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Abstract

Background: Computational and visual data analysis for genomics has traditionally involved a combination of
tools and resources, of which the most ubiquitous consist of genome browsers, focused mainly on integrative
visualization of large numbers of big datasets, and computational environments, focused on data modeling of a
small number of moderately sized datasets. Workflows that involve the integration and exploration of multiple
heterogeneous data sources, small and large, public and user specific have been poorly addressed by these tools.
In our previous work, we introduced Epiviz, which bridges the gap between the two types of tools, simplifying
these workflows.

Results: In this paper we expand on the design decisions behind Epiviz, and introduce a series of new advanced
features that further support the type of interactive exploratory workflow we have targeted. We discuss three ways
in which Epiviz advances the field of genomic data analysis: 1) it brings code to interactive visualizations at various
different levels; 2) takes the first steps in the direction of collaborative data analysis by incorporating user plugins
from source control providers, as well as by allowing analysis states to be shared among the scientific community;
3) combines established analysis features that have never before been available simultaneously in a genome
browser. In our discussion section, we present security implications of the current design, as well as a series of
limitations and future research steps.

Conclusions: Since many of the design choices of Epiviz are novel in genomics data analysis, this paper serves
both as a document of our own approaches with lessons learned, as well as a start point for future efforts in the
same direction for the genomics community.

Background
We provide an insight into the design choices of Epiviz
[1], a tool for interactive visual and computational ana-
lysis of genomic data. We include design choices behind
the tool and introduce new features that greatly broaden
our support for interactive analysis workflows of geno-
mic data over our previously published general overview
of its architecture and design. We present a use case of
epigenomic data analysis that makes use of the improve-
ments of Epiviz based on these new extensions and
features.

Motivation
The design of Epiviz responds to the need of integrating
computational and visual interactive and exploratory ana-
lysis for genomics data. Existing tools usually treat these
steps: 1) computational and statistical analysis, and 2)
interactive integrative visualization, as distinct (Sup.
Table 1 in Additional file 1), while they are more effective
when used iteratively.
Consider the case of finding differentially methylated

regions (DMRs) associated with cancer. Statistical infer-
ences from smoothing methods built on base-pair level
measurements of DNA methylation (DNAm) [2,3] are
used to carry out this task. In a general sense, these
methods use a statistical model of expected methylation
mljk at genomic locus l for replicate j belonging to class

* Correspondence: florin.chelaru@gmail.com; hcorrada@umiacs.umd.edu
1Center for Bioinformatics and Computational Biology, University of
Maryland, College Park, MD, USA
Full list of author information is available at the end of the article

Chelaru and Corrada Bravo BMC Bioinformatics 2015, 16(Suppl 11):S4
http://www.biomedcentral.com/1471-2105/16/S11/S4

© 2015 Chelaru and Bravo This is an Open Access article distributed under the terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided
the original work is properly cited. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/
publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

mailto:florin.chelaru@gmail.com
mailto:hcorrada@umiacs.umd.edu
http://creativecommons.org/licenses/by/4.0
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/


k (say, normal or tumor): mljk = f (l) + gk(l) + eljk where
f (l) is a smooth function over genomic loci and gk(l)
is another smooth function that measures deviation in
methylation for class k, so that contiguous regions
where |gk (l) | is large enough are considered differen-
tially methylated and a level of significance can be deter-
mined by parametric or non-parametric statistical
methods. This stipulates a chain of measurements and
estimates that lead to the final list of regions found: the
base-pair level DNAm measured for each sample,
the smooth functions used in the above model, and the
regions where methylation differences are determined to
be significantly different (Figure 1).
Note that these smooth functions are parameterized

by bandwidth to adjust their smoothness, which in turn
determines the size of DMRs found: e.g., large smooth-
ing windows leading to longer DMRs detected. For data
derived from Illumina HumanMethylation 450k beadar-
rays this methodology is implemented in the minfi [2]
Bioconductor package.
Once these regions are determined, they would be

exported, as BED file for example, and visualized on a
genome browser to integrate with other annotations (for
example, the location of CpG islands and genes), provid-
ing context and interpretation based on the relationship
between estimated DMRs and other genome annota-
tions. Unfortunately, at this point most information per-
tinent to the statistical analysis driving these inferences
is lost (for example, the choice of smoothing parameters
that determine the width of DMRs and therefore their
overlap with other genomic features). Furthermore,
interaction in the genome browser is not informed by
statistical properties of the inferred regions (for example,
navigating through regions in order of statistical
significance).
Current tools make it difficult to simultaneously per-

form statistically informed visualization by allowing
exploratory analysis of measurements and estimates
across this multi-stage statistical procedure and visuali-
zation informed statistical analysis where parameters of
this multi-stage procedure are explored based on inte-
grative visualization.
Figure 1 shows how the design of Epiviz is based on

supporting this type of workflow. Analysts can simulta-
neously visualize data across multiple stages of statistical
analyses (at CpG level, the smooth functions in statisti-
cal model, and inferred DMRs) directly from data,
through the Epivizr Bioconductor package. Changes in
parameters of this statistical pipeline would be reflected
immediately in the visualization. Analysts can also inte-
grate annotation data (gene and CpG island location
and expression data from the Gene Expression Barcode
[4] project for multiple tissues). This paper describes in

detail the design of our tool to support this type of
analysis workflow.
Some of the ways Epiviz advanced the field of geno-

mics interactive visual analysis include:
1. Introducing the first genomic data visualization

software that brings code to interactive visualization by
allowing computational environments such as R or
Python to use it as an interactive display device and by
allowing scripts stored externally (i.e. on source control
providers) to be dynamically integrated into the frame-
work. The Epivizr package is designed to integrate Epi-
viz with the state-of-the-art Bioconductor infrastructure
for genomics statistical analysis.
2. Introducing the concept of community-contributed

plugins for web applications through JavaScript dynamic
extension. Epiviz is the first web-based visualization tool
whose code base can be extended by actively incorporat-
ing third-party scripts. Combined with the workspaces
feature, which allows users to persistently save, replicate
and share analysis steps - including code customizations
done in the UI - this opens the door to social collabora-
tion within the genomic community, which has never
been done before.
3. Creating the first genome browser that makes use

of the following set of concepts and features simulta-
neously: brushing and linking, binning, supporting data
transformations in the UI, predictive caching based on
navigation, aggregating data from multiple sources -
both cloud-based and local - and persistently saving and
sharing data analysis steps as workspaces.

