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Abstract: Serum accumulation of the gut microbial metabolite trimethylamine N-oxide (TMAO) is
associated with high caloric intake and type 2 diabetes (T2D). Impaired pancreatic β-cell function
is a hallmark of diet-induced T2D, which is linked to hyperglycemia and hyperlipidemia. While
TMAO production via the gut microbiome-liver axis is well defined, its molecular effects on metabolic
tissues are unclear, since studies in various tissues show deleterious and beneficial TMAO effects.
We investigated the molecular effects of TMAO on functional β-cell mass. We hypothesized that
TMAO may damage functional β-cell mass by inhibiting β-cell viability, survival, proliferation, or
function to promote T2D pathogenesis. We treated INS-1 832/13 β-cells and primary rat islets with
physiological TMAO concentrations and compared functional β-cell mass under healthy standard
cell culture (SCC) and T2D-like glucolipotoxic (GLT) conditions. GLT significantly impeded β-cell
mass and function by inducing oxidative and endoplasmic reticulum (ER) stress. TMAO normalized
GLT-mediated damage in β-cells and primary islet function. Acute 40µM TMAO recovered insulin
production, insulin granule formation, and insulin secretion by upregulating the IRE1α unfolded
protein response to GLT-induced ER and oxidative stress. These novel results demonstrate that
TMAO protects β-cell function and suggest that TMAO may play a beneficial molecular role in
diet-induced T2D conditions.

Keywords: beta cell; islet; glucolipotoxicity (GLT); glucose stimulated insulin secretion (GSIS);
unfolded protein response (UPR); type 2 diabetes (T2D)

1. Introduction

High caloric intake from a Western diet rich in animal proteins and fats is linked to
chronic cardiovascular and metabolic diseases, including cardiovascular disease (CVD)
and type 2 diabetes (T2D), which drive global mortality and morbidity rates [1–7]. This
diet can include high levels of quaternary amine-containing semi-essential nutrients, such
as choline and carnitine, and the concomitant gut microbial metabolites are associated with
pathogenic mechanisms [8–11]. Dietary excess of these nutrients is metabolized by the gut
microbiome to trimethylamine prior to absorption [12–15]. At the liver, trimethylamine
is oxidized by flavin-containing monooxygenase 3 (FMO3) to trimethylamine N-oxide
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(TMAO), which travels through the circulation and is eliminated in the urine. TMAO
produced by this gut microbiome-liver axis can accumulate in the circulation and is a
known chronic disease biomarker and proposed aggravator of CVD [9,13,16–18].

Metabolomic studies originally linked elevated serum TMAO levels to CVD through
atherosclerotic mechanisms [8,19–22]. Although elevated TMAO has since been associated
with other diet-mediated metabolic diseases, the direct molecular TMAO effects in the
relevant tissues are unclear [6,21,23–28]. Some studies report that 7 µM to 1 M concentra-
tions of TMAO may beneficially reduce cellular stress [9,23,29–35]. However, in obese T2D
patients, elevated TMAO is associated with hyperglycemia, hyperlipidemia, and insulin
resistance [4–7].

Within the pancreas, islets of Langerhans contain metabolic hormone-secreting cells,
including β-cells, which secret insulin to manage blood glucose levels [36–38]. Healthy
β-cell function is characterized by the proper sensing of elevated blood glucose via GLUT2,
a low-affinity glucose transporter, and glucokinase [39–41]. The resulting signals from
complete glucose metabolism through glycolysis, the tricarboxylic acid (TCA) cycle, and
oxidative phosphorylation induce insulin production and secretion [41]. β-cells are highly
susceptible to metabolic cellular stresses, which contribute to the T2D condition [42–44].
In patients consuming a Western diet, hyperglycemia and hyperlipidemia reduce func-
tional β-cell mass to drive T2D progression [41,45–53]. Therefore, to elucidate the role
of TMAO in T2D pathogenesis, understanding its effects on functional β-cell mass is im-
perative [54]. This study is the first to culture INS-1 832/13 β-cells and primary rat islets
with physiological TMAO concentrations under healthy standard cell culture (SCC) or
T2D-like glucolipotoxic (GLT) conditions. Since TMAO is more commonly proposed as
an aggravator of chronic diseases, we hypothesized that it would reduce functional β-cell
mass under SCC and worsen the T2D phenotype under GLT conditions.

