.  
Intriguingly, NFAT2/αA induction occurs in different types of  
effector T cells, but not in immunosuppressive regulatory  
T (Treg) cells and exhausted or anergic T cells44,45,48,50,  
consistent with the idea that high levels of NFAT2/αA favor  
T helper (Th) cell differentiation and function (Figure 2A).

Novel roles of NFAT in humoral immunity
An important role of NFAT in modulating immune responses  
is due to its transcriptional regulation of numerous cytokines, 
chemokines, and growth factors in immune cells20,51. In particu-
lar, NFAT is critical for the function and differentiation of Th cells  

such as Th1, Th2, and Th17 cells (reviewed in 14,18,20). Here, 
we will focus on more recent findings regarding the role of NFAT  
in shaping humoral immunity and immune tolerance.

Humoral immune responses that result in the production of 
high-affinity antibodies and the generation of plasma and  
memory B cells are tightly regulated in the germinal center (GC)  
reaction. Upon antigen encounter, CD4+ T follicular helper 
(Tfh) cells upregulate the chemokine receptor CXCR5 and 
migrate into B-cell follicles to provide cognate help to GC B 
cells, thus promoting clonal selection and affinity maturation52,53. 
Both Tfh cells and activated (GC) B cells express high levels  
of NFAT2 (in particular, the short NFAT2/αA isoform) and 
NFAT1, suggesting a vital role in humoral immunity54,55. Intrigu-
ingly, although NFAT2 regulates activation, antigen presentation,  
proliferation, and apoptosis of B cells after antigen receptor 
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stimulation in vitro, the production of IgG antibodies was largely 
intact in mice with B cell-specific deletion of NFAT255,56, suggest-
ing that NFAT2 in B cells is not required for the GC reaction and  
B-cell maturation. Only IgG3 production after immunization with  
T-cell-independent antigens was modestly impaired, but humoral 
immune responses following immunization with T-cell-dependent  
antigens were unaffected, indicating that T-cell-derived sig-
nals (for example, CD40L-induced nuclear factor-kappa B  
[NF-κB] activation) can compensate for the loss of NFAT2 in 
GC B cells57. These findings are in line with the observation 
that mice with combined deletion of Stim1 and Stim2 genes in B 
cells and thus abolished activation of all Ca2+-dependent NFAT  
homologues also showed normal humoral immune responses58. 
In sharp contrast, mice with T-cell-specific deletion of Stim1 and 
Stim259 or Nfat1 and Nfat260 had strongly impaired GC forma-
tion and antibody production after antigen immunization or viral  
infection, demonstrating that Ca2+/NFAT signaling in T cells, 
more so than B cells, is required for humoral immunity. At the 
transcriptional level, NFAT2, together with NFAT1, controls 
the expression of cell surface receptors, including ICOS, PD-1,  
CXCR5, and CD40L, and cytokines such as IL-4 and IL-21 that 
are essential for Tfh cell differentiation, GC formation, and  
B-cell affinity maturation54,59–64. Furthermore, NFAT2 controls 
the expression of the “pioneering” transcription factors IRF4 
and BATF in Tfh cells59,65, and both factors, though not specific 
for Tfh cells, are required for Bcl-6 expression and thus Tfh cell 
lineage commitment52 (Figure 2B). Since IRF4 was shown to 
regulate glycolysis and mitochondrial respiration in T cells66,67, 
NFAT may control Tfh cell differentiation at least in part through  
IRF4 expression and metabolic reprogramming of CD4+ T cells68 
(Figure 3) (see below).

