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Abstract

Negative and positive emotions are known to shape decision-making toward more or less impulsive responses, respectively.
Decision-making and emotion processing are underpinned by shared brain regions including the ventromedial prefrontal
cortex (vmPFC) and the amygdala. How these processes interact at the behavioral and brain levels is still unclear. We used a
lesion model to address this question. Study participants included individuals diagnosed with behavioral-variant
frontotemporal dementia (bvFTD, n = 18), who typically present deficits in decision-making/emotion processing and atrophy
of the vmPFC, individuals with Alzheimer’s disease (AD, n = 12) who present with atrophy in limbic structures and
age-matched healthy controls (CTRL, n = 15). Prior to each choice on the delay discounting task participants were cued with
a positive, negative or neutral picture and asked to vividly imagine witnessing the event. As hypothesized, our findings
showed that bvFTD patients were more impulsive than AD patients and CTRL and did not show any emotion-related
modulation of delay discounting rate. In contrast, AD patients showed increased impulsivity when primed by negative
emotion. This increased impulsivity was associated with reduced integrity of bilateral amygdala in AD but not in bvFTD.
Altogether, our results indicate that decision-making and emotion interact at the level of the amygdala supporting findings
from animal studies.
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Introduction

Emotions play an important part in many of our decisions
(Bechara et al., 2000; Clore and Huntsinger, 2007). Choosing to
save for our children’s education rather than buying our dream
car not only involves options with different reward magnitude
and delays but also options with distinctive affective content.
How emotions interact with decision-making processes,
however, is still largely unresolved.

The well-established delay discounting task measures the
ability to forgo immediate small rewards in favor of larger longer-
term rewards (Green and Myerson, 2004). Choosing larger-later
rewards over smaller-sooner rewards (e.g. $70 in 40 days over
$50 now) is associated with enhanced performance across
the lifespan including better academic performance, social
relationships and more adaptive social functioning (Hirsch et al.,
2008; Shamosh and Gray, 2008). In contrast, the tendency to
choose the smaller-sooner rewards over larger-later rewards
has been associated with impulsivity-related behaviors and
pathological conditions including drug dependence (Bickel and
Marsch, 2001), gambling (Reynolds, 2006) or eating disorders
(Kekic et al., 2016). Neuroimaging studies investigating delay
discounting consistently point to a core network including the
ventromedial prefrontal cortex (vmPFC), amygdala, anterior
cingulate cortex (ACC) and striatum (McClure et al., 2004;
Kable and Glimcher, 2007; McClure et al., 2007; Ballard and
Knutson, 2009; Peters and Buchel, 2009). Studies, however, report
inconsistent findings, possibly due to focused region-of-interest
analyses (Kable and Levy, 2015) or healthy populations where
no structural abnormalities are reported (Bjork et al., 2009;
Bernhardt et al., 2014; Tschernegg et al., 2015). Greater delay
discounting has been associated with reduced grey matter
intensity in striatum (Dombrovski et al., 2012; Cho et al., 2013),
vmPFC (Bernhardt et al., 2014; Pehlivanova et al., 2018), lateral
prefrontal cortex (Bjork et al., 2009), superior frontal gyrus
(Schwartz et al., 2010), ACC (Bernhardt et al., 2014), hippocampus
(Lebreton et al., 2013), insula (Turel et al., 2018) as well as temporal
pole and temporoparietal junction (Pehlivanova et al., 2018).
Conversely, greater delay discounting has also been associated
with increased grey matter intensity of the striatum (Schwartz
et al., 2010; Tschernegg et al., 2015), vmPFC and ACC (Cho et al.,
2013) and prefrontal cortex (Wang et al., 2016). Lesion studies
have shown that vmPFC lesion increases delay discounting (i.e.
impulsivity), compared with healthy controls or with individuals
with lesions in other brain regions (Sellitto et al., 2011; Peters and
D’Esposito, 2016). In rodents, lesions of the basolateral amygdala
(BLA) (Winstanley et al., 2004; Floresco and Ghods-Sharifi,
2007; Ghods-Sharifi et al., 2009) or disconnection between the
orbitofrontal cortex (OFC) and the BLA (Churchwell et al., 2009)
increases delay discounting similar to lesions to the OFC (Mobini
et al., 2002). To our knowledge, no studies have investigated the
effect of amygdala damage on delay discounting in humans.
Evidence shows that patients with focal amygdala damage have
reduced loss aversion (De Martino et al., 2010) and lower scores
on tasks of decision-making under risk (Bechara et al., 1999;
Bar-On et al., 2003; Hanten et al., 2006; Brand et al., 2007; Weller
et al., 2007) or under ambiguity conditions (Brand et al., 2007).

Relevant to this study, some key regions underlying decision-
making—vmPFC and amygdala—are known to play a central
role in emotion processing (Hommer et al., 2003; Lindquist et al.,
2012; Herman et al., 2018; Kelley et al., 2018) and are extensively
connected (Haber and Knutson, 2010; Schardt et al., 2010; Patin
and Hurlemann, 2011; Plichta and Scheres, 2014). While the

vmPFC appears to respond to both negative and positive stimuli
(Winecoff et al., 2013; Yang et al., 2020), the amygdala is tradition-
ally known from animal and human lesion studies as the hub
for processing negative emotions (LeDoux, 1998; Adolphs et al.,
2005). Human neuroimaging studies also support the view for
a central role of the amygdala in processing negative emotions
(Davis and Whalen, 2001), although amygdala activation during
positive emotion processing has been reported as well (Garavan
et al., 2001; Hamann and Mao, 2002). Because of their mutual
connections, it is not surprising that contextual information
such as emotion shifts choices on the delay discounting task
toward being more patient or impulsive (Lempert and Phelps,
2016).