2. Materials and Methods
2.1. Cell and Tissue Culture

The rat insulinoma INS-1 832/13 β-cell line was maintained in standard culture media
containing RPMI 1640 + L-glutamine (Corning, Corning, NY, USA, 50-020-PB) combined
with 10% fetal bovine serum (MilliporeSigma, Burlington, MA, USA, C948C69), 50ug/mL
streptomycin and 50 U/mL penicillin (LONZA, Basel, Switzerland, 17-745E), 10mM HEPES
(ThermoFisher, Waltham, MA, USA, 15630080), and INS-1 832/13 supplement, as described
previously [55,56]. Passage doublings under 100 were seeded to culture plates (VWR,
Radnor, PA, USA, 10861-698, 10861-700, 10861-702, 10861-666) (biological triplicates) at
approximately 105,000 cells/mL or 40,000 cells/cm2 and acclimated to standard incubation
overnight prior to treatment for experimental assays.

Adult wildtype Wistar rats (Charles River, Wilmington, MA, USA) were maintained
under standard housing, feeding (LabDiet, St. Louis, MO, USA, Rodent 5001), and hus-
bandry protocols. Four 3-month-old females (biological replicates) were euthanized by
CO2, and primary islets were isolated by collagenase digestion and handpicked into stan-
dard media as described previously [57–59]. After 2 h of acclimation, groups of 35 islets
from each animal were randomly handpicked into TMAO treatments in SCC or GLT cul-
tures for 24 h. All animal work was approved by the Brigham Young University (BYU)
Animal Committee and complied with the National Research Council’s Guidelines for the
Care and Use of Laboratory Animals (IACUC Protocol Number 19-1002) and the ARRIVE
guidelines. Protocol details are available as needed and upon request.

2.2. Experimental Culture Treatments

For SCC studies, standard culture medium was replaced with medium containing
TMAO (MilliporeSigma, Burlington, MA, USA, 1184-78-7). For GLT studies, TMAO
treatments were combined in GLT media containing three additional components, in-
cluding 25 mM glucose (MilliporeSigma, 50-997), 0.5mM palmitate (TCI, 408-35-5), and
bovine serum albumen (0.67% final concentration) (ThomasScientific, C974Z33). To in-
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corporate the palmitate in the aqueous environment of the medium, we dissolved it in
1:1 ethanol and water and conjugated it to the albumen as described previously [60,61].
Such GLT cultures were established to model diet-driven T2D pathogenesis [51,52,62–66].
TMAO was dissolved in water and diluted serially for total culture concentrations between
0.3 and 160 µM, which reflects clinical levels [16,20,67–74]. This range of clinical serum
TAMO levels is dependent on the method of analysis, the subject’s diet, and the disease
state. T2D, Metabolic Syndrome, and CVD are predicted by serum TMAO levels over 7 or
8 µM [27,75–78]. At the most extreme, serum TMAO can increase to 170 µM in patients
with various chronic diseases [5,25,68,70,72,74,75,79–86]. T2D or CVD patients present
levels at or above 20 µM [5,25,68,70,72,74,75,79–86]. Alternatively, healthy patients present
low levels from 1 to 3 µM [8,16,67,87–89]. Therefore, to represent these variable clinical
TMAO concentrations, we investigated the 0.3 and 160 µM range of TMAO in both the SCC
and GLT conditions. Since TMAO accumulates after a single meal containing precursor
nutrients and remains elevated for the duration of the diet [13,16,87,90,91], our proof of
concept studies used 24 h treatments (Figure S1A,B). Although we investigated the inde-
pendent β-cell function and proliferation effects of the individual components of the GLT
model, we found that the combined mixture of all the GLT components was most sufficient
to model the T2D β-cell phenotype. In both the SCC and GLT experiments, no TMAO
treatment (NT) controls were used as references on each of the 3 experimental cultures
(biological triplicates).

2.3. Tetrazolium Salt MTT Viability Assay

After experimental culture, treatment media was replaced with media containing
3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) (CHEMIMPEX, 00697)
dissolved in phosphate-buffered saline (PBS) and incubated for 4 h, as described pre-
viously [92]. Healthy mitochondrial NADH dependent dehydrogenase or superoxide
dismutase reduced MTT to form tetrazolium salts and indicate cell viability [62,92–94].
Tetrazolium salts formed by viable cells were solubilized with acid-isopropanol, and ab-
sorbance was measured with the BioTek Synergy 2 plate reader at 570 nm, with a reference
wavelength of 600 nm. The mitochondrial viability measurements of 4 culture plate wells
(technical replicates) were normalized to the associated SCC NT controls and averaged per
culture (biological triplicates).