Contributions
In this paper, we present specific extensions and features
introduced posterior to the initial launch of our project
and consequent publication, as well as aspects of the
architecture that have not been described before.
1. Visualization code customization in the UI. Previous

versions of Epiviz allowed users to create custom visuali-
zations and data providers, as well as to override existing
settings by storing scripts on the cloud and referencing
them within the tool. A lot of data analysis workflows
however, require customizations that are so simple, that
creating a whole new visualization for them would be too
much overhead. For cases such as these, Epiviz provides
a window straight into the parts of the visualizations
code that matter for the user, who can customize this
code directly in the user interface, using a JavaScript
code editor dialog.
2. Data transformations directly in the UI. In Epiviz,

data transformations can be easily applied by coupling a
computational environment to the interactive visualiza-
tion environment. Also, new measurements can be cre-
ated as combinations of existing ones using the computed
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measurements feature. However, in our work we recog-
nize the need of being able to make such transformations
as close to the user interface as possible, in order to opti-
mize the data analysis workflow. For this reason, we
expanded our framework’s API to include a series of cus-
tomizable and extensible transformations over data
within visualizations. Measurement and feature sorting,
aggregation, as well as dynamic coloring are a few exam-
ples of transformations currently available within our
tool. Epiviz exposes a fully-featured JavaScript code dia-
log which scientists can use to define complex ways in
which these transformations can be applied.
3. The extension of user workspaces to include user-

defined code customizations. Reproducibility is an
essential aspect of genomics data analysis workflows,
which was one of the central concepts in the Epiviz
design from the beginning. To keep our framework in
tune with this concept, we extended the workspaces
feature to include code customizations, for both visua-
lizations as well as data transformations described
above.

4. Securing third-party code. The introduction of the
data and visualization code transformations described
earlier, as well as storing these user-scripts into the
database as part of workspaces poses security risks for
server-side data integrity, as well as user information.
For this reason, we implemented a series of security fea-
tures, of which the most important is utilizing a code
sanitizing library that ensures no malicious code will be
executed within either the user session or our servers,
and no such code will be stored on our databases.
5. A series of new visualizations, as well as advanced

features of the existing visualizations, such as heatmap
clustering, which we exemplify, alongside the new code
features, in the Results and discussion section. The sec-
tion also includes results derived from these new fea-
tures and visualizations, which constitute important
insights over the relationship between different genomic
measurements.
6. We discuss the current challenges brought by data

specific to genomic analysis and present an abstract data
format designed with these challenges in mind. We

Figure 1 Statistical analysis of colon cancer methylome. Top-left displays CpG-level methylation measurements for colon normal and tumor
tissue for a sample of TCGA [12] data; top-right displays expression data from the Gene Expression Barcode Project across multiple cancer types
as a heatmap, the hierarchical clustering is dynamically updated as the users navigates across the genome; the bottom display shows smooth
function gk(l) , described in the main text, corresponding to differences in methylation between normal and tumor; the “Colon Blocks” track
displays statistically significant DMRs inferred from the smoothed methylation difference function. The brushing interaction (in yellow) links data
from Bioconductor objects produced at different stages of a statistical analysis pipeline: from measurement preprocessing to statistically
significant regions of interest allowing effective exploration of the statistical properties of these genomic findings. http://epiviz.cbcb.umd.edu/?
ws=sp9ShCJdS3c
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describe ways in which the architecture of our frame-
work takes these into account in defining a uniform
data format We provide an in-depth description of the
data abstraction and standardization of Epiviz, which is
the cornerstone of our plugin API, facilitating the usage
of the same visualizations for different data types, as
well as using different visualizations for representing dif-
ferent dimensions of the same data type. The uniform
data format is also an essential aspect of integrating
data from different sources, both computational envir-
onments and cloud-based databases.

Considerations about genomic data
Data used by bioinformaticians in data analysis is com-
plex in its variety, heterogeneity, and size. Sometimes,
this data consists of records mapped to a genome - for
example, DNA methylation, or read coverage, which are
commonly displayed in genome browsers [5-8]. In other
cases, the main coordinate is replaced by time or some
other user-defined dimension.
The size of genomics data also tends to vary greatly.

Usually, a single dataset corresponding to the genomic
data for a single sample will range from a few hundred
records to a few hundred million [9], all of which can
easily fit into the memory of a modern day computer.
However, in the workflow of a single data analysis task, a
scientist may involve a large enough number of datasets
for it not to be feasible to load all data in the memory of
a workstation at once, or even store it locally. For this
reason, there now exist several large databases aggregat-
ing and making available various types of genomic data-
sets for a multitude of use cases [4,10,11]. There have
been large efforts geared to storing efficiently and provid-
ing large selections of these datasets to bioinformaticians
[12]. Often these sit behind genome browsers, which
offer, to some extent, help with the dissemination of sub-
sets of these datasets. However, in the past, no tool has
been able to interactively visualize data from a multitude
of these different sources simultaneously, and at the
same time facilitate dynamic statistical analysis of new
datasets derived from user experiments, residing locally.
In our work we recognize the need to analyze, model,

navigate over, correlate and interactively visualize data
that is both varied in terms of format and semantics, as
well as source and size. Current data analysis workflows
of individual researchers as well as research groups
usually involve the usage of a multitude of tools as part
of the same process, including a number of genome
browsers and statistical environments such as R/Biocon-
ductor or Python. To reduce the time spent by users
switching between tools in the course of one data analysis
process, genome browsers take one of two paths. The
first is to duplicate data already available in other data-
bases [13-15]; this approach is unfeasible when taking

