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Abstract Prediction of the bound configuration of small-

molecule ligands that differ substantially from the cognate

ligand of a protein co-crystal structure is much more

challenging than re-docking the cognate ligand. Success

rates for cross-docking in the range of 20–30 % are com-

mon. We present an approach that uses structural infor-

mation known prior to a particular cutoff-date to make

predictions on ligands whose bounds structures were de-

termined later. The knowledge-guided docking protocol

was tested on a set of ten protein targets using a total of 949

ligands. The benchmark data set, called PINC (‘‘PINC Is

Not Cognate’’), is publicly available. Protein pocket simi-

larity was used to choose representative structures for

ensemble-docking. The docking protocol made use of

known ligand poses prior to the cutoff-date, both to help

guide the configurational search and to adjust the rank of

predicted poses. Overall, the top-scoring pose family was

correct over 60 % of the time, with the top-two pose

families approaching a 75 % success rate. Correct poses

among all those predicted were identified nearly 90 % of

the time. The largest improvements came from the use of

molecular similarity to improve ligand pose rankings and

the strategy for identifying representative protein struc-

tures. With the exception of a single outlier target, the

knowledge-guided docking protocol produced results

matching the quality of cognate-ligand re-docking, but it

did so on a very challenging temporally-segregated cross-

docking benchmark.

Keywords Docking � Protein flexibility � Surflex �
Molecular similarity � Data fusion � Pose prediction

Introduction

Docking of small molecules to protein binding sites by

computational means is now a mature field, having been

established on rigid ligands in the 1980s [1]. The first

practical methods that addressed ligand flexibility in an

automatic fashion appeared in the 1990s, with AutoDock

[2], GOLD [3, 4], Hammerhead [5–7], and FlexX [8, 9].

These early reports shared a common validation strategy:

re-docking of ligands into their cognate protein binding

pockets, with success rates typically defined as symmetry-

corrected RMSD B2.0 Å. On benchmark sets containing

dozens of diverse targets, success rates in the late 1990s to

early 2000s for top-scoring pose prediction were roughly

70–80 % [4, 10, 11]. Success rates at this level for cognate

ligand re-docking have persisted across different data sets

[4, 12], though lower success rates (closer to 60 %) have

been reported for particularly challenging cognate-docking

benchmarks [13, 14]. Assessment of cognate re-docking

has continued, with a recent ACS symposium showcasing

results for eight methods [15–22]. Among the more widely

used methods (DOCK, FlexX, Glide, GOLD, and Surflex-

Dock), using agnostic procedures for complex preparation

that favored no method in particular, success rates in the

low to mid 70 % range were typical.

Multiple groups showed that nominal success rates

could be improved by ten to 20 % points through ma-

nipulation of the starting conditions for proteins and
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ligands. This is an inherent problem in this type of exercise

because the construction of the problem embeds the correct

answer, and knowledge of that answer can be used to bias

results. The risks of employing such techniques in

methodological validation [11] have been documented

previously [23, 24].

Real-world practitioners of docking face entirely dif-

ferent problems, typically involving prediction of the

binding modes of ligands during a design process, under-

standing the binding mode of a newly reported chemical

series, or identification of new lead compounds through

virtual screening. Binding-mode prediction is the focus of

this study, and it can be important for visual modeling in

compound design or as an adjunct to affinity prediction

approaches, both simulation-based [25] and those that

employ machine-learning [26, 27]. It is important to note

that while the prediction of changes in binding affinity that

result from minor changes to a ligand is a challenging and

important problem, binding modes are not often drastically

altered in such cases. So, the challenge for docking is

where a more significant structural change in a ligand is

made than from a methyl to an ethyl substituent. In such

cases, where novel ligands are to be docked (commonly

called the ‘‘cross-docking’’ problem), protocols that par-

allel those used for cognate docking perform poorly.

Three particularly influential studies of the cross-dock-

ing problem were published in the 2006–2008 time-frame.