2.4. Annexin V (AV) and 7-Aminoactinomycin D (7-AAD) Survival Assay

At harvest, adherent and floating β-cells were collected and stained with AV, which
binds phosphatidylserine on the outer leaflet of the cell membrane during early apoptosis
and 7-AAD, which intercalates with the DNA of dead and dying cells (BD Pharmingen
Apoptosis Kit, 559763). Stained samples were analyzed with the Accuri C6 Plus Flow
Cytometer, and cell population gaits were assigned using unstained and single stained
controls. After selecting the singlet data events, unstained cells were designated as healthy,
while AV positive, 7-AAD positive, and double-positive populations were aggregated to
represent dead and dying cells (Figure S2). Identical compensation and gating were applied
to all experimental samples, and the resulting quadrant percentages were analyzed. The
percent healthy and the percent dying values of 3 culture plate wells (technical triplicates)
were averaged per culture (biological triplicates).

2.5. [3H]-Thymidine Incorporation Proliferation Assay

To measure β-cell proliferation rates, treatment medium was replaced with medium
containing radiolabeled [methyl-3H]-thymidine (PerkinElmer, Waltham, MA, USA,
NET027E001MC), as described previously [95]. DNA was precipitated with 10% trichloroacetic
acid and solubilized with 0.3 M NaOH, and incorporation was measured by liquid scin-
tillation counting. Counts per minute were normalized to total protein measured by the
bicinchoninic acid assay (BCA) (ThermoFisher Scientific, Waltham, MA, USA, 23225). These
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proliferation values of 4 culture plate wells (technical replicates) were normalized to the
associated SCC NT controls and averaged per culture (biological triplicates).

2.6. Glucose-Simulated Insulin Secretion (GSIS) Assay

At harvest, β-cell and islet treatment medium was replaced with secretion assay
buffer containing 2.8 mM followed by 12 mM glucose, as described previously [55,96].
TMAO treatment concentrations were maintained in the buffer during static stimulation
incubations. Cells were lysed, and insulin concentration in secretion samples and lysate
were measured by enzyme-linked immunosorbent assay, as described previously [97].
Insulin standards were purchased separately (Monobind Inc., Lake Forest, CA, USA,
2425-300) and used to quantify these sample concentrations. Insulin measurements were
normalized by total protein measured by the BCA. These insulin values of 4 culture
plate wells (technical replicates) were normalized to the associated SCC NT controls and
averaged per culture (biological triplicates).

2.7. Scanning Transmission Electron Microscopy (STEM)

For STEM imaging, INS-1 β-cells were seeded to coverslips, and groups of three cov-
erslips were cultured with treatments as described in Section 2.2 (biological triplicates). At
harvest, cells were fixed, stained, sectioned, and imaged on a scanning electron microscope
in STEM mode at the BYU Electron Microscopy Facility. Cytosol area and granule counts
were manually quantified using ImageJ, as described previously [54,98,99]. The number
of mature and immature insulin granules per total cytosolic area was quantified for each
image. We averaged counts for three images (technical triplicates) per culture, yielding
9 total images analyzed per experimental treatment. Values were not normalized to report
untransformed values.

2.8. Glutathione (GSH) Assay

After experimental culture, β-cells were lysed, and concentrations of GSH and glu-
tathione disulfide (GSSG) were determined via high performance liquid chromatography,
as described previously [100,101]. Concentrations were measured as S-carbosymethyl,
N-dansyl derivatives using an internal standard for quantification, and values were cor-
rected by total protein and were expressed as nmol GSH/mg protein [102]. Redox potentials
(Eh) were determined via the Nernst equation, as described previously [103]. Quantifi-
cation of the S-glutathionylation of proteins (Pr-SSG) was determined by the reduction
of modified proteins, as described previously [104]. In short, harvested protein pellets
were re-solubilized in buffer containing dithiotrheitol to remove GSH from Pr-SSG before
derivatization for HPLC analysis. These measurements of 3 culture plate wells (technical
replicates) were averaged per culture (biological triplicates).