NFAT in peripheral immune tolerance
NFAT controls the expression of many pro-inflammatory cytokines 
such as interferon gamma (IFNγ), IL-4, and IL-17 in Th1, Th2, 
and Th17 cells, respectively14,20, making it and its upstream  
regulators prime molecular targets for the suppression of auto- 
and allo-immune responses. On the other hand, NFAT also has 
important roles in immune tolerance. NFAT controls the dif-
ferentiation and function of Treg cells54,69–74 and IL-10-produc-
ing regulatory B (Breg) cells55,58,75 that are required for immune 
homeostasis and crucial to prevent auto-immunity (Figure 2C,D). 
Treg cells are characterized by the expression of the transcrip-
tion factor Foxp3, which is critical for their function76. Two 
main groups of Foxp3+ Treg cells exist: natural Treg (nTreg) 
cells that develop in the thymus and represent a professional and  
stable T-cell lineage and induced Treg (iTreg) cells that  
differentiate from naïve CD4+ T cells in the periphery after antigen  
receptor stimulation in the presence of transforming growth fac-
tor beta (TGFβ) and that are short-lived76,77. Foxp3 expression is  
regulated differently in nTreg and iTreg cells through distinct  
regulatory conserved non-coding sequences (CNSs) in the 
Foxp3 gene locus78. In iTreg cells, NFAT binds to CNS1 together 
with Smad3 and facilitates TCR- and TGFβ-induced Foxp3 
expression72,73,78, whereas CNS1 is dispensable for nTreg cell  
development78 (Figure 2C). In differentiated nTreg cells, NFAT 
binds to CNS2 that spatially interacts with its promoter to main-
tain stable Foxp3 expression70,78. Because of the use of different  

CNS elements, Foxp3 expression in iTreg and nTreg cells  
depends, to varying degrees, on NFAT signaling73,79. Foxp3 expres-
sion is cooperatively regulated by NFAT1, NFAT2, and NFAT4 
in iTreg cells, and the deletion of just one NFAT family mem-
ber significantly reduced Foxp3 expression73. By contrast, abla-
tion of NFAT1, NFAT2, or NFAT4 or combined deletion of two  
NFAT genes did not perturb Foxp3 expression in nTreg  
cells73,80,81. In addition, the suppressive function of NFAT-deficient  
Treg cells in vitro and in vivo was largely preserved in the  
absence of NFAT1, NFAT2, or NFAT473,80–82.

In Treg cells, NFAT1 was shown to form a ternary complex 
with Foxp3 at the Il2 promoter that replaces AP-1 (Jun/Fos) in 
the NFAT:AP-1 complex present in effector T cells69,74. Muta-
tions that disrupt these NFAT:Foxp3 complexes eliminate the  
suppressive function of Treg cells69,74,83. Foxp3 thus trans-
forms a transcriptionally activating NFAT:AP-1 complex into a  
repressive NFAT:Foxp3 complex74,83 (Figure 2C,D). Since many  
NFAT:AP-1-regulated genes, such as cytokine or chemok-
ine genes, are pro-inflammatory and are not highly expressed in 
Treg cells, it is plausible that NFAT:Foxp3 complexes function 
as a brake for the transcriptional activity of NFAT71,83. Likewise, 
inducible cAMP early repressor (ICER), a dominant-negative 
splice form of cAMP-responsive element modulator (CREM) 
that is highly expressed in Treg cells84, may replace AP-1 and  
form heteromeric repressive complexes with NFAT in Treg 
cells85,86. In addition to “neutralizing” the transcriptional activity 
of NFAT, Foxp3 directly suppresses the expression of NFAT2/
αA45,73,79,87, which is strongly induced in activated effector  
T cells44,45,50, thereby limiting the amount of transcriptionally 
active NFAT in Treg cells. It is noteworthy that despite its reduced 
expression and activity in Treg cells, NFAT fulfills some cru-
cial functions in specific Treg cell subsets. For instance, NFAT2 
controls the induction of CXCR5 in T follicular regulatory (Tfr) 
cells and thus facilitates their homing to GCs54,59, where they limit 
the GC reaction to prevent humoral auto-immunity54,88,89. Like-
wise, NFAT controls the expression of the inhibitory co-receptor 
CTLA-4 on Tfr cells69,74 that is important to limit the GC reaction89  
(Figure 2D). It remains to be elucidated whether NFAT in general  
or individual homologues play important roles in other  
specialized Treg cell subsets (such as tissue-resident Treg cells) that 
have intriguing features beyond immune regulation90.