The majority of studies show that short (1.5 seconds, Guan
et al., 2015) or long (15 seconds, Augustine and Larsen, 2011)
exposure to negative emotional pictures increases the propen-
sity to choose smaller-sooner over larger-later rewards, whereas
exposure to positive pictures shifts decisions toward choosing
larger-later rewards (Guan et al., 2015; Cai et al., 2019). Similar
findings were also reported in studies using emotional episodic
future thinking as the emotional cue (Liu et al., 2013; Lin and
Epstein, 2014; Zhang et al., 2018). Some studies find opposite
findings, with effects specific to particular conditions, namely
reports of increased delay discounting following positive emo-
tion in extraverted individuals (Hirsh et al., 2010) and decreased
delay discounting following fearful faces (Luo et al., 2014). Arous-
ing pictures, regardless of emotion, also tend to increase delay
discounting (Wilson and Daly, 2004; Sohn et al., 2015).

This study aimed to identify the relations between decision-
making and emotion processing and their biological mech-
anisms, using a lesion model. Inclusion of patients with
behavioral-variant frontotemporal dementia (bvFTD) and
Alzheimer’s disease (AD), presenting with atrophy in the key
brain regions of the reward and emotion network (vmPFC, limbic
lobe) will clarify the role of emotion on delay discounting and
the contribution of each brain region in delay discounting. bvFTD
is a neurodegenerative condition characterized by marked
changes to personality and interpersonal conduct (Piguet et al.,
2017) as evidenced by their increase in ‘impulsive, rash or
careless actions’ (Rascovsky et al., 2011). Patients with bvFTD
also show disruption in emotional processing (Lavenu et al.,
1999; Keane et al., 2002; Fernandez-Duque and Black, 2005;
Kipps et al., 2009; Kumfor et al., 2013a, 2014a). Atrophy is
typically reported in emotion-specific brain regions namely
in vmPFC and insula (Seeley et al., 2008), which extends into
subcortical regions with disease progression (Landin-Romero
et al., 2017). Given their behavioral deficits—decision-making
and emotion processing—and atrophy of the vmPFC, we would
anticipate a correlation between reduced grey matter intensity
in the vmPFC and increased delay discouting, regardless
of emotion.

The predominant clinical feature of Alzheimer’s disease in
contrast is an impairment in episodic memory (McKhann et al.,
2011), mainly attributed to atrophy of structures of the medio-
temporal limbic system such as hippocampus and amygdala
(Scheltens et al., 1992; McKhann et al., 2011; Poulin et al., 2011) and
progressing to parietal, posterior cingulate and frontal cortices
with disease (Nestor et al., 2003; Dickerson et al., 2009; Land-
in-Romero et al., 2017). Early in the disease process, interpersonal
behavior and emotion processing are relatively preserved in AD,
although some facets of emotion processing and behavior are
impaired (Cummings, 1997; Hoefer et al., 2008) and worsen with
disease progression (Bidzan et al., 2012; Kumfor et al., 2014b;
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Bertoux et al., 2015a). AD patients, although overall capable of
recognizing emotions, can be severely impaired in retrieving
emotions relevant to autobiographical memories for example
(Irish et al., 2011; Kumfor et al., 2013a). While emotion pro-
cessing deficit is considered a core feature of bvFTD (Rascov-
sky et al., 2011), emotion processing—to some extent—remains
comparatively preserved in AD (Lavenu et al., 1999). Despite
relatively preserved decision-making and emotion processing
compared to bvFTD, we would anticipate emotion to interact
with delay discounting performance in AD. We would also expect
reduced amygdalar grey matter integrity to increase delay dis-
counting and weaken the interactions between emotions and
decision-making.

Few studies have investigated delay discounting in bvFTD
and AD. Increased delay discounting has been reported in bvFTD
compared to AD (Lebreton et al., 2013; Bertoux et al., 2015b) and
in healthy controls (Beagle et al., 2020), while Chiong et al. (2016)
reported similar performance between bvFTD, AD and controls.
AD patients show a trend for increased delay discounting com-
pared to healthy controls (Lebreton et al., 2013; Bertoux et al.,
2015b; Beagle et al., 2020). Brain-behavior associations with delay
discounting performance in bvFTD and AD are less clear as
most studies only included behavioral data (Bertoux et al., 2015b),
only reported patterns of brain atrophy (Lebreton et al., 2013) or
investigated brain-behavior correlations across etiologies (Lans-
dall et al., 2017; Beagle et al., 2020). The only study investigating
brain-behavior correlations in bvFTD and AD (Chiong et al., 2016)
failed to find significant correlations between brain atrophy and
delay discounting probably because of the lack of between-group
behavioral differences. Only one study investigated or reported
brain-behavior correlations in bvFTD and AD in decision-making
tasks other than the delay discounting task (Kloeters et al., 2013).
Using the Iowa Gambling Task, this study found that decision-
making deficits were attributed to frontal atrophy in bvFTD and
to temporal/parietal atrophy in AD.

To identify the influence of emotion on delay discounting, we
presented individuals diagnosed with bvFTD or AD, and healthy
controls, emotional or neutral pictures before each choice on a
delay discounting task. Given their divergent patterns of brain
atrophy and clinical features, we predicted that bvFTD would
exhibit greater impulsivity overall compared with the other two
groups, and that AD would be more impulsive than controls. In
addition, we hypothesized that due to their deficits in emotion
processing, bvFTD would not show any emotion-induced modu-
lation of delay discounting. In contrast, we expected AD to show
a similar emotion-induced modulation of delay discounting than
controls, namely increased delay discounting, that is impulsiv-
ity, for negative emotions and decreased delay discounting for
positive emotions. At the anatomical level, we expected the
decision-making deficits to relate to distinct neural structures
(Kloeters et al., 2013). Based on lesion studies (Sellitto et al., 2011;
Peters and D’Esposito, 2016), we predicted that increased delay
discounting in the bvFTD group would correlate with decreased
grey matter intensity in the vmPFC, regardless of emotional
valence. In the AD group, given the limited vmPFC atrophy,
we anticipated that atrophy of the amygdala and other limbic
structures would be related to increased delay discounting as
demonstrated in animal studies (Winstanley et al., 2004; Floresco
and Ghods-Sharifi, 2007; Ghods-Sharifi et al., 2009). In addition,
because of its central role in processing negative emotion, we
also hypothesized that reduced grey matter intensity in the
amygdala in AD would counteract the expected increased delay
discounting in the negative condition.