2.9. qPCR

For qPCR, β-cells were lysed, and mRNA was harvested as previously described [105].
qPCR was performed using the Life Technologies Quant Studio 6 Detection System and
Software (Thermo Fisher), using SYBR green primers and qPCR master mix (Bio-Rad,
Hercules, CA, USA), as previously described [105] for Total XBP1, sXBP1, and PPIA.
Relative mRNA levels for Total XBP1 and sXBP1 were calculated using the Delta CT method,
with PPIA being used as a housekeeping gene. Sequences are available upon request.

2.10. Western Blots

For Western blots, β-cells were lysed, and blotting, transfers, and imaging (LI-COR
Biotechnology) were performed as described previously [55]. Protein concentration was
determined by BCA, and samples were loaded in the gel at 25 µg/lane. Blots were
probed for inositol-requiring enzyme 1α (IRE1α) (Cell Signaling, Danvers, MA, USA,
3294, 1:1000), PRKR-like Endoplasmic reticulum kinase (PERK) (Cell Signaling, 3192,
1:1000), phosphor-PERK (Cell Signaling, 3179, 1:1000), ATF4 (GeneTex, Irvine, CA, USA,
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GTX101943, 1:1000), and X-box bind protein 1 (XBP1) (GeneTex, GTX102229, 1:1000), and
Tubulin (Proteintech, Rosemont, IL, USA, 66031-1-Ig, 1:25,000) as a loading control. These
expression measurements of 3 culture plate wells (technical replicates) were normalized to
the associated SCC NT controls and averaged per culture (biological triplicates).

2.11. Statistical Analysis

Data presented in the text represent mean percent change between SCC NT and GLT
NT controls. As indicated in each experimental method and figure legend, the mean of
3 to 4 technical replicates constituted the measurements of 3 to 4 predetermined biological
replicates (n = 3 or 4), with error bars indicating the standard error. For INS-1 β-cell
cultures, each independent culture plate, and for primary islet cultures, each independent
animal, was considered a biological replicate. Statistical analyses were performed with
GraphPad Prism 9, where p < 0.05 was considered significant, but instances of p < 0.1 were
also reported. Statistical comparisons included the normality test using the Shapiro Wilk
test, one-way ANOVA with Tukey’s post hoc test, and two-way ANOVA with Šidák’s post
hoc test, as indicated in the figure legends.

3. Results
3.1. TMAO Does Not Alter GLT-Mediated Reduction of β-Cell Mass

Since impaired functional β-cell mass is a hallmark of T2D pathogenesis, we explored
the viability, survival, and proliferation rates of TMAO-treated β-cells in SCC and GLT
conditions (Figure 1). Mitochondrial viability assays showed that 160 µM TMAO was
cytotoxic under SCC conditions (Figure 1A), and GLT reduced mitochondrial viability by
31% (Figure 1B). Since this assay reports mitochondrial viability as a surrogate for cell mass,
we investigated β-cell survival via dead and dying cellular markers AV and 7-AAD. There
was minimal cell death and no significant TMAO effect in SCC studies (Figure 1C), while
GLT increased the dead and dying population by 38% (Figure 1D). Finally, we measured
β-cell proliferation by quantifying DNA synthesis rates where TMAO showed no effect
(Figure 1E,F). While GLT did significantly reduce total protein concentration during the
[3H]-thymidine assay, when DNA synthesis rates were corrected by these values, the
comparisons were not significant (Figure S1C–E). Together, these data illustrate that while
GLT reduces β-cell mass by decreasing mitochondrial viability and increasing cell death,
TMAO does not alter β-cell mass.