Warren et al. [28] made an independent study of several

docking programs, both for non-cognate pose prediction

and for screening enrichment. The pose prediction aspect

involved seven targets (averaging roughly 180 ligands per

target), making use of a single protein structure as a rep-

resentative for each target. In this study, an expert choice

was made with respect to protein structure, and expert users

for each docking program were used. Performance was

highly target dependent, with average success rates across

the seven targets among the better performing methods

ranging from 20 to 35 % (but with standard deviations of

roughly the same magnitude). However, performance was

also highly method dependent. While any single method

yielded relatively poor overall performance, for four of the

seven targets, at least one of the docking methods yielded

top-scoring pose prediction success rates of at least 50 %.

Sutherland et al. [29] explored all-by-all cross-docking

using a set of 249 ligands spanning eight targets using two

docking algorithms. They performed exhaustive cross-

docking (each ligand against every non-native structure),

observing success rates ranging from 18 to 24 %. In con-

trast to the results reported by Warren et al., only in the

case of one target and one docking algorithm was the

success rate over 50 %. Verdonk et al. [30] took a different

approach, considering a highly curated set of 85 protein

ligand complexes (the ‘‘Astex Diverse Set’’) and then

asking how docking performance was affected by consid-

ering alternative protein conformations for the same set of

ligands. For this test, only the issue of protein conformation

was addressed, with the protonation and tautomeric states

being defined in the same manner as was done optimally

for the cognate protein-ligand complex. In this case, the

decrease in performance attributed to protein conformation

variation was about 20 % points (from 80 to 61 %).

The latter two studies also considered the effects of

using multiple protein variants for docking, each reporting

improvements when effective selection strategies were

adopted. Both observed that selection of structures as the

targets for docking whose cognate ligand was similar to the

non-cognate test ligand improved performance. Our own

work [31], which made use of the challenging Sutherland

data set, showed that agnostic selection of five protein

structures improved overall cross-docking performance by

roughly 20 % points over using a single-structure per target

(from 26 to 45 % considering top-scoring poses without

protein pocket optimization).

The more recent CSAR 2011–2012 Benchmark Exercise

[32] largely confirmed the success rates observed in these

previous studies for single-structure cross-docking. Multi-

ple groups, using a diversity of docking methods, submitted

pose predictions for four targets, where each was repre-

sented by a carefully chosen single protein structure. The

ligand sets consisted of congeneric series: LpxC (3 test

ligands), Urokinase (16 ligands, 1 series), Chk1 (38, 3

series), and Erk2 (39, 3 series). Percent correct over all

tested docking methods at the 2.0 Å threshold for the two

targets with multiple series was 28 % for Chk1 and 16 %

for Erk2. For LpxC (with just 3 ligands), 75 % correct was

reported, and for Urokinase the result was 57 %. Overall,

for all methods against all targets, the likelihood of ob-

taining a correct pose as top-ranked was 29 %.

One aspect of the cross-docking problem that offers

some reason for optimism is that the success rates for

identification of a correct pose among all those produced

by a particular method are much higher than those for the

top-scoring pose [28, 29, 31, 32]. That is, the detailed

ranking among a set of poses is often the point of failure, as

opposed to a total failure to identify any reasonable

solutions.

Clearly, the cross-docking problem is much more chal-

lenging than the cognate-docking assessments utilized

during the infancy of the field. It has been clearly estab-

lished that protein conformational variation plays an im-

portant role. Other aspects of binding site complementarity

involving protonation or tautomerism also matter, but they

have not been as carefully studied. Often discussed, but

also not systematically studied, is the fact that an expert in

a particular target system who has great facility with a

particular docking method, can often obtain results that are
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far better than those obtained from naive naı̈ve tool ap-

plication to the same system. This appears to stem from

knowledge of the target system (e.g. common variant

configurations of a binding pocket), ways in which ligands

tend to bind (e.g. particular recognition motifs that are

relatively invariant), and the ability to guide a docking

algorithm based on such knowledge.