Methods
Participants
Twenty-two patients diagnosed with bvFTD, 15 patients with
AD and 15 education- and age-matched healthy controls were
recruited from FRONTIER, the frontotemporal dementia research
clinic in Sydney, Australia. Calculation of sample size was based
on an a priori power analysis using G∗Power (Faul et al., 2007). For
an alpha level of 0.05, an anticipated effect size of 0.06 (medium)
and a power of 0.80, the estimated total sample is 36 participants
(12 in each group). All patients underwent a comprehensive
neurological examination, a neuropsychological assessment,
and a structural brain MRI. Diagnosis was established according
to relevant clinical diagnostic criteria at the time of testing
for probable or possible bvFTD (Rascovsky et al., 2011) and AD
(McKhann et al., 2011). Diagnosis was established by multidisci-
plinary agreement based on cognitive, clinical and imaging data.
Exclusion criteria for patients and controls included: presence
of a primary psychiatric disorder, presence of other dementia or
neurological disorders, and/or history of alcohol or substance
abuse. All healthy controls underwent the comprehensive
neuropsychological assessment and the brain MRI and were
required to score >88/100 on the ACE-III to ensure they did not
have any significant cognitive impairments. All participants
or their Person Responsible provided informed consent in
accordance with the Declaration of Helsinki. The South Eastern
Sydney Local Health District and the University of New South
Wales ethics committees approved the study.

Neuropsychological assessment

The ACE-III was used to assess general cognition (Hsieh et al.,
2013; So et al., 2018). Disease severity was assessed with the
Frontotemporal Lobar Degeneration-Modified Clinical Dementia
Rating Scale Sums of Boxes (CDR-FTLD SoB) (Knopman et al.,
2008), and disease duration was measured in years from the first
onset of symptoms.

Delay discounting task

The ability to delay gratification was assessed with the Mon-
etary Choice Questionnaire (MCQ, Kirby et al., 1999). The MCQ
comprises 27 dichotomous choices asking participants to choose
between a smaller, immediate monetary reward or a larger,
delayed monetary reward (e.g. ‘Would you prefer $15 today or
$35 in 13 days?’). Estimates of delay discounting were calculated
for all reward magnitudes as well as for each different reward
magnitude, categorized as low- ($25–35), medium- ($50–60) and
high-magnitude ($75–85) trials. Indifference points were calcu-
lated with the classically used hyperbolic discounting equation:
V=A/(1+kD) (Mazur, 1987) where V represents the present value
of the delayed reward A at delay D, and k is a free parameter
that determines the discount rate. Larger values for k indicate a
preference for smaller immediate reward. Because of skewness,
k values were log-transformed (logk) (Gray et al., 2016). Although
the monetary rewards were hypothetical, real and hypothetical
rewards lead to similar patterns of discounting (Johnson and
Bickel, 2002; Madden et al., 2003). Prior to each choice, an emo-
tional picture (Positive, POS; Negative, NEG; or Neutral, NEU)
was presented for 5 seconds and participants were instructed
to vividly imagine that they were witnessing the event/content
depicted in it (Figure 1).

To control that they understood the task correctly, partic-
ipants completed a training session consisting of three trials,
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Fig. 1. Experimental design. The delay discounting task consisted of three blocks containing either positive (POS), negative (NEG) or neutral (NEU) pictures and presented

in randomized order. Participants were first instructed to vividly imagine witnessing the picture and then asked to make a choice on the delay discounting task.

during which they were asked on one random trial to indicate
(i) which choice would pay sooner and (ii) which choice would
pay greater. Only participants completing the training session
and answering correctly the control questions were retained for
the analyses.

Participants completed three blocks (POS, NEG or NEU) of the
delay discounting task in a randomized order. Each trial began
with a fixation cross presented on a 21.5 inch monitor for 500
ms, a picture displayed for 5000 ms and a screen containing
both choices displayed until participants responded. An inter-
stimulus interval (ISI) of 1000–2000 ms preceded the following
trial. Participants indicated their choices by pressing the left or
right arrow of a keyboard, according to the choice displayed on
the left or the right of the screen. Each block lasted approxi-
mately 5 min. The three blocks were separated by a 5-minute
break during which participants completed various question-
naires. Stimulus delivery and subjects’ responses for both tasks
were controlled using E-prime 2.0 software (Psychology Software
Tools, Pennsylvania, USA).

The pictures were realistic, high-quality photographs chosen
from the Nencki Affective Picture System (NAPS, Marchewka
et al., 2014). Pictures were selected on the basis of their original
valence rating (1 = very negative, 5 = neutral, 9 = very positive)
and ultimately designated as (mean ± standard deviation) pos-
itive (7.9 ± 0.2), negative (2.5 ± 0.3) or neutral (5.1 ± 0.2; F(2,80) =
2628.93, P < 0.01). Arousal ratings also differed between positive
(4.1 ± 0.1), negative (6.7 ± 0.5) and neutral pictures (4.8 ± 0.4; F(2,80)

= 105.97, P < 0.01). Stimuli were matched with respect to their
luminance (F(2,80) = 0.63, P = 0.53), contrast (F(2,80) = 2.01, P = 0.14)
and entropy (F(2,80) = 2.02, P = 0.14).