3.2. TMAO Normalizes GLT-Damaged β-Cell and Islet Function

To investigate TMAO effects on β-cell function, we performed GSIS assays to mea-
sure the insulin secretion and production capacity of β-cells treated with TMAO under
SCC and GLT conditions (Figure 2A–D). SCC only controls secreted 4.4-fold more insulin
during 12 mM high glucose stimulation compared to the 2.8 mM low glucose stimula-
tion (Figure 2A,C). This significant difference between the low and high glucose insulin
secretion values indicates healthy glucose sensing, which is hindered by GLT (Figure 2C).
GSIS was worsened by 80 µM TMAO in the SCC condition (Figure 2A), while 20 and
especially 40 µM TMAO improved GLT-blunted GSIS (Figure 2C). To explore β-cell insulin
production, we measured total insulin content (Figure 2D). TMAO did not significantly
change insulin content in SCC treated cells (Figure 2B), but 20 and 40 µM TMAO in the GLT
condition recovered insulin content to healthy levels (Figure 2D). These results demonstrate
a beneficial phenotype, where physiological concentrations of TMAO maintained β-cell
insulin secretion and content during the damaging T2D-like GLT condition.
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h in standard cell culture (SCC), and (B) in GLT. (C) Flow cytometric measurement of dead and dying β-cell populations 
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TMAO for 24 h in SCC, and (F) in GLT. (A,B,E,F) Values are normalized to SCC no treatment (NT) controls and (C,D) 
values reported as percent. (E,F) Proliferation data were normalized to cell protein content. All values represent the mean 
of biological triplicates (n = 3). Error bars indicate the standard error. * Indicates significant one-way ANOVA showing 
GLT and TMAO effects with p-values * <0.05, *** <0.001, **** <0.0001, or not significant (ns). 
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Figure 1. Trimethylamine N-oxide (TMAO) does not alter glucolipotoxicity (GLT)-mediated reduction of INS-1 β-cell mass.
(A) Tetrazolium salt MTT measured mitochondrial viability of INS-1 β-cells cultured with or without TMAO for 24 h in
standard cell culture (SCC), and (B) in GLT. (C) Flow cytometric measurement of dead and dying β-cell populations as
measured by Annexin V and 7-aminoactinomycin D staining of β-cells cultured with or without TMAO for 24 h in SCC, and
(D) in GLT. (E) β-cell proliferation measured by [3H]-thymidine incorporation of β-cells cultured with or without TMAO for
24 h in SCC, and (F) in GLT. (A,B,E,F) Values are normalized to SCC no treatment (NT) controls and (C,D) values reported
as percent. (E,F) Proliferation data were normalized to cell protein content. All values represent the mean of biological
triplicates (n = 3). Error bars indicate the standard error. * Indicates significant one-way ANOVA showing GLT and TMAO
effects with p-values * <0.05, *** <0.001, **** <0.0001, or not significant (ns).

Primary rat islet studies validate this beneficial TMAO phenotype (Figure 2E–H).
Female mice are a common model in TMAO studies because their increased FMO3 ex-
pression and activity produces four-fold more TMAO than males [28]. However, because
adult humans show a less pronounced sexual dimorphism in TMAO accumulation, we
cultured adult female rat islets as a more relevant model [28,106–108]. As with β-cells,
islet insulin section was inhibited by 80 µM TMAO in SCC, while insulin content was
unaffected (Figure 1E,F). Acute 40 µM TMAO improved GSIS and insulin content levels
in GLT cultured β-cells (Figure 2G,H). These islet data corroborated the β-cell results that
40 µM TMAO is sufficient to normalize β-cell function impeded by GLT. While GSIS func-
tion is known to be dependent on mitochondrial function, we did not observe matching
TMAO effects in the mitochondrial viability of 40 µM TMAO treated GLT cultured β-cells
(Figure 1B). Therefore we hypothesize that the increased insulin secretion observed here
(Figure 2C,G) may be due to an increase in insulin production, as indirectly measured by
the insulin content values (Figure 2D,H).
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3.3. TMAO Recovers the Decrease in Insulin Granule Number Induced by GLT

To more directly explore the TMAO effects on insulin production, we used STEM
imaging to visualize β-cell insulin granule formation (Figure 3A). GLT reduced granule
number per cell by 53% (Figure 3B). While TMAO did not alter granule numbers in SCC,
in the GLT condition 40 µM TMAO was sufficient to recover granule counts to healthy
levels (Figure 3B). Therefore, TMAO presumably facilitates proper insulin production by
maintaining mature granule formation despite deleterious GLT damage.