into account the rate at which new data becomes avail-
able [11,16], the sizes of some such databases [4,17], as
well as the efforts aimed at making these databases effi-
cient in terms of query time and data format [12]. The
other path is to serve data directly from the cloud [6].
We find the latter preferable, given the data considera-
tions made earlier. But, in addition to genome browsers,
data analysts often revert to computational platforms, for
quick access to data widely used in their scientific com-
munity as well as quick manipulation and complex mod-
elling of small datasets. For genomics data, the R/
Bioconductor framework is a state-of-the-art platform
for implementation and dissemination of computational
and statistical analysis methods.
However, before Epiviz, no existing tool by itself was

able to accomplish both of the following: 1) integrate
simultaneously data from different genome browsers
without replicating it on the local database, and 2)
bridge the gap between genome browsers and computa-
tional environments, by coupling interactive visualiza-
tion with statistical data modelling. Genome browsers
sit in front of large databases and are highly interactive,
but have little to no data transformation capability.
Computational environments on the other hand, are
powerful data modelling tools, but do not expose inter-
active visualizations, nor are they capable of easily
manipulating extremely large datasets, being limited to
the physical memory of the local machine.
One of the purposes of Epiviz is to make different data-

sets in various locations and formats easy to access and
manipulate in the same tool. Through Epiviz, we propose
a system that is able to visualize datasets directly from
their existing locations, as well as custom user data resid-
ing on the local machine, side by side. Not only this, but
the users are now able to model and change their custom
data in a computing environment of their choice and
immediately visually explore these changes, all in the
same view, without the need to switch between tools or
to constantly upload new versions of transformed data to
a web server. Epiviz introduces a framework that features
a data provider API which can be used to integrate both
data available through online services, as well as data
loaded in the memory of a computing environment. In
addition, users of Epiviz gain the benefits of new data
sources and formats available only to services within
these environments [18-20]. These services provide uni-
form access to a large number of data sources to support
data integration by providing infrastructure that supports
a large variety of data types based on community stan-
dards (Sup. Table 2 in Additional file 1). Development of
interactive and integrative visualization tools that are
able to interact with frameworks such as R/Bioconductor
is a strong motivation for Epiviz. Through them, it is
assured of high visibility and impact in the scientific
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community. Tools that directly benefit from our system
include a number of frequently used, state-of-the-art
methods for a) ChIPseq (DiffBind [21]), where iterative
visualization of data and results of peak-calling algo-
rithms is necessary; b) RNAseq analyses using DESeq
[22], edgeR [23], or limma [24], and Cufflinks/Cuffdiff
[25] through the cummeRbund package, where both
location-based coverage and feature-based expression
levels are required; c) methylation analyses using
BSmooth [3] or minfi [2], where location-based analysis
at multiple genomic scales is important.

Implementation
Bringing code to interactive visualizations
Coupling between computational environments and
visualizations has been done before, to some extent,
either in areas of computer science unrelated to geno-
mics, or for different audiences than the one targeted by
Epiviz. In this section we briefly describe two categories
of tools that attempt to do this, underlining aspects that
we considered worth replicating for our purposes, and
ideas we decided to take a step further. Combined with
the interactive features of a genome browser, these
make Epiviz the first tool of its kind.
Web-based computational environments
One category of tools that has gained a lot of traction in
the past years is represented by web-based computational
environments, such as IPython Notebook [26] and RCloud
[27]. They are much similar to regular computational
environments, but in addition, they combine code execu-
tion in browser, plots, and rich media. What we find parti-
cularly useful about these tools is the ability of users to
create custom notebooks, and share them with each other.
This is done either via individual files that can be viewed
using an online notebook viewer, or using cloud-based
source control providers such as GitHub. This collabora-
tive approach has been proven extremely effective for the
audiences of these tools, consisting mainly of program-
mers and data analysts.
But neither of these tools can substitute a genome

browser, because they are not specialized on interactive
visual exploration of genomic datasets. They feature a set
of static charts, the same as regular computational envir-
onments, but operations specific to genome browsers,
such as navigation, or brushing, to link data across differ-
ent charts are not naturally supported.
Shiny
Shiny [28] is an interactive web application framework
for R, which features a set of predefined web widgets
which can be used to visualize custom sets of data
loaded in memory. What is especially useful about this
tool is a feature called reactivity, which consists of bind-
ing web controls to R functionality that responds to
user actions on the web interface. This opens the door

for R to visualizations that are more interactive than
conventional static plots. This, along with the fact that
its native environment is R, makes the tool extremely
popular within the computational genomics community.
Although it is a great addition to the R computing

environment, Shiny is a general framework that cannot
replace genome browsers in a data analysis workflow
without significant extensions. It is not built to link data
across charts using brushing, nor does it support naviga-
tion over subsets of the same data. In addition, custom
visualizations and visual optimizations cannot be built
directly in R - knowledge of JavaScript and visual libraries
built on top of it is required to create advanced complex
views. In addition, Shiny is not built to display partitions
of data at a time, but rather, relies on the entire data to
be loaded in memory of R. Also, there is no easy way to
put together subsets of data from a multitude of large
databases.
Visualization systems with similar functionality
Harger et al. [29] and Zhang et al. [30] provide two com-
prehensive surveys and comparisons of the state-of-the-
art visual analytics open-source toolkits and commercial
systems respectively taking into account a wide variety of
features, from visualizations offered, to analysis function-
ality and portability. Based on these studies, the Titan
[31] toolkit and the system Spotfire [32] stand out
through their extensive combination of visualization and
statistical analysis functionality. All other tools analyzed
in these surveys lack support for multivariate statistical
analysis - the statistical analysis of data in three or more
dimensions (for example, dimensionality reduction, clus-
tering, etc.), which is essential for genomic data analysis
workflows.
Titan
Titan is not in itself a visualization tool, but rather a
toolkit providing an environment for data visualization
and analysis. Unlike most other desktop-based visualiza-
tion toolkits, it is OS-flexible, offers a good set of multi-
ple coordinated interactive visualizations, as well as a
computational facet for C++, Python and TCL. The
architecture is also extensible by allowing users to create
custom plugins for data transformations.
In contrast, one of the goals of our efforts in developing