Questionnaires

Between each delay discounting block, participants completed
the present and future sections of the Zimbardo Time Perspec-
tive Inventory, which comprises 37 items ranging from 1 (very
untrue) to 5 (very true) and grouped into present-hedonistic,

present-fatalistic and future dimensions (Zimbardo and Boyd,
2015).

At the end of the experimental session, participants rated
valence and arousal for a subset of pictures (n = 15) of each
emotion category using the Self-Assessment Manikin (Lang et al.,
1997) and a scale from 1 to 9 (valence: 1 = very negative to 9 =
very positive; arousal: 1 = relaxed to 9 = aroused). The picture
remained on the screen until the response was recorded.

Statistical analyses

Data were analysed using IBM SPSS Statistics, 24.0 (SPSS Inc.,
Chicago, Ill., USA). Normally distributed variables, as determined
with Shapiro–Wilks tests, were compared across groups using
mixed or one-way ANOVAs followed by Sidak post hoc tests. Vari-
ables not normally distributed across our sample were analysed
by Kruskal–Wallis ANOVA followed by Mann–Whitney U tests.
Categorical measures (e.g. sex) were analysed by Chi-square
tests. Effect sizes are reported using the partial eta-square (η2).

We investigated delay discounting (logk) with a 3 × 3 mixed
ANOVA with within factor of Emotion (POS, NEG or NEU) and
between factor of Group (bvFTD, AD and CTRL). Significant inter-
actions were followed by simple effects at each combination of
levels of the other factors and followed by Sidak post hoc tests.
Additionnally, we investigated effects of Emotion for each reward
magnitude separately using the same statistical analysis.

Correlations between the significant delay discounting con-
ditions (Pos, Neg and Neu) in bvFTD and AD and respective
valence/arousal ratings (Pos, Neg and Neu) were analysed using
Spearman rank coefficient. Only correlations surviving Bonfer-
roni correction for multiple comparisons were kept.

Neuroimaging analyses

MRI acquisition. Participants underwent whole-brain structural
MRI on a GE Discovery MR750 3T scanner equipped with an
8-channel head coil. High resolution 3D BRAVO T1-weighted
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images were acquired using the following parameters: imaging
matrix of 256 × 256 × 200, 1 mm isotropic voxel resolution, echo
time = 2.5 ms, repetition time = 6.7 ms, inversion time = 900 ms,
flip angle = 8◦.

Data pre-processing. Voxel-based morphometry (VBM) was con-
ducted using SPM12 (Welcome Department of Cognitive Neurol-
ogy, London, UK), in Matlab R2018a (Mathworks, Natick, Mas-
sachusetts, USA). First, T1-weighted images were segmented
into six tissue probability maps in the native space. Both the
original T1-weighted and the segmented maps were screened
during an image quality control. Two participants (1 bvFTD and
1 AD) were removed for the subsequent pre-processing steps
and statistical analyses due to motion during the acquisition or
segmentation failure. A DARTEL template was computed using
all the grey and white matter probability maps which satisfied
our criteria for quality control. Last, grey matter probability maps
were spatially normalized to the Montreal National Institute
(MNI) space according to the transformation parameters from
the corresponding DARTEL template. Images were modulated
and smoothed with a Gaussian filter of full width at half maxi-
mum of 8 mm.

VBM analyses. Patterns of grey matter intensity decrease were
explored using a whole-brain general linear model comprising
bvFTD, AD and CTRL groups as well as age and total intracranial
volume (to account for individual differences in head size) as
regressors of non-interest. The total intracranial volume was
assessed in the patient’s space prior to spatial normalization
by summing thresholded grey matter, white matter and corti-
cospinal fluid probability maps (threshold = 0.2) and counting
non-zero voxels. Differences in grey matter intensities between
groups (bvFTD vs control; AD vs control) were assessed using
t-tests.

Next, correlations between delay discounting and grey mat-
ter intensity were investigated. Scores for each delay discount-
ing condition (POS, NEG or NEU) were entered simultaneously
into the design matrix. Age and total intracranial volume were
included as regressors of non-interest. Correlations were first
investigated between delay discounting and grey matter inten-
sity combining all participants (bvFTD, AD and CTRL). Then,
the same analyses described above were conducted to investi-
gate correlations in each patient group combined with controls
in order to identify the neural correlates of delay discounting
distinct to each patient group. Inclusion of controls has been
shown to increase statistical power to detect brain–behavior
relationships across the entire brain (e.g. Kumfor et al., 2013b).

Voxel-wise statistical analyses are reported using a cluster
size of at least 50 voxels, at statistical threshold of P < 0.001,
uncorrected for multiple comparison. This approach minimizes
Type I error while balancing the risk of Type II error (Lieberman
and Cunningham, 2009). Significant results were overlaid on
the Montreal Neurological Institute (MNI) standard brain using
MRIcron (https://www.nitrc.org/projects/mricron).

Results
Demographic and neuropsychological profiles

Twenty-two individuals diagnosed with bvFTD, 15 with
Alzheimer’s disease and 15 older healthy controls were recruited
for this study. Seven participants (4 bvFTD and 3 AD), however,
failed the delay discounting task training session, and their data
were therefore removed from the analyses. As such, the final

samples included 18 bvFTD, 12 AD and 15 CTRL participants. As
reported in Table 1, groups were well matched on age (P = 0.636).
Although groups are statistically matched on sex (P = 0.080)
and education level (P = 0.066), the bvFTD group is marginally
composed of more men of lower education than the control
or AD groups. Patient groups did not differ on disease duration
(P = 0.261) or disease severity (CDR-FTLD Sob, P = 0.989) either. AD
patients were however significantly more impaired on general
cognition than bvFTD (ACE-III, P < 0.001). Both patient groups had
significantly greater disease severity (P < 0.001) and impaired
general cognition (P < 0.001) than controls. Excluded participants
tended to be more impaired on the ACE-III than their respective
samples (bvFTD included: 82.0 ± 9.9, bvFTD excluded: 73.2 ±
14.6, P = 0.15; AD included: 65.9 ± 12.6, AD excluded: 53.6 ± 6.8,
P = 0.06).