3.4. TMAO Does Not Alter GLT-Mediated Changes to GSH or Redox Potential

GLT is associated with increased reactive oxygen species (ROS) levels causing en-
doplasmic reticulum (ER) stress and mitochondrial dysfunction, which damage β-cell
function [109–115]. β-cells are vulnerable to oxidative stress due to their limited endoge-
nous antioxidant defense system, and reducing ROS levels is sufficient to recover healthy
function [43,44,47,113,116–118]. Therefore, we investigated TMAO effects on the endoge-
nous antioxidant GSH (Figure 4). GLT altered the redox potential (Figure 4C) of the β-cells
by decreasing the GSH concentration by 47% (Figure 4A), without significantly affecting the
GSSG (Figure 4B) or Pr-SSG concentrations (Figure 4D). It was shown that 40 µM TMAO
had no protective effects against these changes and that the beneficial TMAO phenotype
we observed is not linked to alleviating oxidative stress caused by GLT.
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3.5. TMAO Normalizes GLT Mediated Changes to Unfolded Protein Response (UPR) Components

Insulin production begins with translation of the insulin mRNA at the rough ER
before it is matured and packaged into granules. Therefore, ER stress triggered by unfolded
protein accumulation during glucolipotoxicity is highly relevant to T2D β-cell dysfunc-
tion. We investigated TMAO effects on two arms of the UPR pathway (Figure 5). GLT
slightly induced p-PERK expression, which resulted in a 77% reduction by 40 µM TMAO,
indicating that TMAO reversed the GLT-mediated ER stress (Figure 5A,B). Interestingly,
total PERK levels were significantly upregulated by TMAO treatment under GLT condi-
tions (Figure 5A,C). While TMAO reduced p-PERK levels under GLT, it did not affect its
downstream target, ATF4, which was elevated under GLT conditions (Figure 5D,E). Since
ATF4 signals apoptosis, this non-significant result corresponds with the previous β-cell
survival data (Figure 1D). In the second arm of the UPR, GLT reduced IRE1α expression by
83%, which was normalized by TMAO (Figure 5F,G). IRE1α splices the XBP1 mRNA to
yield two populations of XBP1 proteins. Measurements of total and spliced XBP1 (sXBP1)
demonstrated that GLT resulted in similar induction of sXBP1 mRNA (Figure 5H,I). West-
ern blotting demonstrated that under SCC and GLT conditions, TMAO reduced spliced
XBP1 relative to the unspliced population (uXBP1) and relative to the tubulin control
(Figure 5J–L). However, since changes in this protein were not observed in the GLT in-
dependent of TMAO, these minimal changes may not be physiologically meaningful.
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These data demonstrate that GLT induces ER stress and diminishes the IRE1α UPR, which
40 µM TMAO recovers to healthy levels. Therefore, taken together, our results suggest that
40 µM TMAO is sufficient to normalize GLT-damaged insulin secretion and production by
maintaining granule formation and recovering the IRE1α UPR in INS-1 β-cells.
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Figure 4. TMAO does not alter GLT-mediated changes to GSH or redox potential in INS-1 β-cells.
INS-1 β-cells cultured with or without 40 µM TMAO for 24 h in SCC and GLT were measured for
(A) Glutathione (GSH) concentration, (B) Glutathione disulfide (GSSG) concentration, (C) GSH/GSSG
redox state, and (D) Protein S-glutathionylation (Pr-SSG) concentration. All values represent the
mean of biological triplicates (n = 3). Error bars indicate the standard error. * Indicates significant
one-way ANOVA showing GLT effects, where p-values * <0.05 or ns.
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Figure 5. TMAO normalizes GLT-mediated reduction of the IRE1α unfolded protein response (UPR) in INS-1 β-cells. INS-1
β-cells cultured with or without 40 µM TMAO for 24 in SCC and GLT were measured for changes to UPR pathway proteins
by Western blotting and mRNA by qPCR. Samples were probed and quantified for p-PERK (170kd) and PERK (140kd)
(A–C), ATF4 (39kd) (D,E), IRE1α (130kd) (F,G), sXBP1 (40kd) and uXBP1 (29kd) (J–M). mRNA of sXBP1 and total XBP1
were measured by qPCR (H,I). Abbreviations: quantitative polymerase chain reaction (qPCR), phospho-protein kinase
RNA-like ER kinase (p-PERK), activating transcription factor (ATF4), inositol-requiring enzyme 1α (IRE1α) (A,B), spliced
and unspliced X-box bind protein 1 (sXBP1, uXBP1). All Western blot values are normalized to the loading control tubulin
and represent the mean of biological triplicates (n = 3). qPCR data represent the mean of 6 to 8 replicates (n = 6–8). Error
bars indicate the standard error. * Indicates significant one-way ANOVA showing GLT and TMAO effects, where p-values
<0.1 given, * <0.05, ** <0.01, *** <0.001, **** <0.0001, or ns.