Epiviz was to provide support for frequently used state-
of-the-art methods for genomic data analysis. This is cur-
rently best addressed by R/Bioconductor, through an
extensive suite of libraries and packages that are able to
both manipulate different types of genomic data (Sup.
Table 2 in Additional file 1), and facilitate workflows for
a number of established domain-specific analysis meth-
ods, as outlined in Considerations about genomic data.
The Titan toolkit is bound to C++, offering limited ways
in which a connection to the R/Bioconductor infrastruc-
ture could be established. In addition, customizing the
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code of Epiviz is an easy task partially because of our
choice of JavaScript as the main programming environ-
ment for the framework. With Titan, in order to create a
plugin, one needs to instantiate and build the entire
framework on the local machine. In contrast, the current
design of Epiviz requires no download, being able to
interpret and execute third-party code from cloud-based
locations such as GitHub. Our option also implicitly
solves a security concern since JavaScript is given limited
access to the user file system, which is ensured by web
browser vendors. Desktop-based software on the other
hand, is vulnerable to a wide variety of security
vulnerabilities.
Spotfire
Spotfire is a commercial desktop-based data analysis and
visualization tool which also comes with a wide variety
of analytic features, like brushing and linking, multivari-
ate statistical functions, as well as a feature which allows
users to define custom data transformations by writing
IronPython code directly into the UI. As powerful as it
is, the tool comes with a number of limitations which
make it difficult to use for genomic data analysis work-
flows. The most evident is the fact that the tool is OS-
dependent, being able to run solely on Windows. This is
a serious drawback for the genomics community, where
more than half of the users work on either Macintosh
or Linux (Sup. Figure 3 in Additional file 1). Like Titan,
Spotfire does not natively support common genomic
data types, and relies on loading the entire data in mem-
ory, making it unfeasible to use for extremely large
datasets.
Epiviz
Epiviz brings code to visualizations in ways similar to
those described in the previous sections.
First of all, it features a WebSockets API similar to

that used by Shiny, which allows communication
between the web framework and any environment that
implements the corresponding endpoint protocol. This
API is used by Epivizr, a Bioconductor package that per-
mits communication between the R computational
environment and the Epiviz user interface.
Secondly, Epiviz exposes a plugin API for both data

providers and visualizations, so that new data sources
can be easily added as needed, and new visualizations
can be defined to display the same data from different
perspectives. Custom JavaScript code for new visualiza-
tions or data providers, can be plugged in on-the-fly
using GitHub Gists, similar to the way IPython and
RCloud incorporate custom user notebooks.
Finally, a set of code features provides a gateway into

the parts of JavaScript code that matters for the effective
transformation of visualizations and data depicted in
them. These are described in detail in Visualization cus-
tomization in the UI and Data transformation in the UI.

Epivizr
Epivizr is an R/Bioconductor package that uses the data
provider WebSocket protocol to connect to the Epiviz
framework. Through it, Epiviz makes requests to the R
environment so data in R objects is served in response.
All data sources catalogued by the AnnotationHub Bio-
conductor resource are available for integration as mea-
surements via Epivizr: the UCSC genome browser
database [10], Ensembl [11], and BioMart [19]. Infra-
structure from the core Bioconductor team and hundreds
of contributed packages are used in a large number of
projects analyzing data that ranges from expression
microarrays to next-generation sequencing. Due to Epi-
vizr, users of Epiviz immediately benefit from the funda-
mental data structures exposed by Bioconductor in their
analyses. Conversely, developers of new methods in R
and Bioconductor have now access to an interactive way
of visualizing data at each step of development.
Epivizr features updating, filtering and subsetting

operations on R objects that trigger updates in their cor-
responding visualizations in Epiviz. One of its most
important capabilities is that it supports interactive
exploratory browsing by, for example, allowing users to
navigate in order through a set of genomic regions
defined in R, using the slideshow feature. Thereby, users
can rank regions of interest according to some prede-
fined, or computed attribute. A canonical example is
navigation through regions of differentially expressed
genes from an RNAseq experiment obtained from
packages like DESeq or EdgeR.

Software extension using JavaScript dynamic code
interpretation
One powerful feature of JavaScript is its ability to evalu-
ate strings of text into runnable code, which Epiviz
makes use of, to dynamically incorporate custom user
logic into the framework. In this section we expand over
the different kind of functionalities based on this feature
available in Epiviz. Also, in the Results and discussion
section we discuss the security implications of taking this
path, as well as our approaches to addressing them.
External scripts
One way in which we make use of this capability is by
providing an extension in the API which permits auto-
matically incorporating user specified external scripts
that can override existing functionality, such as visualiza-
tions, data providers and settings, or define new ones.
The new visualizations, data providers and custom set-
tings are ready to use immediately, alongside predefined
ones. On launch, Epiviz first loads the base framework
logic and searches for scripts specified using user-pro-
vided parameters. Epiviz then executes the code in these
scripts in sandbox mode and UI elements are immedi-
ately updated. Epiviz supports the GitHub Gist API,
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which makes it possible for users to specify code stored
on this source control provider. Using this functionality,
users can collaborate on a set of scripts simultaneously,
sharing their work while using a common set of work-
spaces as the functionality contained in the scripts
evolves.
Visualization plugins can be easily created using the