Delay discounting results

Performance on the delay discounting task is illustrated
in Figure 2A (and Supplementary Figure 2, which displays
individual delay discounting rate for each condition). The
ANOVA on delay discounting rate (logk) revealed a significant
main effect of Emotion (F(2,84) = 6.316, P = 0.003, ηp

2 = 0.131),
Group (F(2,42) = 7.504, P = 0.002, ηp

2 = 0.263) and an Emotion x
Group interaction (F(4,84) = 3.669, P = 0.008, ηp

2 = 0.149). Simple
effects tests for each level of factor Group showed a main effect
of Emotion for AD (F(2,22) = 5.717, P = 0.010, ηp

2 = 0.342) but not for
bvFTD (F(2,34) = 0.306, P = 0.739, ηp

2 = 0.018) or CTRL (F(2,28) = 2.116,
P = 0.139, ηp

2 = 0.131). AD showed increased delay discounting
(i.e. impulsivity) in the NEG compared to POS (P = 0.003) and NEU
conditions (P = 0.036). Simple effects tests for each level of factor
Emotion showed main effects of Group for all 3 emotions (all
P < 0.01). Patients with bvFTD patients were significantly more
impulsive than CTRL on all emotion conditions (all P < 0.002)
and significantly more impulsive than AD on POS (P = 0.007) and
NEU conditions (P = 0.033). AD patients were significantly more
impulsive than CTRL on the NEG condition only (P = 0.024).

Figure 2B displays delay discounting rates for each reward
magnitude. For low-magnitude rewards, significant main effects
of Emotion (F(2,84) = 3.389, P = 0.038, ηp

2 = 0.075) and Group (F(2,42) =
5.133, P = 0.010, ηp

2 = 0.196) were present but no Emotion x Group
interaction (F(4,84) = 1.358, P = 0.256, ηp

2 = 0.061). In other words,
participants were more impulsive in the NEG than POS (P = 0.011)
or NEU (P = 0.030) conditions and the bvFTD group was more
impulsive than the CTRL group (P = 0.003). Focused analyses on
the control group showed that the CTRL were more impulsive in
the NEG compared to POS condition (P = 0.010).

For medium-magnitude rewards, a significant main effect of
Group was observed (F(2,42) = 8.359, P = 0.001, ηp

2 = 0.285) but not of
Emotion (F(2,84) = 2.232, P = 0.114, ηp

2 = 0.050) or Emotion x Reward
interaction (F(4,84) = 2.118, P = 0.086, ηp

2 = 0.092). The bvFTD group
was more impulsive than AD (p = 0.022) and CTRL (P < 0.001).

For high-magnitude rewards, significant main effects of Emo-
tion (F(2,84) = 5.142, P = 0.008, ηp

2 = 0.109), Group (F(2,42) = 7.061,
P = 0.002, ηp

2 = 0.252), as well as an Emotion x Group interaction
(F(4,84) = 3.694, P = 0.008, ηp

2 = 0.150) were present. AD patients
were more impulsive in the NEG compared to POS (P < 0.001) and
NEU (P = 0.014) conditions. The bvFTD group was more impul-
sive than CTRL in all conditions (P < 0.05) and than AD in POS
(P = 0.036) and NEU (P = 0.031) conditions.

Regarding difference between reward magnitudes, main
effects were present in the CTRL (F(2,28) = 6.228, P = 0.006, ηp

2

= 0.308) but not in bvFTD (F(2,34) = 1.589, P = 0.219, ηp
2 = 0.085) or

AD groups (F(2,22) = 0.332, P = 0.721, ηp
2 = 0.029). CTRL were more

https://www.nitrc.org/projects/mricron
https://academic.oup.com/scan/article-lookup/doi/10.1093/scan/nsaa085#supplementary-data
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Table 1. Demographic and clinical information

bvFTD (n = 18) AD (n = 12) CTRL (n = 15) P Post hoc

Sex (M:F) 13:5 7:5 5:10 0.080∗
Age 63.4 ± 9.8 65.5 ± 7.3 65.7 ± 4.7 0.636
Education (yrs) 11.7 ± 3.0 13.6 ± 3.6 13.9 ± 2.7 0.066#

Disease duration (yrs) 8.3 ± 5.9 5.1 ± 3.1 − 0.261†

ACE-III (/100) 82.0 ± 9.9 65.9 ± 12.6 94.8 ± 3.0 < 0.001 Patients < Controls;
AD < bvFTD

CDR-FTLD Sob 5.3 ± 4.6 5.0 ± 3.5 0.2 ± 0.2 < 0.001 Patients < Controls

Demographic and clinical information for behavioral-variant frontotemporal dementia (bvFTD), Alzheimer’s disease (AD) and controls (CTRL). Values are mean ±
standard deviation. ∗χ2 test, †Mann–Whitney, #Kruskal–Wallis test. ACE-III = Addenbrooke’s Cognitive Examination—Third edition; CDR-FTLD SoB = Frontotemporal
Lobar Degeneration-Modified Clinical Dementia Rating Scale Sums of Boxes (CDR-FTLD SoB). Missing Scores: Education (2 AD); Disease duration (4 AD); ACE-III (1 AD),
CDR-FTLD SoB (1 AD, 3 CTRL).