4. Discussion

This study is the first to demonstrate physiologically relevant TMAO effects on pan-
creatic β-cells under healthy and T2D-like conditions (Graphical Abstract). Our data
demonstrate that TMAO recues the impaired insulin content, insulin granule levels, and
ultimately the insulin secretion, in part by modulating UPR proteins to presumably en-
hance proper insulin protein folding. To mimic the serum TMAO levels of healthy and
chronic disease patients, we cultured INS-1 β-cells and primary rat islets in the presence
of 0.3 to 160 µM TMAO concentrations [16,20,67–74]. Serum TMAO accumulates after
a single meal rich in precursor nutrients and remains elevated for the duration of the
diet [13,16,87,90,91]. Despite variability among diets and patients, serum TMAO levels are
typically low in healthy subjects, ranging from 1 to 3 µM, which increases to 15 µM with old
age [8,16,67,87–89]. The onset of Western-diet-driven chronic diseases elevates TMAO to
concentrations from 7 and 170 µM, with kidney disease patients showing the highest levels
and T2D or CVD patients showing levels at or above 20 µM [5,25,68,70,72,74,75,79–86]. We
observed significant TMAO effects within this concentration range in the SCC and GLT
cultures. The most physiologically relevant treatment combinations of this study include
the lower TMAO concentrations in SCC and the higher TMAO concentrations in GLT con-
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ditions. The higher TMAO levels in SCC and the lower levels in GLT conditions represent
in vitro study controls. Therefore, while we found that β-cells cultured with supraphys-
iological concentrations of 80 and 160 µM TMAO in SCC had impaired mitochondrial
viability and GSIS (Figures 1A and 2A,E), these results are less physiologically relevant.
Conversely, the beneficial TMAO phenotype we observed in GLT cultured INS-1 β-cells
and primary rat islets with 40 µM TMAO demonstrated normalized insulin secretion and
content (Figure 2C,D,G,H), insulin granule density (Figure 3), and upregulated IRE1α UPR
(Figure 5) relevant to the diet-induced T2D β-cell physiology (Graphical Abstract). Future
studies on primary human islets and in vivo models may further validate the clinical
relevance of these results.

The GLT condition models hyperglycemia and hyperlipidemia, which drive β-cell
damage indicative of diet-induced T2D [51]. Hyperglycemia, or its model glucotoxicity,
is a hallmark of early- and late-stage T2D pathogenesis [51,52,119]. Hyperlipidemia ac-
companies obesity and T2D and is modeled by cultures high in free fatty acids, especially
palmitate, as previously studied by the authors [63–66,120]. Because hyperglycemia pre-
cedes hyperlipidemia, the GLT condition replicates physiologically relevant synergistic
effects [63]. In β-cells, ROS easily overcomes the limited endogenous antioxidant defense
system and stunts functional β-cell mass (Figures 1–3) [42–44,118,121]. Our data support
this framework because GLT decreased the GSH concentration and redox potential; how-
ever, TMAO showed no effect on this oxidative mechanism (Figure 4A,C).The beneficial
TMAO phenotype we observed on β-cell function corresponds with increased IRE1α and
decreased P-PERK protein levels during GLT-induced ER stress. β-cell function begins
with insulin production via translation and folding at the ER, followed by maturation into
secretory granules [41,45,46,122–131]. Therefore, ER stress and accumulation of unfolded
proteins at the ER plays a major role in T2D β-cell damage [115,132–134]. Indeed, human,
animal, and in vitro T2D studies show elevated levels of ER stress and demonstrated that
reducing ER stress can recover healthy β-cell function [135–137]. The various arms of the
UPR can maintain or modify ER function in response to ER stress or induce apoptosis
during severe conditions [133,138–140]. The p-PERK and IRE1α arms are activated by
accumulated unfolded proteins and are specifically linked with T2D β-cell dysfunction
modeled by GLT [134,138,139,141]. The p-PERK arm limits protein translation rates to
reduce the load of proteins in the ER and can trigger apoptosis via its downstream target
ATF4 [139,140]. Our data (Figures 1D and 5A–E) support this framework. We found that
40 µM TMAO reduced p-PERK but not ATF4 expression (Figure 5A,B,E,G) nor survival
rates (Figure 2D). While our study does not identify the whole p-PERK arm as part of the
beneficial TMAO mechanism, others studies show closer associations between PERK and
TMAO, albeit at supraphysiological concentrations or in other cell types [6,121]. Instead,
we propose that TMAO shifts the UPR toward the IRE1α arm, which increases the ER
protein folding capacity [134,138,139,141]. Low IRE1α expression, as shown in the GLT
condition (Figure 5F,G), specifically increases β-cell susceptibility to ER stress in the context
of T2D [133,138,142]. Indeed, IRE1α-deficient β-cells and mice demonstrate hyperglycemia
and hypoinsulinemia and impaired insulin production, which recapitulates the GLT effect
on cultured β-cells and islets, which we observed (Figure 2) [133,143–146]. Furthermore,
these studies link the IRE1α pathway with adaptive autophagy mechanisms that enhance
islet function similar to the beneficial TMAO phenotype we observed [133,143–145]. TMAO
is also defined as a direct protein folding chaperone, independent of its action on protein
expression [35,147–155]. Molecular dynamics studies reveal that TMAO acts as a surfactant
between the folding protein and the aqueous ER environment to selectively stabilize col-
lapsing proteins [29,31,156–158]. Therefore, our results add to others that identify beneficial
molecular TMAO effects on metabolic tissue function. We conclude that 40 µM TMAO
normalizes β-cell function by activating the IRE1α UPR to maintain insulin production
and granule formation despite GLT-induced ER stress.