Epiviz Visualization API, which exposes a series of inter-
faces and base classes. These classes implement basic
functionality, like drawing axes, creating a main SVG
canvas where drawing is done, drawing legends etc.,
which can in turn be used by plugins that only need to
implement a draw method, greatly simplifying the com-
plexity of plugin code. Figure 2 shows an example of an
externally defined visualization that follows this API,
and whose code is hosted using GitHub Gist.
New data providers can be specified in Epiviz using

the same mechanism, and a Data Provider API, designed
to allow users to dynamically plug in custom sources of
data. Using the data provider plugin mechanism, Epiviz
can display data located remotely or on the local
machine. Conceptually, Epiviz data providers represent
proxies to real data sources. For example, the Web-
Socket data provider enables connections with R/Bio-
conductor through the Epivizr package. Different data
providing services are interfaced through an API that
de-centralizes data storage by allowing users to easily
integrate external data sources. Figure 2 contains a track
that displays human genome genes from the refGenes
SQL table, in the UCSC database. This is done through
a custom data provider, plugged into Epiviz using the
gist feature.
Visualization customization in the UI
Epiviz also introduces a mechanism that permits users
to customize charts’ code directly in the UI, as well as
to define simple data transformations. Using this, users
can alter individual visualizations in place to match their
needs. The code of chart instances can be modified such
as to incorporate additional functionality per user needs.
For example, the scatter plot in Figure 2 contains a line
at y=0, separating positive and negative gene expression
differences. In Sup. Figure 4 in Additional file 1 we
show the dialog where users can edit the visualization
code, and the code necessary to apply this particular
transformation to the scatter plot.
Data transformation in the UI
The same type of functionality is used to apply data trans-
formations for individual visualizations. These define ways
in which the data that comes into a visualization should
be transformed prior to rendering. Currently, Epiviz pro-
vides support for the following transformations: 1) filter by
data object properties; 2) color by measurement or coordi-
nate properties; 3) group by measurement properties; 4)
order by measurement properties.

In the following lines we expand on these transforma-
tions. Each of them exposes two functions that users
can implement using the code editor controls in the
code dialog (Figure 3, Sup. Figure 4 in Additional file 1).
The first is called before any transformation, and is used
to define and initialize variables to be used throughout
the transformation; the second function corresponds to
the actual transformation, and is called for each object,
measurement, or feature coordinate in the selected
genomic region, depending on the transformation.
In the filter by transformation, the inputs correspond

to records in a data source (Sup. Figure 1 in Additional
file 1). Each input contains coordinate information, as
well as a feature value. The filter by function yields a
Boolean with the following semantics: 1) a returned
value of true signifies that the item should be drawn in
the visualization, while 2) false means that it should be
hidden.
The color by, group by and order by transformations,

all have the same signature (Figure 3): they can be set
up to take as inputs either data source records, mea-
surements, or feature coordinates. Based on the input,
the function returns a label, in the form of a text string
or a number. Labels are used by each transformation
accordingly. For example, color by will use them to
color the objects with the same label with the same
color. Group by uses a user-selected aggregation func-
tion to aggregate all objects with the same label into
one visualization object. Finally, order by sorts objects in
the visualization according to the lexicographic order of
their corresponding labels.
For example, the stacked plot in Figure 2 uses a color

by transformation, which is used to highlight genes with
various expression differences - 0-4, light blue, 4-8, dark
blue, 8-12, orange, and >12, red. The code necessary to
apply this transformation is depicted in Figure 3 which
shows a screenshot of the contents of a code transfor-
mation dialog.
Another example is the lines track depicted in Figure 2

which uses a group by transformation, where the two
labels are tumor, if the measurement corresponds to a
tumor sample, and normal otherwise.
The Epiviz API also implements a simple computing

language for creation of new measurements from com-
bining existing ones. We call the result computed mea-
surements. These differ from the previously mentioned
transformations in that they act like regular measure-
ments in the framework, and are available globally for all
visualizations to use. For example, based on the gene
expression values for normal and cancer colon tissues,
we generated a particular kind of scatter plot also known
in genomic data analysis as an MA plot - the x axis shows
the average gene expression for normal and cancer colon
tissues, while y corresponds to the difference. This plot is
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Figure 2 Screenshot of Epiviz. It shows the main elements available within the tool: 1) the main toolbar, featuring all UI controls; 2) a
scatter plot, showing two computed measurements: the average and difference between colon gene expression for normal and cancer
tissues; the code for this plot is customized in the UI to show a line at y=0, that separates genes with positive and negative differences; 3) a
heatmap, showing values from the Gene Expression Barcode [4] comparing the normal and cancer expressions for different tissues. Using its
clustering feature, we notice that tumors tend to group separately from normal tissues; in addition, the clustering result seems to be
determined by a small number of genes, namely MMP1, MMP3 and MMP10; 4) a stacked plot, showing two columns for normal and cancer
gene expression; it uses the color by transformation, to highlight genes with various expression differences. This plot offers several insights:
first, that overall expression tends to be higher for cancer than normal tissues; second, it allows us to immediately spot the differentially
expressed genes, by brushing over the blocks colored in deep red, corresponding to them; 5) a custom track defined in a plugin hosted on
GitHub Gist, showing blocks aligned to the genome, with height corresponding to the expression of the genes; 6) a stacked track, showing a
computed measurement, corresponding to the difference between normal and cancer methylation; this track offers an insight over the hypo/
hyper-methylated blocks; 7) a lines track, showing DNA methylation for normal and cancer colon tissues; the track uses the group by
transformation to aggregate three normal samples and three tumor samples, and displays error bars to show the variation of methylation for
each group at each data point; in addition, it uses basis interpolation to smoothly connect the available data points; 8) a genes track,
showing human genome genes fetched from the UCSC database[10] using a data provider plugin stored externally on GitHub Gist; 9) a
tooltip showing details on demand for the gene MMP1. The highlighted items correspond to the brushing feature, triggered while hovering
over the MMP1 gene in the genes track. The feature links all visualizations together by genomic location. http://epiviz.cbcb.umd.edu/?gist[]
=160e8b84795603961b9f&gist[]=5a88f39caa801e58b8ae&ws=GJU2bfURaUd
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used in the use case presented in the Results and discus-
sion section and shown in Figure 2. Dudoit et al. [33]
offers an in-depth analysis of the motivation behind
choosing this kind of plot for differential gene expression
analysis. Computed measurements values are calculated
lazily, as needed by visualizations, just for data repre-
sented on the screen.
In the use case illustrated in the Results and discussion

section, we provide several examples of each of these
features - chart code customization, data transforma-
tions, as well as computed measurements.