Figure 2. Behavioral results and correlations. A. Average delay discounting rates (k, log transformed) for each Emotion condition (Positive, Negative and Neutral) and

Group (behavioral-variant frontotemporal dementia, bvFTD; Alzheimer’s disease, AD; controls, CTRL). B. Delay-discounting rate for low-, medium- and high-magnitude

rewards. C, D. Judgement of valence and arousal for each Emotion condition and Group. E. Correlation between delay discounting in the Positive condition and positive

valence ratings in the AD group. Graph lines and bars show means and standard error of the mean. ∗ indicates significant post hoc differences (P < 0.05, Sidak corrected

for multiple comparisons) for bvFTD < AD, CTRL (∗1) and bvFTD = AD < CTRL (∗2). Colored ∗ indicates effects of Emotion in each Group.

impulsive on low-magnitude trials than medium- (P = 0.011) or
high-magnitude trials (P = 0.016).

Questionnaires

Regarding valence ratings, a significant main effect of Emotion
(F(2,84) = 419.367, P < 0.001, ηp

2 = 0.909) was observed but not of

Group (F(2,42) = 0.598, P = 0.555, ηp
2 = 0.028) or an Emotion x Group

interaction (F(4,84) = 1.324, P = 0.268, ηp
2 = 0.059). Valence ratings

differed significantly between positive, negative and neutral
pictures for all groups (P < 0.001; Figure 2C and D).

Regarding arousal ratings, significant main effects of Emotion
(F(2,84) = 26.278, P < 0.001, ηp

2 = 0.385) and Group (F(2,42) = 3.892,
P = 0.028, ηp

2 = 0.156) were observed but no interaction (F(4,84)
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Fig. 3. VBM analyses showing regions negatively correlated with delay discounting in the Negative condition irrespective of diagnosis. No clusters survived in the

Positive or Neutral conditions (P < 0.001 uncorrected for multiple comparisons). Age and total intracranial volume included as a covariate in all VBM analyses. Clusters

are overlaid on the standard MNI brain. The left side of the image is the left side of the brain.

= 1.753, P = 0.146, ηp
2 = 0.077). Negative pictures were judged

as more arousing compared to positive and neutral pictures
(all P < 0.001) and patients with bvFTD judged pictures as less
arousing/more relaxing than CTRL (P = 0.028).

On the Zimbardo Time Perspective Inventory, no significant
between-group differences were found (all P values > 0.192)
(Present hedonistic: bvFTD = 3.4 ± 0.3, AD = 3.2 ± 0.6, CTRL = 3.5
± 0.3; Present fatalistic: bvFTD = 2.7 ± 0.7, AD = 2.9 ± 0.5, CTRL =
2.4 ± 0.5; Future: bvFTD = 3.4 ± 0.4, AD = 3.7 ± 0.2, CTRL = 3.5 ±
0.4).

Correlations

Correlations between delay discounting and judgement of
valence and arousal were apparent only in AD, where decreased
delay discounting in the positive condition correlated with
increased judgement of positive valence (r(10) = −0.802, P = 0.002;
Figure 2E).

Neuroimaging results

Patterns of atrophy. Patterns of atrophy in the clinical groups
were typical of these diseases (Nestor et al., 2003; Seeley et al.,
2008; Landin-Romero et al., 2017) (Supplementary Figure 1;
Supplementary Table 1). Compared with CTRL, bvFTD showed
decreased grey matter intensity in the medial prefrontal cortex,
frontal and temporal gyri, ACC, as well as subcortical regions
including the hippocampus and striatum. In contrast, AD
showed a significant bilateral decrease of grey matter intensity
in the medial temporal lobe, including the hippocampus and
amygdala, as well as in the precuneus and the insula.

Neural correlates of delay discounting. Correlations between POS,
NEG and NEU delay discounting and grey matter intensity
revealed that, irrespective of diagnosis, increased delay dis-
counting in the NEG condition was associated with reduced
grey matter integrity in the amygdala (P < 0.001, cluster FWE-
corrected) and occipital gyrus bilaterally (P < 0.001, uncorrected;
Figure 3; Table 2). In contrast, no specific patterns of association
emerged for the positive and neutral conditions.

Further analyses on each patient group combined with con-
trols showed distinct patterns of grey matter intensity in bvFTD

and AD correlating with POS, NEG or NEU delay discounting
(Figure 4; Table 3). Increased delay discounting in the NEG con-
dition in AD was associated with reduced grey matter intensity
in bilateral amygdala, vmPFC, ACC and hippocampus. No such
associations were observed in the bvFTD group. Marginal frontal
and temporal areas were associated with positive and neutral
delay discounting, respectively, in AD and bvFTD.

Discussion
This study revealed different patterns of modulation of emotion
on decision-making in the two most common younger-onset
dementia syndromes, AD and bvFTD, which were associated
with specific neural changes. Supporting our hypotheses, bvFTD
patients showed greater delay discounting compared to AD and
controls, but no modulation according to emotion. In contrast,
AD patients showed increased delay discounting in the negative
condition, which was associated with greater bilateral amygdala
atrophy. No specific pattern of brain atrophy was observed in
bvFTD.

The increased impulsivity observed in bvFTD aligns with pre-
vious studies reporting impulsive decision-making in this pop-
ulation (Strenziok et al., 2011; Gleichgerrcht et al., 2012; Bertoux
et al., 2013, 2015b; Kloeters et al., 2013; Lebreton et al., 2013; Lans-
dall et al., 2017; Beagle et al., 2020). One recent report, however,
failed to show any deficits on the delay discounting task in
bvFTD compared with AD and controls (Chiong et al., 2016). The
authors argued that this was due to the very early disease stage
of their patients. Our findings challenge this interpretation as we
find evidence of decision-making deficits on the delay discount-
ing task in patients with a similar disease severity (mean MMSE
= 26, converted from ACE-III score, Matias-Guiu et al., 2018).

