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Somato-axodendritic release of oxytocin into the brain due
to calcium amplification is essential for social memory
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Abstract Oxytocin (OT) is released into the brain from

the cell soma, axons, and dendrites of neurosecretory cells

in the hypothalamus. Locally released OT can activate OT

receptors, form inositol-1,4,5-trisphosphate and elevate

intracellular free calcium (Ca2?) concentrations [(Ca2?)i]

in self and neighboring neurons in the hypothalamus,

resulting in further OT release: i.e., autocrine or paracrine

systems of OT-induced OT release. CD38-dependent cyc-

lic ADP-ribose (cADPR) is also involved in this autoreg-

ulation by elevating [Ca2?]i via Ca
2? mobilization through

ryanodine receptors on intracellular Ca2? pools that are

sensitive to both Ca2? and cADPR. In addition, it has

recently been reported that heat stimulation and hyper-

thermia enhance [Ca2?]i increases by Ca
2? influx, probably

through TRPM2 cation channels, suggesting that cADPR

and TRPM2 molecules act as Ca2? signal amplifiers. Thus,

OT release is not simply due to depolarization–secretion

coupling. Both of these molecules play critical roles not

only during labor and milk ejection in reproductive

females, but also during social behavior in daily life in both

genders. This was clearly demonstrated in CD38 knockout

mice in that social behavior was impaired by reduction of

[Ca2?]i elevation and subsequent OT secretion. Evidence

for the associations of CD38 with social behavior and

psychiatric disorder is discussed, especially in subjects

with autism spectrum disorder.

Keywords Oxytocin � Hypothalamus � Social behavior �
CD38 � TRPM2

Introduction

Oxytocin (OT) and arginine vasopressin (AVP) are non-

apeptides that differ in two amino acid residues [1]. OT and

AVP are synthesized mostly in distinct neurons in the

paraventricular nucleus (PVN) and supraoptic nucleus

(SON) in the hypothalamus [2, 3]. OT and AVP are

secreted into the blood circulation and have physiological

roles in peripheral organs, such as the uterus, mammary

gland, and kidney. They induce contraction of uterine and

mammary duct smooth muscle or diuretic action in the

kidney as hormones [4–6].

OT, AVP, and their receptors are present in the brain not

only in females during specific reproductive periods but

also in non-reproductive females and males [6]. Accumu-

lating evidence has established that, in addition to classical

hormonal functions, both peptides play critical roles in

social recognition and social behavior in mammals,

including humans [7–20]. This review focuses mainly on

OT. The main point is not a general functional role of OT

in a comprehensive review, but the molecular mechanisms

of OT secretion into the brain that is critical in the neuronal

function of OT in social recognition and behavior [4, 11,

13, 21].

Another reason to focus on the release is that the

mechanism contains a very important aspect in terms of

physiological science, in that the proposed idea challenges

the principal rule in physiology of depolarization–secretion
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coupling [22–24]. Furthermore, this mechanism seems to

have a potential relationship to autism spectrum disorder

(ASD), a serious developmental disorder, which is a

rapidly advancing field in neuroscience and psychiatry and

is a serious disorder in our society [25–28]. There have

been many reviews regarding the relationship between

ASD and OT [29–35]. However, there have been few

regarding the molecular mechanism of OT release into the

brain [4], which is the critical step for social recognition

and social behavior [26–28].

Somato-axodendritic release of oxytocin

OT is secreted from the nerve terminals of axons of oxy-

tocinergic neurons at the perivascular site in the posterior

lobe of the pituitary into the circulation [4] (Fig. 1). Oxy-

tocinergic neurons send their axons to the amygdala and

some other limited brain regions and secrete OT from the

nerve terminals [4, 12, 15]. It is known that adrenaline

stimulates oxytocinergic neurons in the SON, which results

in local release of OT in the brain [5, 36]. This release

occurs from the cell soma, axons, and dendrites, i.e.,

somato-axodendritic release [37–39].