Visualization system concepts put together for the first
time in genomics
Apart from bringing code to visualizations on various
levels, Epiviz also uses a series of design choices and fea-
tures of which some have been used before for genome
browsing, others for other various types of systems. What
makes Epiviz stand out is that it is the first software to
put all of them together in an integrative genomics inter-
active visual software. In this section we present some of
the most important of these choices, underlining, where
necessary, the motivation that led to their development,
as well as benefits that follow their implementation.
Visual encodings
The Epiviz UI offers data scientists a combination of
multiple coordinated views and overlays, featuring brush-
ing and linking. The main goal behind this is to enable
both data comparison and visual validation in order to
help users extract insights and gain both an overall and
detailed understanding of the data. Epiviz provides out-
of-the-box visualizations that are both feature- and geno-
mic location-oriented, to help provide a multidimensional
comprehension of the explored domain. Both types of
visualizations offer in turn different kinds of graphical

representations; for example some of the available fea-
ture-oriented views are the heatmap and stacked plot,
while some of the available location-oriented views are
the genes and line tracks (Figure 2). This differentiates
Epiviz from most other genome browsers, which usually
feature only genomic location-oriented visualizations.
All graphics are rendered using Scalable Vector Gra-

phics (SVG), an XML vector format that all modern
browsers can interpret. Choosing this format allows users
to treat objects in charts independently, as direct repre-
sentations of data [34], as well as to perform specific
operations on them, by customizing their properties -
shape, color, size, stroke, transparency, etc. This opens
the door to a wide variety of options available directly to
visualizations, of which perhaps the most important are
brushing and linking, object tooltips, and the ability to
save views as both vector and raster static images.
Brushing
Through brushing, users have the ability to visually link
data from all visualizations on the screen (Figure 2). By
hovering over/selecting a particular object in one chart,
related objects are automatically highlighted in all other
charts as well. The unified data types used in Epiviz
include identifiers for data source groups which declare
keys for each set of observations, to establish data rela-
tionships used in the brushing feature. Therefore, all
data sources from the same group are assumed to have
the same keys. In the absence of keys, we use feature
coordinate overlap to establish these relationships as
well. Notice that this design is extremely flexible since
keys defining data relationships are defined dynamically.
Brushing is available in Epiviz due to the choice of SVG
as the rendering mechanism, since each object on the
screen corresponds to an HTML element in the DOM.
Hovering or clicking on an object thus triggers events

Figure 3 Custom color by transformation for the stacked plot. This code computes the absolute difference between the two measurements
- for example gene expression normal and cancer - in the plot, and splits it in increments of 4. The resulting plot will colour genes with
different colours, each corresponding to its expression difference.
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that all visualizations listen to in order to decide which
objects will be highlighted at their end.
Collaboration through sharing of analysis steps
One important functionality essential to scientific data
analysis, and yet inexistent in current genome brow-
sers, is that of persistently saving and sharing steps of
an analysis within the scientific community. Often
times, operations that should be straightforward, such
as replicating results presented in publications pose big
challenges and come with heavy overhead. Through
Epiviz, we take the first steps in the direction of simpli-
fying this process, through a feature called workspaces.
Workspaces were first introduced in our previous work
[1]; however, following that, we extended them with
new analysis state components, such as code customi-
zations and data transformations, so that any user
action within the software could be tracked and
reproduced.
Workspaces contain complete information needed to

reproduce analysis states in Epiviz. All visualizations on
the screen, including their customizations (screen coordi-
nates, code changes, data transformations and color pal-
ettes), and the current genomic location in view are
included as part of a workspace. Workspaces are stored
in a database on the Epiviz server hosted at the Univer-
sity of Maryland. To save analysis steps, users need to
authenticate using an OpenID account. Once logged in,
users can create new workspaces and replicate existing
ones shared with them. Storage management for persis-
tent workspaces is part of the data provider API. Source
code for this type of server is publicly available on the
Epiviz project page and can be installed on a standard
PHP/MySQL system to provide the same functionality if
users desire to keep their workspaces private on a local
server. Once created, a workspace is associated with a
unique id that can be used to share individual work with
other users, through permanent hyperlinks. Using the
workspace id, any user can view a particular workspace,
and copy its contents to their own account. This
mechanism can be used for either sharing data analyses
between users or even for referencing figures in publica-
tions (Figure 2).

Results and discussion
Exploring the relationship between gene expression and
DNA methylation
We present a use case that highlights the most powerful
features of Epiviz, with an emphasis on the ones intro-
duced following the work presented in Chelaru et al. [1].
We used Epiviz to explore the relationship between DNA
methylation and gene expression within normal and
tumor colon tissues. Our goal was to examine regions in
the genome where the difference in gene expression
between the two is large.