NFAT controls T-cell anergy and exhaustion
Suboptimal or chronic stimulation in the absence of adequate 
co-stimulation induces clonal anergy and exhaustion in CD4+ 
and CD8+ T cells, respectively91–96. In both cases, T cells become 
hyporesponsive (that is, tolerant), thus preventing damage by 
auto-reactive or persistently activated T cells. In CD4+ T cells, 
antigen stimulation without appropriate co-stimulatory signals 
induces NFAT activation but—owing to the absence of MAPK  
signaling—without the formation of canonical NFAT:AP-1 com-
plexes. Instead, NFAT forms homodimers or complexes with 
other transcription factors, such as EGR2 and EGR3, that acti-
vate a distinct, tolerogenic gene expression program97–99. Among 
these “anergy-inducing genes” are E3 ubiquitin ligases (such as 
Cbl-b, Itch, and Grail), diacylglycerol kinase α (DGKα), and cas-
pase 3 that promote the induction of T-cell anergy91,92,98,100. Itch, 
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Figure 2. Distinct NFAT functions in effector, follicular, regulatory, and tolerized T cells. (A) Stimulation of conventional T cells via the 
T-cell receptor (TCR) and co-stimulatory receptors results in NFAT activation and its cooperative DNA binding together with AP-1 (Jun/Fos). 
NFAT:AP-1 complexes regulate the expression of cytokines and other effector molecules as well as the short NFAT2/αA isoform that further 
enhances T-cell activation in a positive auto-regulatory loop. (B) In T follicular helper (Tfh) cells, NFAT, together with AP-1, controls the 
expression of many genes that regulate the differentiation of Tfh cells (IRF4 and BATF), Tfh cell homing to B-cell follicles (CXCR5), and 
Tfh cell help to B cells (CD40L, IL-4, and IL-21). (C) In peripherally induced regulatory T (iTreg) cells, TCR-dependent NFAT and TGFβ-
dependent Smad3 activation converge at the conserved non-coding sequence (CNS) 1 of the Foxp3 locus to induce Foxp3 expression. (D) 
In thymus-derived “natural” Treg (nTreg) cells, Foxp3 expression appears largely independent of NFAT activation. In both iTreg and nTreg 
cells, NFAT forms a ternary NFAT:Foxp3 complex with DNA that induces the expression of Treg-associated genes such as CD25 and CTLA-4 
and antagonizes the expression of pro-inflammatory genes and the short NFAT2/αA isoform. In follicular Treg (Tfr) cells, NFAT regulates the 
expression of CXCR5, CTLA-4, and PD-1 that are required for Tfr cell function. (E, F) Chronic TCR stimulation without co-stimulation triggers 
the formation of NFAT homomeric complexes that induce a gene expression program associated with T-cell anergy (E) or exhaustion (F) and 
that is distinct from NFAT:AP-1 complex-mediated gene expression. (E) NFAT-dependent genes associated with anergic CD4+ T cells include 
E3 ubiquitin ligases (GRAIL, Itch, and Cbl-b) and caspase 3 that target molecules involved in proximal TCR signaling, which renders T cells 
unresponsive to re-stimulation. (F) NFAT-dependent genes associated with exhausted CD8+ T cells are similar to those in anergic CD4+ T cells 
but also include inhibitory receptors such as PD-1, TIM3, and LAG3 that antagonize TCR signaling. NFAT, nuclear factor of activated T cells; 
TGFβ, transforming growth factor beta.
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Figure 3. NFAT regulates T-cell metabolism. Ca2+/calcineurin/NFAT signaling following T-cell receptor (TCR) and co-stimulation is required 
for the switch from catabolic to high-rate anabolic metabolism of activated T cells, cell cycle entry, and proliferation. NFAT directly controls the 
expression of “metabolic master regulators” such as IRF4, HIF1α, and potentially c-Myc that subsequently induce the expression of glucose 
transporter 1 (GLUT1), glycolytic enzymes, and mitochondrial electron transport chain (ETC) complexes that mediate aerobic glycolysis and 
mitochondrial respiration, respectively. In addition, NFAT directly controls the expression of the high-affinity glucose transporter GLUT3. NFAT 
also senses the metabolic state of T cells. The glycolytic intermediate phosphoenolpyruvate (PEP) inhibits the sarco/endoplasmic reticulum 
Ca2+ ATPase (SERCA) and thereby enhances Ca2+ signaling and NFAT activation, whereas lactate inhibits NFAT activation. Low levels of 
reactive oxygen species (ROS) generated by mitochondrial respiration enhance NFAT activation, whereas high ROS levels inhibit NFAT. 
CRAC, Ca2+ release-activated Ca2+; CsA, cyclosporine A; ER, endoplasmic reticulum; IP3, inositol-1,4,5-tisphosphate; NFAT, nuclear factor of 
activated T cells; STIM, stromal interaction molecule.