Locally released OT causes excitation of OT neurons by

activating OT receptors expressed in neurons of both the

PVN and SON [40–43]. OT stimulates OT receptors and

facilitates OT release from the stimulated neurons.

Released OT can stimulate OT receptors and elicits release

from the same neurons (autocrine) or nearby neurons

(paracrine) [44] (Fig. 2). This OT-induced OT release

determines the basal brain concentrations and elevated

concentrations of OT. The concept of autoregulation, OT-

induced OT release, can be an extremely efficient way to

achieve massive OT recruitment during uterine contraction

in labor and milk ejection in lactation [5, 6, 45–47].

Autoregulation, however, is also an essential brain mech-

anism for social recognition in daily life in both genders, as

proposed previously [25, 27, 28].

Oxytocin receptors and cellular signaling

OT receptors are seven-transmembrane proteins that cou-

ple with the Gq/11-type GTP-binding protein [48]. Stimu-

lation of OT receptors leads to the production of inositol-

1,4,5-trisphosphate (IP3) and diacylglycerol (DAG)

through the activation of phospholipase C (PLC) [48]. This

results in activation of Ca2? mobilization from IP3-sensi-

tive Ca2? pools [49].

On the other hand, another Ca2? signal pathway of

cyclic ADP-ribose (cADPR) [50, 51] was identified

downstream of OT receptors [11]. cADPR mobilizes Ca2?

through cADPR-sensitive Ca2? pools, in a mechanism

referred to as Ca2?-induced Ca2? release. In this process,

cADPR plays an essential role in mobilizing Ca2? through

Ca2? channels of ryanodine receptors [52–56] (Fig. 3). The

recent review by Leng et al. did not mention this cADPR/

CD38 hypothesis [4], probably because they described by

their data based on their finding with thapsigargin [36].

It is known that intracellular cADPR concentrations are

regulated in many different ways, including activation of

ADP-ribosyl cyclase or CD38, via heterotrimeric GTP-

binding proteins, or phosphorylation downstream of the G

Wild-type CD38 KO 

V V

(a) (b)Fig. 1 Electron micrographs of

the posterior pituitary glands of

wild-type (a) and CD38

knockout (b) mice. Vesicles are

nerve endings close to the

vascular space (V). Most of the

dense core vesicles are

oxytocinergic, as determined by

immunoelectron microscopic

examination. The nerve endings

of CD38 knockout mice contain

more vesicles than those of

wild-type mice, indicating that

vesicles are released in the wild-

type mice and not secreted in

CD38 knockout mice. Bar

500 nm (modified from Fig. 3

of Ref. [21])
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protein-coupled receptor signaling pathways [57–59].

Specifically, the activation of ADP-ribosyl cyclase or

CD38 by cyclic GMP- or cyclic AMP-dependent protein

kinases has been reported in Aplysia californica, liver cells

[60, 61], LAK cells [62, 63], and artery smooth muscle

cells [57] (Fig. 3).

cADPR is a catalytic product of ADP-ribosyl cyclase or

ectopic CD38 [50, 51, 63] (Fig. 4). cADPR is produced in

the extracellular space by the large C-terminal portion of

CD38 with catalytic activity that may be present in the

extracellular space. Therefore, it is unclear how extracel-

lular cADPR produced by CD38 acts as an intracellular

second messenger. It has been reported that cADPR

applied extracellularly stimulates intracellular ryanodine

receptors after internalization by the nucleotide-transport-

ing capacity of CD38 in fibroblasts and astrocytes (the

nucleotide carrier hypothesis of De Flora) [64, 65].

Recently, it was reported that the type II transmembrane

glycoprotein, CD38, may exist in two forms with regard to

membrane topology [66, 67]; the large C-terminal portion

with catalytic activity may exist in the extracellular space

as the type II protein, and this catalytic site may also exist

inside the cell as the type III form (Fig. 4a). In the latter

case, the product of CD38, cADPR, is produced intracel-

lularly, and acts directly as a second messenger (two

topology hypothesis of Lee).