We started with a genes track showing gene models
from the UCSC database. To fetch this data, we used a
custom data provider plugin stored on GitHub Gist. In
order to find regions in the genome where expression
differences are large, we used two computed measure-
ments, corresponding to the average, and difference gene
expression, respectively, for RNA-seq data from chro-
mosome 11. We displayed these using a scatter plot. In
order to better observe expression differences, we dyna-
mically customized the code of the scatter plot to show
a line at y = 0 (Figure 2). We identified two genes with
large expression difference by selecting the outliers in
this plot from all genes in chromosome 11: MMP1 and
MMP3. The brushing feature allowed us to observe that
these outliers are also adjacent in the genome. To find
the exact genomic locations of these genes, we hovered
over them to trigger a tooltip (Figure 4, Figure 2).
We zoomed into a smaller genomic region to examine

these genes at high resolution. To check whether expres-
sion differences are consistent across tissue types, we
added a heatmap with aggregated expression data from
the Gene Expression Barcode [4], for six different tissue
types, both normal and tumor: colon, stomach, breast,
kidney, lung and esophagus. We used this visualization’s
clustering feature to group tissues based on gene expres-
sion similarity within this genomic region. The high
expression differences for the MMP1 and MMP3 genes,
between normal and tumor tissues, across tissue types,
played a decisive role in the clustering result (Figure 2,
Sup. Figure 5 in Additional file 1).
Next, we added a new visualization called stacked plot,

showing two columns, corresponding to the summed
gene expression for normal and cancer tissues respec-
tively. This visualization stacks values for different
genes, one on top of the other, depicting each gene with
a different color. Using a color by transformation, we
customized this plot to color-code different genes
according to the expression differences (Figure 3). Ana-
lyzing the result yields a couple of insights: first, that
overall gene expression tends to be higher for cancer tis-
sues; and second, that genes with high expression differ-
ence tend to be collocated in the same region of the
genome (Figure 2).
To examine gene expression along the genomic coor-

dinate in relation with DNA methylation, we created a
custom track plugin, which we stored on GitHub Gist.
The track displays genes as blocks aligned to the gen-
ome, whose height corresponds to the gene expression.
We also added a new visualization called stacked track,
which we used to display a computed measurement, cor-
responding to the difference in methylation levels
between normal and cancer samples (Figure 2, Figure
3). The data for these measurements corresponds to
base-pair-resolution smoothed methylation log ratio
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resulted from sequencing of bisulfite-converted DNA
[35]. The advantage of this type of visualization over the
traditional blocks track which we used in the previous
version of our work is that this offers not only informa-
tion about the location of hypomethylated blocks, but in
addition, it provides a two-dimensional high resolution
understanding of the structure of these blocks. For exam-
ple, examining these two tracks side by side, we were
able to extract a number of insights: first, the density of
genes increases as methylation difference decreases; sec-
ond, gene expression for both normal and tumor samples
increases in regions where methylation difference is
smaller; and third, we were able to differentiate between
hypomethylated regions by their level of auto-correlation
(smoothness) at base-pair level, which links well in this
region with gene expression differences.
Finally, we created a line track showing the methylation

levels for six different samples, three normal and three
tumor. We used the group by transformation, to aggre-
gate normal and cancer samples together respectively
(Figure 2). A high resolution view over the data allowed
us to further differentiate between the two hypomethy-
lated blocks in view: the first, ranging from 102.3 Mbp to
102.9 Mbp, and the second, ranging from 103 Mbp
onward.
We discovered that although at the block-level there is

an overall difference between cancer and normal methy-
lation, the degree of auto-correlation in the methylation
data at base pair resolution varies within the block.
Furthermore, we observed that genes that show high dif-
ferences in expression tend to collocate with regions of
low methylation auto-correlation (lower smoothness)
while genes that are not differentially expressed collocate
with regions of high methylation auto-correlation (high
smoothness). This analysis suggests that understanding

the relationship between expression and methylation
within long epigenetic domains requires that methylation
data is analyzed at multiple genomic resolutions. Using
Epiviz, it was easy to switch between low and high resolu-
tions to facilitate these type of multi-resolution analyses.

Notes about software security
One challenge that comes with allowing Epiviz to incor-
porate and run third-party scripts consists of the secur-
ity risks associated with SQL injection and cross-site
scripting (XSS) [36]. The main concern is that, having
access to private user information, third-party scripts
could be used to compromise user content, privacy, and
sensitive data. In this section we underline the ways in
which Epiviz addresses these concerns in order to pro-
vide a safe data analysis environment.
Epiviz features a server side component, and a client

JavaScript component, the latter containing the entire
framework functionality, described in this paper. The ser-
ver side component contains a web service for a number
of public epigenetic datasets, similar to those hosted on
other genome browser servers, as well as private Epiviz
user information, such as their OpenID account data
provided when signing up, and workspaces associated to
it. The public sets of epigenetic data are served in a read-
only fashion, no changes to it being permitted to users
accessing the service. OpenID information cannot be
retrieved using the web services endpoint; in addition,
information about a particular user cannot be modified
externally after the user has logged in for the first time,
having successfully authenticated using the correspond-
ing OpenID provider. The only information that can
be both retrieved and modified externally on the server
side is that of user workspaces. Changes to workspaces
can be made within the session of their owner. All

Figure 4 An overview of gene expression in chromosome 11. The scatter plot shows colon normal and tumour gene expression average on
the x axis, and difference on the y axis. The genes track shows genes fetched from the UCSC database, using a data provider plugin hosted on
GitHub Gist (http://gist.github.com/5a88f39caa801e58b8ae). The highlighted data point in the scatter plot corresponds to a gene expression
difference outlier. Using the brushing feature of Epiviz, we link this outlier to its corresponding gene in the genes track. http://epiviz.cbcb.umd.
edu/?gist[]=5a88f39caa801e58b8ae&ws=gdmUH1ANl3m
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database access for the webserver is achieved through
PHP prepared statements [37] which are guaranteed safe
from SQL injection.
This implementation leaves room for only one type of

potential attacks. Malicious external JavaScript code,
being incorporated into Epiviz using the dynamic code
interpretation feature, might gain access to the user ses-
sion and potentially compromise workspaces informa-
tion, the only kind of private information that can be
accessed and modified externally. Alternatively, it could
extract private information such as that stored in user
cookies, and transmit it to a phishing server using, for
example, AJAX calls. This constitutes a great vulnerabil-
ity, and therefore, we needed to find a solution which
would allow the execution of third-party scripts in a
sandbox mode, with no access to sensitive information
or actions that might compromise data integrity.
To address this vulnerability, we used a JavaScript

sanitizing library called Caja [38], which allows third-
party scripts to be executed by the same JavaScript run-
time environment as the framework code, but in sand-
box mode, with restrictions defined within the host
script.
Whether the scripts are stored externally, or they con-

sist of custom code inserted using the web-browser
code editor, they are executed in protected mode, which
effectively defends against XSS attacks. This security fea-
ture allows Epiviz to be the first visualization tool to
allow its users the wide range of power that comes with
expanding functionality through third-party plug-ins and
code customization.