Figure 1 shows a snapshot in time of what was known

about CDK2 inhibition using X-ray crystallography as of

June, 2003. These represent the earliest one-quarter of

CDK2 structures with active-site ligands that were de-

posited in the PDB as of Fall 2012. One can see the

characteristic, and largely invariant, hinge binding motif of

the ligands (red arrows). Faced with a question about

binding mode, a new ligand may look little like those that

have been studied experimentally. Choices must be made

about which protein structures to use, how they should be

prepared, how the binding site should be scoped and de-

fined, and how (if at all) to make use of knowledge of other

ligands’ binding modes to either guide or constrain the

docking process. Fewer than half of the ligands whose

bound structures were deposited in the PDB after those

shown in Fig. 1 had significant 2D similarity to the initial

set of 42 early CDK2 structures. Given that there was in-

terest in experimental structure determination for the li-

gands bound to CDK2, it is reasonable to expect that, in

many cases, there was uncertainty about the mode of

binding, interaction with the protein, and whether sig-

nificant conformational changes in the protein pocket were

induced.

We believe that the most relevant and challenging

question one can ask about binding mode prediction is

whether one can, given information available at a particular

time, make accurate predictions on ligands whose bound

structure was determined in the future. Figure 2 illustrates

this conceptualization of the cross-docking problem. For

CDK2, the structural information includes 42 protein-li-

gand complexes for use in making predictions on 127 that

were determined later in time. By constructing the task

through temporal partitioning and by making use of public

PDB structural data, the challenge is more difficult and

realistic in two critical ways. First, the structural diversity

Fig. 1 The structural

information available about

CDK2 inhibitors prior to July

2003: all 42 protein structures

shown with five small ligands in

the active site (top); all 42

ligands oriented with their

hinge-binding moieties upward

(bottom left); and all 42 ligands

with the viewpoint from the

kinase hinge (bottom right)
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seen in the test ligands compared with the knowns is high,

because it is rare to see effort invested in determining a

bound structure for a simple analog of another ligand

whose bound structure was known long ago. The structural

diversity among the test ligands is also high (for the same

reason, with the exception of multiple structures from

single studies). Second, restricting information to that

available prior to a particular time removes a primary

source of positive bias in modeling studies. The prediction

task is not contaminated by knowledge that was gained by

knowing the answer for the prediction at hand.

Methodologically, we describe and evaluate three new

techniques (all procedures will be described in more detail

in the ‘‘Methods, data, and computational protocols’’

section):

1. Automatic protein structure selection Given a collec-

tion of protein structures, there will be redundancy

among many variants, and there will also be outliers.

In order to perform well with respect to docking new

ligands, structures must be chosen to be representative

of the important variants in the collection. The

procedure we have adopted computes all pairwise

distances between structures based on protein binding

pocket similarity [33, 34]. Given these data, choosing a

specified number K is accomplished using K-means

clustering, with the exemplars for each cluster being

those that, on average, are closest to all cluster

members (essentially the cluster centers). A mutual

alignment is constructed using single-linkage hierar-

chical agglomerative clustering. Figure 2 shows the
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Fig. 2 Temporal partitioning for cross-docking prediction: the information above the dotted line became publicly available prior to 6-27-2003

and is to be used to make predictions on ligands whose bound configurations was determined later
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alignment tree along with the five chosen variants for

CDK2.

2. Dynamic use of known bound ligands to guide

molecular alignment In Fig. 2, the core scaffold (2-

anilino-pyrimidine) of the new ligand can, for exam-

ple, be found in the known 1H1S ligand (an anilino-

purine). In this case, the common substructural frag-

ment offers an excellent guide as to the correct primary

alignment of the test ligand. Non-exhaustive dynamic

substructural matching of a test ligand to the full set of

previously known bound ligands is done in order to

identify well-positioned fragments. These fragments

are used to provide additional search focus on binding

motifs that are supported by experimental evidence.

3. Fusion of molecular similarity with docking scores to

improve pose family ranking The experimentally

determined configuration of the 2XNB ligand (tan

sticks, lower left of Fig. 2) manifests a core hinge-

binding interaction common among many early CDK2

inhibitors. Clues as to the likely positions and orien-

tations of the pendant groups may be found among

these inhibitors as well (e.g. favorable positions for

cations to make salt-bridges). In this work, the 3D

similarity is computed for each predicted ligand pose

from docking to the set of those previously known.