Effects of oxytocin on ADP-ribosyl cyclase
and intracellular Ca21 concentrations

Application of OT stimulates ADP-ribosyl cyclase activity

or CD38 in crude membrane fractions, when measured by

cADPR formation from b-NAD? or by cyclic GDP-ribose

(cGDPR) production from NGD? [50, 68]. cADPR or

cGDPR production increases in a concentration-dependent

manner upon exposure to sub-nanomolar concentrations of

OT [49].

Subsequently, in isolated hypothalamic neurons, appli-

cation of 100 pM OT results in [Ca2?]i increases: a rapid

initial increase and a sustained elevation lasting for 5 min

[69]. OT elicits an initial elevation of the maximum

[Ca2?]i, and this phase is IP3-dependent. Pretreatment with

8-bromo-cADPR, an antagonist of the cADPR-binding site

of Ca2? release channels of ryanodine, inhibits OT-medi-

ated sustained [Ca2?]i increases. ADPR and b-NAD? also

induce elevation of [Ca2?]i and replicate the second phase

of sustained [Ca2?]i increases [49, 69]. Under Ca2?-free

conditions, the OT-mediated increase of [Ca2?]i shows

little change in either phase, suggesting that the two phases

of [Ca2?]i elevation in hypothalamic neurons are due to

Ca2? mobilization from the intracellular Ca2? pools [49].

Oxytocin release by extracellular application
of cyclic ADP-ribose

High potassium-induced depolarization produces an

increase of up to eightfold in OT secretion from isolated

mouse hypothalamic neurons or their axon terminals in the

posterior pituitary gland, respectively [21]. OT release is

CD38
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Paracrine
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Fig. 2 Scheme showing autocrine and paracrine release of oxytocin.

OT is released from dendrites (dendritic release), from the cell soma

(soma release), and from axons (axonal release) in the hypothalamus.

Hypothalamic oxytocinergic neurons express OT receptors (OTR).

Released OT binds to OTR. More OT (yellow circle) is released by

CD38-mediated intracellular calcium amplification (not shown). The

positive feedback of OT release occurs by OT released from self or

nearby cells via autocrine and paracrine mechanisms, respectively

cADPR

NO
cGMP

NAD+
P

G-kinase A-kinase

VOCC

DepolarizationACh
nAChR

Ca2+

ATP

ADP

ADP-ribosyl cyclase

RyR

Ca2+

Microsome

NE
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Receptor

G protein

CD38

Fig. 3 Intracellular signaling pathways leading to increased cyclic

ADP-ribose formation. Phosphorylation (P) of ADP-ribosyl cyclase

(pink) is mediated by several pathways. Nitric oxide (NO), cyclic

GMP (cGMP), and protein kinase G (G-kinase); acetylcholine (ACh),

nicotinic ACh receptors (nAChR); voltage-operated Ca2? channels

(VOCC), Ca2? and protein kinase A (A-kinase); norepinephrine (NE),

b adrenaline receptors (bAdR). Activation of CD38 by GTP-binding

protein (G protein) and various types of receptors triggers formation

of cADPR. cADPR opens Ca2? release channels of ryanodine

receptor type II or III (RyR) with another cofactor, Ca2? (not shown).

Mobilization of Ca2? from microsomes of Ca2? pools increases

[Ca2?]i, resulting in OT release (not shown)
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enhanced by about fourfold by application of extracellular

b-NAD?, a precursor of cADPR (refer to Fig. 4 in [21]).

The increase is blocked completely by 8-bromo-cADPR.

To further confirm the involvement of cADPR, we exam-

ined the effects of extracellular application of several b-
NAD? metabolites [49, 69]. Only cADPR showed a

potentiation effect, indicating that OT release utilizes the

cADPR/ryanodine calcium amplification system (Fig. 5).