Future research directions
Performance and optimization
There are three ways of addressing the limitations
brought by the choice of JavaScript as the main program-
ming environment for our framework. In this section we
describe some which we are looking to implement in our
future work: 1) a clearer separation of data processing
operations from visualizations, to better use with web
workers; 2) the use of the WebGL technology, which
comes with all the power of gaining direct access to the
GPU [39]; 3) as the new technology WebCL [40]
becomes available, and execution threads are introduced
into the language, move some of the most CPU-consum-
ing operations of Epiviz into secondary execution
threads.
The choice of SVG for rendering visualizations also

comes with a number of limitations which we describe
in the supplementary material. In Chelaru et al. [1] we
discussed a number of optimizations for individual
charts, as well as their effects over render latencies.
What is not said there is that these optimizations can-
not, because of the design decisions of Epiviz, be

generalized so that new visualizations can take advan-
tage of them. A solution for this drawback, which we
are looking at implementing in future versions of our
software, is to alternate between raster views and vec-
tor views, depending on the amount of data loaded in
memory. We anticipate this approach to significantly
improve user experience for the visualization of extre-
mely large datasets.
Research directions in collaboration
Epiviz has taken a few preliminary steps in the direction
of providing a collaboration-friendly environment. Two
features in particular are aimed to help teams that work
on a joint data analysis project: 1) workspaces, which
provide a way of storing analysis steps persistently, and
sharing them among the community; 2) an API that has
support for custom software plugins created within the
scientific community, stored on GitHub Gist, which can
be used to share visualizations and data providers among
users. In addition, as the entire code base of Epiviz is
open-source, users from the scientific community are
able to report errors or new ideas, as well as contribute
to the development of the project. However, these repre-
sent only our preliminary efforts in a long-term plan of
creating a truly collaborative data analysis environment
and by no means do we consider them complete. In this
section we briefly introduce the next two steps we mean
to take in this direction, based on previous research on
this topic [41] as well as related examples [26,27] where
approaches have proved to provide a high level of colla-
boration, enhancing usability, transparency and interac-
tion among users.
A first step is to centralize workspaces, as well as

custom user code used for both plugins and data
transformations, in a webpage similar to those pro-
vided by IPython and RCloud for user notebooks. We
intend to allow our users to browse existing work-
spaces and plugins, copy and extend them, as well as
rank them using a starring system. The goal for this
feature is to introduce transparency and awareness
within the Epiviz community, allowing users to dyna-
mically interact with each other and expand the usabil-
ity of the framework.
The second step is to introduce same-workspace concur-

rent collaboration. The current functionality already allows
the same Epiviz instance to pull data from multiple
sources, of which several can be either R or Python ses-
sions. These sessions can be located on any network-
accessible machine. This opens the door to a peer-to-peer
type of collaboration similar to that of Google Docs, where
multiple users can connect to the same data sources and
computational environment sessions, and interact from
different workstations over the same joint workspace
simultaneously. Changes made to the workspace by one
user will be immediately propagated and become visible to
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all other users connected to the same R session. The cur-
rent architecture of Epivizr is one step away from permit-
ting this kind of functionality. The only thing missing is an
awareness component within the Epivizr package which
will track the activity of each connected user, and propa-
gate it to all the others. The peer-to-peer approach also
implies that no centralized server would be necessary for
this architecture, delegating that functionality to the R/
Epivizr sessions instead.
Incorporating new technologies
Epiviz was designed with the goal of easily incorporating
new technologies, both on the data integration side (as
new infrastructure in Bioconductor is designed to incorpo-
rate new genomic data types) and the visualization side.
For example, new technologies such as htmlwidgets [42],
released after the initial launch of Epiviz, consists of an R
package that provides a framework for creating R bindings
to JavaScript libraries. Users and developers are tasked
with creating wrappers around JavaScript libraries, in
order to use them directly in R applications. The package
can be used alongside Shiny to facilitate two-way commu-
nication between R and JavaScript. The design of Epiviz
permits the creation of bindings for the Epiviz visualiza-
tions tier using htmlwidgets, to facilitate the use of our
visualizations independently of genomics data analyses.
Generic visualizations included in Epiviz, such as the heat-
map or scatter plot, which have grown to be very feature-
rich - exposing options for coloring by data features, clus-
tering, binning, brushing and linking, etc. - can thus be
made available to the entire R community in a lightweight
fashion, without the tight coupling to the entire Epiviz fra-
mework, or the Epivizr Bioconductor package.

Conclusions
We gave an overview of the motivations that led to the
development of Epiviz as well as a series of design deci-
sions and features that have never been put together
before genomics interactive visual analysis. Epiviz is the
first genomic data analysis software that brings code to
interactive visualization, bridging the gap between compu-
tational environments and genome browsers. The software
also sets a precedent for genomic data analysis collabora-
tive workflows by enabling reproducible and shareable
steps, and allowing custom user code to be dynamically
incorporated, while guaranteeing the security and integrity
of user data.

Availability and requirements
Epiviz is available at http://epiviz.cbcb.umd.edu. Epivizr
is available as a Bioconductor package (http://biocon-
ductor.org). Documentation is available at http://epiviz.
cbcb.umd.edu/help.
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