While we demonstrate beneficial TMAO effects on β-cell function, some studies using
other tissue types counter this conclusion [6,159]. Human and animal in vivo studies show
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improved hyperglycemia and hyperlipidemia [11,28,160,161]. While the glucose tolerance
test (GTT) results of these studies may point toward deleterious TMAO effects on β-cells,
this method did not directly quantify β-cell function through mathematical modeling [162].
Instead, these studies correlated the blood glucose level changes with altered insulin
responsivity in the target tissue function [163–169]. While these studies generally conclude
deleterious TMAO effects in various metabolic tissues, none have investigated TMAO
effects directly at the β-cell level, which is critical to T2D pathogenesis [6,21,24–28].

Although some studies contradict our findings as discussed above, others corroborate
that TMAO protects against T2D conditions [30,110,170,171]. In vitro studies of other
metabolic tissues demonstrate that reduced TMAO levels exacerbate cellular damage,
while elevated TMAO levels recover healthy phenotypes [171–174]. A study on TMAO-
treated diabetic mice showed fewer neuropathy symptoms and identified TMAO as a
protective protein folding chaperone [175]. Like β-cells, the neuronal secretory function
relies on proper ER protein folding and secretion mechanisms. Together, these studies
begin to highlight the beneficial roles of TMAO across various metabolic tissues.

Although this study is the first to identify the TMAO effects directly at the β-cell,
another study agrees that TMAO benefits glucose tolerance in HFD-fed T2D mice [170].
This showed that the HFD-fed mice with experimentally elevated serum TMAO levels
performed better on a GTT compared to control mice. A GSIS experiment on isolated islets
cultured with TMAO in this study also demonstrated beneficial TMAO effects on insulin
secretion [170]. Although this study did not report serum TMAO levels, this in vivo study
closely approximated the beneficial effects we observed in T2D β-cells and rat islets treated
with 40 µM TMAO [170].

5. Conclusions

We conclude that acute 40. µM TMAO treatment maintains healthy β-cell function
during the GLT-mediated T2D condition by normalizing insulin granule formation, increas-
ing the IRE1α, and decreasing the p-PERK UPR. Further evaluation of TMAO on primary
human islets or via in vivo studies will provide clearer insight into the protective effects we
observed here. Since the landmark study identifying TMAO as a biomarker of CVD only
10 years ago, a general role for TMAO across chronic diseases has been debated, and some
suggest that TMAO effects in the context of T2D may differ from those typically supported
by CVD research [8,9,23,25,30,176–180]. Indeed, it is proposed that TMAO may initiate pro-
tective or compensatory cellular responses to diet-mediated metabolic diseases [23,181,182].
Our data demonstrate crucial findings to support such a context-dependent role for TMAO
and suggest that TMAO acts as a signal from the diet-microbiome interaction to metabolic
tissues to trigger adaptive cellular responses to the overnutrition-driven cellular stress.
We propose that at the β-cell, acute TMAO initiates protective effects that may mitigate
diet-mediated T2D pathogenesis.
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