Involvement of TRPM2 channels

Melastatin-related transient receptor potential channel 2

(TRPM2, previously named TRPC7 or LTRPC2) possesses

ADPR hydrolase activity and is a Ca2?-permeable cation

channel. b-NAD?, ADPR, and cADPR can activate

TRPM2 channels [70]. TRPM2 activation by cADPR is

promoted at body temperature ([35 �C) and is involved in

insulin secretion in pancreatic b cells [71]. In addition,

TRPM2 channels are related to receptor functions through

cADPR formation [72].

Extracellularly applied cADPR can activate [Ca2?]i
signaling via CD38 or TRPM2 channels downstream of OT

receptors. [Ca2?]i increases in the model neuron, NG108-

15 mouse neuroblastoma 9 rat glioma hybrid cells that

possess CD38 [58, 73] but not OT receptors [74], as in the

isolated whole hypothalamus after stimulation with

extracellularly applied cADPR [69, 75]. Interestingly, the

same tissues show significantly greater increases upon

extracellular challenge with cADPR together by heating to

40 �C from 35 �C in the incubation medium (Fig. 6). Little

or no cADPR-mediated [Ca2?]i elevation was observed at

40 �C in the absence of extracellular Ca2?. Ca2? influx is

expected, probably through non-selective cation TRPM2

channels, because elevation of [Ca2?]i is inhibited by the

TRPM2 channel inhibitor, 2-aminoethoxydiphenyl borate

(2-APB). Similarly, 8-bromo-cADPR inhibits responses to

b-NAD? and heat. These results suggest that cADPR

contributes to both Ca2? mobilization from internal Ca2?

pools and Ca2? influx through TRPM2 Ca2?-permeable

channels from the extracellular space. Such [Ca2?]i
increases may result in OT release. However, there have

been no previous reports regarding heat-induced OT

release in the hypothalamus.

Contribution of CD38

In the central nervous system, ADP-ribosyl cyclase activity

corresponding to CD38 is detected as early as embryonic

day 15 in mouse development [76]. In the brain, expression

levels of CD38 and ADP-ribosyl cyclase activity increase

with further development [77]. The role of CD38 in

CD38

NAD   NAD    

Type II

Type III

Cell surface
membrane

Extracellular

Intracellular

NAD     NAD     

Fig. 4 Membrane topology and enzyme reaction of CD38. CD38

(pink oval) usually forms a dimer. b-NAD? binds to the central

catalytic site of CD38. The large C-terminal part is located in the

extracellular space, as the type II transmembrane protein, or

intracellular space as the type III transmembrane protein, according

to Lee and colleagues [66, 67]. CD38 has three enzymic activities.

CD38 catalyzes formation of cyclic ADP-ribose from b-NAD? by

cleaving nicotinamide. cADPR is hydrolyzed to form ADP-ribose.

b-NAD? also has NAD? glycohydrolase activity to form ADP-ribose

from b-NAD? in one step. The scheme of enzyme activity is modified

from Lee [50]
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regulation of OT secretion through cADPR-mediated

intracellular calcium signaling has been clearly demon-

strated using CD38 knockout mice [11, 21, 78, 79]. The

plasma and cerebrospinal fluid OT levels are reduced in

CD38 knockout mice. Electron microscopic examination

exhibited little to no release from the nerve endings of

oxytocinergic neurons in the pituitary of CD38 knockout

mice (Fig. 1). These phenotypes were rescued by simple

subcutaneous injection of OT as well as brain local re-

expression of human CD38, but not mutant CD38, by the

lentivirus infection method in CD38 knockout mice [21].

Human social behavior and psychiatric disorders

As CD38 is recognized as being closely related to OT

release and social memory in mice, we examined the

association of single nucleotide polymorphisms (SNPs) in

the human CD38 gene on ASD [80]. In a series of elegant

studies in 323 mothers, fathers, and non-parents, Epstein

and colleagues reported that risk alleles on CD38

IP3R

8-bromo
-cADPR

CICR

CD38

OT

Release

Social 
behavior

PLC

Fig. 5 Oxytocin induced oxytocin release. Oxytocin (OT; yellow

circles) stimulates oxytocin receptors (OTR). Subsequently, the Gq/11

type G protein and phospholipase C (PLC) are activated, resulting in

formation of inositol-1,4,5-trisphosphate (IP3) and diacylglycerol

(DAG). Stimulated protein kinase C (PKC) activates CD38 and

increases formation of cADPR from b-NAD? inside or outside cells.

cADPR activates Ca2? influx TRPM2 cation channels.