These similarity values are re-cast as probabilities, and

the natural relationship between probabilities and

energies is exploited in order to provide a correction

to the energetic score for each pose. Using the new

scores, pose families are generated. In this example,

the cluster of predicted poses covers the one derived

from experiment, with the closest individual pose

being 0.5 Å RMSD.

These new methods for addressing the cross-docking prob-

lem are implemented within Surflex-Dock, but the concepts

are general and should be of broad utility. We present results

on a newly curated cross-docking benchmark, which we

believe to be the largest and most relevant that is publicly

available. There are 949 test ligands, spread across ten ex-

tensively studied pharmaceutically relevant targets (ordered

from most to least test ligands): carbonic anhydrase II (CA-

II), cyclin-dependent kinase 2 (CDK2), HIV protease (HIV-

PR), thrombin, beta secretase 1 (BACE1), HSP90a, map

kinase 14 (MAPK14), PPARc, protein tyrosine phosphatase
1b (PTP1b), and the non-nucleoside site of HIV reverse

transcriptase (HIV-RT). At the time of curation in Fall 2012,

these were among the most heavily represented targets

within the PDB in terms of non-covalently bound ligands,

with the particular selections made to avoid redundancy or

lack of pharmaceutical relevance. For each target, all vari-

ants were identified by UniProt annotation, and partitioning

was done based on PDB deposition date, with the earliest

25 % of structures forming the known set from which all

predictionswould bemade and the subsequent 75 % forming

the test ligands. The benchmark data set is called PINC

(‘‘PINC Is Not Cognate’’). See www.jainlab.org for details

on PINC availability.

By combining these new techniques with our previously

established multi-structure docking protocol, we achieved a

mean success rate for top-scoring pose families of over

60 %, with the three most challenging targets from our

previous study (CDK2, MAPK14, and thrombin [31])

yielding mean performance of 71 %. Considering the top

two pose families, the overall success rate was 74 % (80 %

for the aformentioned trio). Among all pose families re-

turned, the success rates were, respectively, 88 and 90 %.

In this study, the most challenging targets were HIV-PR,

PTP1b, and PPARc. These shared in common the highest

proportion of test ligands whose structures were not only

very different by 2D similarity to previously known li-

gands, but they were also very different in terms of 3D

similarity (in their experimentally determined bound poses)

to previous ligands. Other aspects such as ligand flexibility

and binding site volume were less important.

These results are comparable to the best results obtained

in difficult cognate docking benchmarks [13, 14, 23], though

they are not quite as good as the best results obtained on the

Astex Diverse Set [12, 15], a carefully curated ‘‘clean’’

cognate benchmark upon which many methods exhibit high

performance. In a practical sense though, for targets where

there is significant knowledge to be exploited, the methods

presented here offer an automated means to deliver robust

performance in a wide variety of cases, with expectations of

the correct binding mode being among the top 2 predicted

pose families over 70 % of the time, among the top 5 over

80 % of the time, and being among all those predicted 90 %

of the time. For an automatic approach, not requiring a hu-

man expert, this represents a significant improvement in

binding mode prediction.

In a more general sense, the new techniques presented

here should be applicable beyond the particular imple-

mentation described. We believe that hybrid approaches

that combine information from docking and scoring, ligand

similarity, and protein pocket similarity will frequently

show synergistic performance improvements for lead dis-

covery and for predictions of binding mode, affinity, and

off-target biological effects.

Methods, data, and computational protocols

The results of this study are derived from a new benchmark

data set for cross-docking, which will be described in detail

first. Three new methods for making effective use of

structural information, about both proteins and ligands, will
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be described next. Readers may find the details of the

computational protocols for data set preparation, docking,

and evaluation (that end this section) of more interest after

having read the Results and Discussion.