Cbl-b, and caspase 3 target proximal TCR signaling molecules 
such as PLCγ 1 and PKCΘ for degradation, whereas DGKα 
and GRAIL interfere with co-stimulatory pathways and CD40L  
signaling91,92,98,100, resulting in clonal unresponsiveness to re-
stimulation (Figure 2E). The contribution of individual NFAT  
family members (and their isoforms) to anergy induction is not 
fully understood, but the phenotypes of different Nfat-deficient 
mice suggest that NFAT1 and NFAT4 are involved in anergy  
induction98,101–106 but that NFAT2, especially NFAT2/αA, has 

the opposite function and may contribute to the reversal of  
anergy46.

Similar to CD4+ T-cell anergy, chronic antigen stimulation (for 
example, in the context of cancer or chronic infection) pro-
motes a gradual loss of effector functions in T cells, known as  
T-cell exhaustion94,95. Though mainly studied in CD8+ T cells, 
exhaustion has also been reported in CD4+ T cells, where it  
was shown to depend on the activity of NFAT1106. Like anergy, 

Page 7 of 13

F1000Research 2018, 7(F1000 Faculty Rev):260 Last updated: 02 MAR 2018



exhaustion is induced by impaired NFAT:AP-1 cooperation, but 
the underlying transcriptional program leading to unresponsive-
ness appears to be slightly different from anergy91–93. Martinez  
et al.93 demonstrated a critical role for NFAT in T-cell exhaustion 
by using an engineered, constitutively active mutant of NFAT1 that 
is unable to form cooperative complexes with AP-1 (CA-NFAT1-
RIT, named after mutations in the R468, I469, and T535 residues 
that mediate the interaction of NFAT with AP-1)93,98,99. Ectopic  
expression of CA-NFAT1-RIT in CD8+ T cells impaired effec-
tor functions and induced a gene expression profile that was 
highly reminiscent of exhausted and anergic T cells93. T cells 
expressing CA-NFAT1-RIT showed defective signaling and Ca2+  
mobilization after TCR crosslinking that correlated with the  
upregulation of E3 ligases and caspase 3, which may induce the 
degradation of signaling molecules similar to anergic T cells91–93.  
In addition, CA-NFAT1-RIT binds directly to regulatory 
regions of exhaustion-associated genes in CD8+ T cells, includ-
ing the inhibitory receptors PD-1 and TIM3, and induces their  
expression61,93 (Figure 2F). Collectively, these data suggest 
that NFAT forms homomeric or cooperative complexes with  
activating or repressive transcription factors that determine the  
phenotype and function of T cells.

NFAT regulates T-cell metabolism
Emerging evidence shows that NFAT—in particular, NFAT2—acts  
as a central regulator of T-cell metabolism (Figure 3)68,107–110.  
Naïve T cells are metabolically quiescent and characterized by 
minimal nutrient uptake, low glycolysis, and effective oxida-
tive phosphorylation111–113. By contrast, activated lymphocytes 
reset their metabolism to a high-rate anabolic metabolism fueled 
by aerobic glycolysis that supports the synthesis of macromol-
ecules required for clonal expansion111,112,114. We recently showed  
that CD4+ T cells lacking Stim1 and Stim2, and thus SOCE and 
NFAT activation, failed to undergo this “glycolytic switch” and 
antigen receptor-induced clonal expansion68. SOCE is required 
for the expression of glucose transporters GLUT1 and GLUT3 
as well as numerous glycolytic enzymes, including hexokinase 
2, phosphoglycerate kinase, and aldolase A that metabolize glu-
cose and produce anabolic intermediates required for clonal  
expansion68. The majority of SOCE-dependent glycolytic genes 
are dependent on NFAT-mediated transcription, as evident from 
their impaired expression in T cells of Nfat1/Nfat2-deficient mice 
and increased expression in T cells expressing a constitutively 
active form of NFAT268,110. In agreement with our data, Klein-
Hessling et al. recently showed that NFAT2 controls metabolic 
gene expression, the glycolytic switch, and thus the function of 
cytotoxic CD8+ T cells110. Although NFAT2 is essential for glyco-
lytic gene expression, most glycolysis genes (with the exception of 
GLUT3 and HK2) do not show robust NFAT2 binding in chroma-
tin immunoprecipitation assays, suggesting an indirect regulation 
by NFAT68,110. Instead, SOCE and NFAT2 control the expression  
of transcriptional regulators of glycolysis such as IRF459,68,  
HIF-1α68,115, and, by some accounts, c-Myc68,107,110,116–118. Over-
expression of NFAT2 in SOCE-deficient T cells rescued the  
expression of IRF4 and GLUT1 and partially restored the pro-
liferation of T cells68. It is noteworthy that alternative activation  
of NFAT via the γ