As anticipated, compared to AD, bvFTD patients failed to
show the negative emotion-induced modulation of delay dis-
counting, a finding compatible with a primary deficit in emo-
tion processing in bvFTD. Patients with bvFTD indeed show
deficits in recognizing negative emotions (Lough et al., 2006;
Goodkind et al., 2015) and emotional expression in faces and
voices (Keane et al., 2002; Lavenu and Pasquier, 2005) and emo-
tional blunting (Mendez et al., 2006). Grossmann et al. (2010)
showed that bvFTD patients were also less sensitive to negative

https://academic.oup.com/scan/article-lookup/doi/10.1093/scan/nsaa085#supplementary-data
https://academic.oup.com/scan/article-lookup/doi/10.1093/scan/nsaa085#supplementary-data
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Table 2. Clusters associated with greater delay discounting in the Positive, Negative and Neutral conditions across all three groups (bvFTD, AD
and CTRL).

Regions Laterality MNI Voxels

x y z

Delay discounting: positive condition
No significant cluster identified
Delayed discounting: negative condition
Parahippocampal gyrus, amygdala and hippocampus L −31 −3 −17 3495
Parahippocampal gyrus, amygdala and hippocampus R 31 −2 −17 2639
Middle occipital gyrus R 38 −80 16 833
Middle occipital gyrus L −23 −93 21 462
Superior occipital cortex R 21 −94 23 448
Precuneus R 40 −78 38 276
Middle frontal gyrus L −28 40 40 198
Superior temporal lobe L −63 −9 3 191
Inferior frontal gyrus R 51 20 20 141
Insula L −41 −7 −6 117
Delayed discounting: neutral condition
No significant cluster identified

Fig. 4. VBM analyses showing regions negatively correlated with delay discounting in AD and bvFTD in the Positive, Negative and Neutral conditions (P < 0.001

uncorrected for multiple comparisons). Age and total intracranial volume included as a covariate in all VBM analyses. Clusters are overlaid on the standard MNI

brain. The left side of the image is the left side of the brain.

contextual features when making social decisions: negatively
biased scenarios were judged as less negative than controls in
bvFTD, whereas positively biased scenarios were rated equally
in bvFTD and controls. Alternatively, these findings could be
due a failure in decoding the physiological arousal signals in

response to negative emotional stimuli. Indeed, previous studies
have reported reduced physiological responses (e.g. skin con-
ductance) in response to emotional videos (Kumfor et al., 2019),
unpleasant odours (Perry et al., 2017) or pain (Fletcher et al., 2015).
bvFTD indeed judged pictures as less arousing than AD and
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Table 3. Clusters associated with greater delay discounting in the Positive, Negative and Neutral conditions for AD and bvFTD groups separately.

Regions Laterality MNI Voxels

x y z

AD
Positive delay discounting
Inferior frontal gyrus L −53 4 23 382
Negative delay discounting
Orbitofrontal frontal cortex L/R −35 37 −6 7861
ACC L −6 51 6 2035
Parahippocampal gyrus and hippocampus L −28 −24 −32 1809
Parahippocampal gyrus and hippocampus R 25 −22 −29 1443
Amygdala L −24 −14 −7 1225
Middle and superior frontal gyrus R 26 21 53 1074
Middle frontal gyrus R 27 55 23 942
Inferior, middle and superior occipital gyrus L −20 −93 21 746
Supramarginal gyrus L −44 −39 32 803
Superior occipital cortex R 21 −95 23 657
Inferior frontal gyrus L −40 17 16 463
Middle and superior frontal gyrus L −14 3 58 396
Inferior frontal gyrus R 47 13 25 379
Amygdala R 31 −1 −20 326
Inferior temporal gyrus R 48 −18 −39 261
Neutral delay discounting
Superior temporal gyrus L −66 −47 17 75
bvFTD
Positive delay discounting
Superior temporal gyrus R 62 −6 8 135
Inferior frontal gyrus L −48 29 −13 87
Negative delay discounting
Lingual gyrus L −9 −64 −4 247
Inferior parietal lobule L −61 −41 43 148
Supramarginal gyrus L −59 −55 36 103
Neutral delay discounting
Rolandic operculum R 15 −70 −5 186

controls, whereas valence ratings were similar across groups.
This indicates that the emotional impairment in bvFTD results
from a reduced arousal triggered by the pictures rather than
a primary deficit in recognizing their emotional content. The
specificity of the effect to the negative condition in AD could
follow from an effect of arousal on delay discounting rather than
an effect of negative emotion per se. Studies have indeed shown
that arousing pictures, regardless of emotion, increased delay
discounting compared to neutral pictures (Ariely and Loewen-
stein, 2006; Sohn et al., 2015). Future studies using objectives
measures of arousal (e.g. skin conductance) are needed to clarify
this point.

Across groups, increased delay discounting for the negative
(but not the positive or neutral) condition was associated with
reduced grey matter intregrity in bilateral amygdala and occip-
ital gyri. Group-specific analyses indicated that this association
was mediated primarily by the AD group which showed reduced
grey matter integrity in bilateral amygdala, vmPFC and parahip-
pocampal gyri that correlated with increased delay discount-
ing in the negative condition. These findings indicate that the
amygdala is involved in delay discounting, especially within an
emotionally negative context. Our findings demonstrate for the
first time in humans that amygdala damage increases delay
discounting, mirroring animal studies where excitotoxic lesions
of the BLA increased delay discounting (Winstanley et al., 2004;
Floresco and Ghods-Sharifi, 2007; Ghods-Sharifi et al., 2009).
Impact of amygdalar damage on various decision-making tasks

has been reported before (Bechara et al., 1999; Bar-On et al.,
2003; Hanten et al., 2006; Brand et al., 2007; Weller et al., 2007;
De Martino et al., 2010), but never on delay discounting to date.