2-Aminoethoxydiphenyl borate (2-APB) inhibits TRPM2 channels.

IP3 induces mobilization of Ca2?. TRPM2 mediates Ca2? influx,

which also stimulates Ca2? mobilization through ryanodine receptor

Ca2? release channels as a cofactor together with cADPR. These

Ca2? ions (filled circles) increased by Ca2? amplification mechanisms

stimulate OT (yellow) release into the brain, which is an essential step

for social memory and social behavior. Modified from [11, 27, 52, 73]
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Fig. 6 Effects of cyclic ADP-ribose, ADP-ribose, and b-NAD? on

heat-induced calcium concentration rise. Time course of [Ca2?]i
changes in Oregon Green-induced anterior hypothalamic neurons. At

about 25 s after the beginning of each trace, cells were heated from 35

to 37 �C together with 100 lM cADPR, ADPR, b-NAD? or without

nucleotides (heat alone). Symbols indicate changes in [Ca2?]i levels,

represented by the fluorescence intensity at each time point relative to

resting intensity at time zero. N = 3-5 experiments. Mean ± SEM.

Modified from [69]
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(including rs3796863) genes are associated with less par-

ental touch. In contrast, relatively high plasma OT levels in

subjects with low-risk CD38 alleles predict longer dura-

tions of parent–infant gaze synchrony. Furthermore, par-

ents that display more touch toward their infants were

reported to have been well cared for in childhood, to

exhibit higher plasma to levels, and to have low-

risk CD38 alleles [29, 30, 81]. The mother’s CD38 allele

predicts parental behavioral synchrony at 1 and 6 months

of their first-born infants and children’s social reciprocity

during interactions with their best friend at 3 years. CD38

in the OT pathway was shown to be critical for parent–

infant attachment and attention [82]. A SNP on the CD38

gene is also associated with social integration and social

connectedness [83].

Several studies indicated the association of CD38 with

ASD [84–87]. Ten SNPs and mutations of CD38 were

examined, and the CD38 SNPs, rs6449197 and rs3796863,

were shown to be linked with high-functioning ASD in

participants in the USA but not in Japan. These findings

were partially replicated among Israeli subjects [29, 31, 32,

87].

Conclusion

This review discussed how OT is released into the brain.

Ca2? influx through Ca2? channels is not sufficient to

trigger OT release. The Ca2? signal must be amplified by

Ca2?-induced Ca2? release through Ca2? channels of

ryanodine receptors type II or III by cADPR and some

NAD metabolites in the hypothalamus (Fig. 7). In addition,

Ca2? influx through TRPM2 channels contribute more to

increases in [Ca2?]i. This hypothesis of depolarization-

independent but heat-sensitive Ca2? signaling for OT

release is consistent with the previous suggestion of den-

dritic release of OT without depolarization [4, 21, 39].

OT exerts an anxiolytic effect during stress, and stress

sometimes induces hyperthermia. It is therefore interesting

to examine how stress induces hyperthermia, which results

in subsequent OT release. OT release seems to be impor-

tant in damping the stress-induced disadvantage.

OT is an essential molecule for social memory and

social behavior [21, 29]. Deficiency in social behavior is

the core symptom of ASD. Recently, Yamasue and his

group reported that repetitive intranasal OT administration

for 6 weeks improved symptoms of the social behavior

domain [88]. This result could be due to the delivery of OT

to the brain by intranasal administration, but there is still

little direct evidence regarding whether OT is recruited into

the brain from the peripheral tissues or organs crossing the

blood–brain barrier from the blood circulation. Several

important questions regarding OT secretion into the brain

and OT-induced Ca2? signaling and OT transport from the

blood to the brain remain to be resolved.
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