c
 cytokines IL-2 and IL-7 does not require 

SOCE to induce glycolytic gene expression and proliferation  
of T cells68. Moreover, the addition of exogenous IL-2 to  
NFAT2-deficient CD8+ T cells restores their defective  
glycolysis110. Besides glycolysis, SOCE and calcineurin also 
regulate mechanistic target of rapamycin (mTOR) signaling, oxi-
dative phosphorylation, and mitochondrial gene expression68,107,  
suggesting that the Ca2+/calcineurin/NFAT pathway plays impor-
tant and yet-to-be-defined roles in controlling cell metabolism. 
These data also provide a compelling new mechanism to explain 
the potent immunosuppressive effects of the calcineurin inhibitors  
tacrolimus and CsA by interfering with lymphocyte metabolism.

NFAT not only instructs T-cell metabolism but also senses the 
metabolic state of T cells and nutrient availability. Glucose-deprived  
T cells had impaired nuclear translocation of NFAT1 (but not 
NFAT2), which correlated with reduced IFNγ and CD40L expres-
sion and anti-tumor immunity108. The glycolytic intermediate 
phosphoenolpyruvate (PEP) acts as a “metabolic checkpoint” 
that supports the rapid nuclear translocation of NFAT1. PEP was 
shown to inhibit the sarco/endoplasmic reticulum Ca2+ ATPase 
(SERCA), which pumps Ca2+ from the cytosol into the ER108,  
resulting in increased intracellular Ca2+ levels and NFAT1 acti-
vation. Furthermore, reactive oxygen species (ROS) gener-
ated by mitochondrial respiration were shown to modulate the 
nuclear translocation of NFAT1 in a concentration-dependent  
manner107,109. TCR-induced low (physiological) levels of mito-
chondrial ROS promote nuclear translocation of NFAT1109. 
Higher ROS levels inhibit NFAT activation107, suggesting that 
redox regulation fine-tunes NFAT function, although the under-
lying mechanisms remain unknown. In addition, high extracel-
lular lactate levels (as encountered, for instance, in the tumor  
environment) were shown to result in intracellular acidifica-
tion of CD8+ T cells and thus inhibition of NFAT2 induction,  
IFNγ expression, and anti-tumor immunity119. These findings  
suggest that NFAT not only regulates T cell metabolism but, in 
addition, may sense nutrient availability and the bioenergetic  
status of T cells.

Concluding remarks and future directions
Different T-cell subsets use distinct metabolic programs113,120. 
Whereas CD4+ effector Th1, Th2, Th17, and CD8+ cytotoxic 
T cells are thought to depend largely on glycolysis and glutami-
nolysis, memory, follicular, and Treg cells preferentially use  
mitochondrial respiration and lipid oxidation113,114,120. In addition, 
exhausted and anergic T cells are bioenergetically distinct from 
their functional counterparts. The SOCE/calcineurin/NFAT path-
way emerges to play important roles in the regulation of T-cell  
metabolism, but the details of this regulation remain to be fully 
understood. Moreover, individual NFAT family members and 
even their isoforms can have opposite roles in T-cell proliferation, 
anergy, and/or exhaustion that may extend to metabolism. Ectopic 
expression of NFAT2, for instance, promotes cell cycle progres-
sion and proliferation in vitro, whereas NFAT1 expression inhibits 
proliferation and induces apoptosis121. Similar observations were 
made in different NFAT-deficient mice. Whereas the deletion of  
Nfat2 impairs TCR-induced proliferation82,110,122,123, T cells from 
Nfat1–/– and Nfat1–/–Nfat4–/– mice are, however, hyperproliferative  
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in response to various stimuli102,104,105. Future work will have 
to unravel how individual NFAT family members and their  
isoforms in combination with distinct transcriptional partners reg-
ulate the function of effector and Treg cells and the induction of 
exhaustion/anergy in the context of tumors, auto-immunity, and 
infection.
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