The direction of the correlation between amygdala integrity
and delay discounting was not anticipated given the known role
of the amygdala in processing negative emotion. This finding
adds to the structural neuroimaging controversy in the field
of delay discounting as to whether delay discounting is corre-
lated with increased or decreased grey matter intensity (Cho
et al., 2013; Tschernegg et al., 2015; Pehlivanova et al., 2018).
Importantly, although central to negative emotion processing,
the amygdala is not the only brain region supporting negative
emotion processing. Indeed, lesion studies have shown that
the amygdala is necessary but not sufficient to process nega-
tive emotions as, apart from fear, amygdala damage does not
preclude from triggering and feeling other negative emotions
(Anderson and Phelps, 2002; Feinstein et al., 2011). One candidate
region is the vmPFC, which regulates emotion through top-down
inhibition of the amygdala (Andrewes and Jenkins, 2019). Defi-
cient inhibitory control of the vmPFC on the amygdala has been
shown to lead to hyper-emotional reactivity and pathologically
elevated levels of negative affect (Quirk and Gehlert, 2003; Milad
et al., 2006; Rauch et al., 2006; Motzkin et al., 2015). In situations
where the affective/emotional signals are absent (i.e. delay dis-
counting with no emotional component or neutral emotion), the
amygdala would be less involved, possibly favoring the vmPFC
recruitment (Sellitto et al., 2011; Peters and D’Esposito, 2016). This
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interpretation is consistent with our lack of amygdala involve-
ment in the neutral delay discounting condition. Our study
suggests that the amygdala is involved in delay discounting
rather than purely in processing emotions, in line with animal
studies (Winstanley et al., 2004; Floresco and Ghods-Sharifi, 2007;
Ghods-Sharifi et al., 2009).

The association that we found between increased delay
discounting in the negative condition and reduced grey matter
intensity in the occipital cortex further demonstrates the
involvement of broad network during emotion processing and
delay discounting task. fMRI and lesion studies have shown that
emotional stimuli, particularly arousing, negative, stimuli recruit
not only the amygdala but also the visual cortices (Vuilleumier
et al., 2004; Sabatinelli et al., 2009; Motzkin et al., 2015). Similarly,
involvement of the occipital cortex on delay discounting tasks
has been attributed to visual attention (Luo et al., 2009) or
vividness of imagined event in episodic delay discounting tasks
(Hu et al., 2016) (Luo et al., 2009; Olson et al., 2009).

Some limitations should be acknowledged. Our sample of
bvFTD patients was heterogenous in terms of disease severity,
disease duration and atrophy pattern compared to AD, which
may have precluded other correlations with other brain regions
(e.g. vmPFC) to emerge in this group. It should be noted, however,
that the absence of correlation in the bvFTD group alone does not
indicate that both dementia groups statistically differed. Future
studies using larger and more homogeneous groups are needed
to resolve these concerns. Importantly, whereas the role of the
vmPFC in delay discounting has been clearly demonstrated from
lesion studies (Sellitto et al., 2011; Peters and D’Esposito, 2016)
and brain stimulation studies (Manuel et al., 2019), evidence
from bvFTD is less convincing (Chiong et al., 2016) even in
very impaired and homogeneous bvFTD samples. Nevertheless,
this limitation does not detract from our main message
demonstrating the role of the amygdala in emotional delay
discounting.

The absence of the predicted pattern of increased delay
discounting in the negative condition in healthy controls when
all reward magnitudes were grouped was unexpected. It is likely
that this lack of emotion-induced modulation of delay discount-
ing follows from overall reduced variability and impulsivity in
our healthy control group, which prevented emotion-related
modulations to clearly emerge. Emotion-induced modulation
of delay discounting may thus be apparent only under high
impulsivity conditions. Supporting this interpretation, our find-
ings show that older controls did exhibit the negative emotion-
induced increase in delay discounting but only under the
condition of highest impulsivity (i.e. low-magnitude trials).
Effects of emotion on delay discounting have been typically
reported in young healthy adults (Hirsh et al., 2010; Augustine
and Larsen, 2011; Benoit et al., 2011; Liu et al., 2013; Lin and
Epstein, 2014; Luo et al., 2014; Guan et al., 2015; Sohn et al., 2015;
Zhang et al., 2018). Findings on age-related differences on delay
discounting have been mixed. Several studies have reported
young individuals to be more impulsive on delay discounting
tasks compared to older adults (Green et al., 1999; Whelan and
McHugh, 2009; Jimura et al., 2011; Lockenhoff et al., 2011; Eppinger
et al., 2012). Other studies, however, have shown no age-related
differences (Samanez-Larkin et al., 2011; Roalf et al., 2012; Rieger
and Mata, 2015; Seaman et al., 2016) or even increased delay
discounting with age (Read and Read, 2004). In sum, although
reduced compared to what we could have expected in young
individuals, the control group did show emotion-induced modu-
lation of delay discounting. The bvFTD group in contrast showed
no emotion-induced modulation of delay discounting for any

reward magnitude, further supporting their deficit in emotion
processing.

Altogether, this study demonstrates the close connections
between emotion processing and decision-making and the
conditions under which these vary, in this instance dementia.
Our findings have relevance for policymakers when developing
health warning messages that aim to dissuade risky behaviors
(Nan and Qin, 2019) or for improving negative health behaviors
associated with increased delay discounting in clinical popula-
tions. A recent study showed promising findings demonstrating
that computerized working memory training decreases the
rate of delay discounting in older controls (Felton et al., 2019).
Improvements in emotion recognition have been reported after
computerized emotion recognition training in schizophrenia
(Russell et al., 2006) and Huntington’s disease (Kempnich et al.,
2017) suggesting an avenue for emotion recognition training as a
mean of reducing impulsivity. These clinical interventions based
on costs/benefits and emotion detection are however more likely
to work in AD than in bvFTD.
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Supplementary Material is available at SCAN online.
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