Structural data: the PINC benchmark

A query of the Protein Data Bank [35] on 8-1-2012,

seeking X-ray protein structures containing bound ligands,

produced an initial set of complexes. These were filtered to

retain ligands that were non-covalently bound, contained

only atoms including [H C N O S P F Cl Br I], and had

molecular weight less than 1000. Ligands were rejected

that lacked at least three heavy atoms whose minimal

distance (van der Waals surface-to-surface) with the pro-

tein was less than 1.0 Å. Further, the relationship of the

ligands to the sites was assessed to eliminate ligands just

grazing a protein’s surface, a notion of ‘‘buried-ness’’ de-

scribed in Spitzer et al. [34], which assesses a ratio of the

number of nearby protein atoms relative to the total number

of ligand heavy atoms. The filtering criteria were designed

in order to preserve all of the ligand binding sites in the

Astex Diverse cognate-docking benchmark of 85 com-

plexes [12]. Note that in order to obtain as many examples

as possible, no limit was set on crystal structure resolution

or other technical aspects of structure quality.

The resulting set contained 30,999 PDB structures,

corresponding to 63,699 liganded binding sites. These were

organized by annotated UniProt ID and sorted by the

number of ligands per target. The top 16 such targets each

contained more than 70 ligands, and 10 of these targets

form the benchmark data set summarized in Table 1. These

ten targets represent a diverse set of protein types: a ty-

rosine phosphatase (PTP1b), two aspartyl proteases

(BACE1 and HIV-PR), a mitogen-activated protein kinase

(MAPK14), a serine-threonine kinase (CDK2), a serine

protease (thrombin), a ligand-modulated transcription fac-

tor (PPARc), a metal-dependent dehydratase (CA-II), a

heat-shock protein (HSP90), and a transcriptase (HIV-RT).

All are either targets of existing drugs or have been actively

pursued as drug targets. Three of the 16 were eliminated on

the basis of redundancy with another target or target class

(P00760: trypsin, P00742: factor Xa, O14757: chk1).

Another three were eliminated because the proteins were

from non-human, non-pathogenic organisms. These three

were judged to be of limited pharmaceutical relevance

(P00489: glycogen phosphorylase [rabbit], P19491: gluta-

mate receptor 2 [rat], and P29476: nitric oxide synthase

[rat]). Additional details on preparation protocols can be

found below in Computational Procedures.

The total number of ligand binding sites was 1261.

Overall, 89 % of the structures had resolution of 2.5 Å or

better, and the poorest resolution structure was 3.3 Å. Data

for each target was partitioned by sorting on the PDB de-

position dates, making use of the oldest 25 % (312 ligands)

for use as information to guide bindingmode predictions and

reserving the remaining 75 % (949 ligands) for testing

docking protocols. Table 1 breaks the data set down by tar-

get, sorted by binding site volume. HIV-PR had the largest

andmost flexible ligands, with the other pole being occupied

by HSP90a and CA-II. Overall, 18 % of test ligands had 3 or

fewer rotatable bonds, 38 % from 4 to 7, 24 % from 8 to 12,

16 % from 13 to 19, and 5 % had 20 or greater.

The eight largest binding sites are depicted in Figs. 3

and 4. Each is shown with white mesh enveloping the full

scope of the binding site as explored by the test ligands.

Within each target site, five ligands are shown, those ex-

amples belonging to the binding sites chosen as being

representative of each target’s early set (the choice process

is described below).

Table 1 Summary of target and ligand characteristics, sorted by binding site volume

Target UniProt N early Date cutoff N future Volume (Å3) MW (mean ± SD) NRot (mean ± SD)

PTP1b P18031 17 15-Jan-03 52 3102 505 ± 151 10 ± 5

BACE1 P56817 34 4-Dec-07 103 2360 481 ± 154 10 ± 7

MAPK14 Q16539 30 12-Oct-07 92 2232 435 ± 87 7 ± 3

HIV-PR P0336[6/7/9] 42 a 127 1892 622 ± 121 16 ± 5

Thrombin P00734 37 26-Sep-01 114 1858 430 ± 97 9 ± 4

PPARc P37231 21 22-Aug-06 62 1443 414 ± 122 8 ± 4

CA-II P00918 42 21-Apr-05 128 1420 299 ± 81 6 ± 3

HSP90a P07900 32 28-Jun-07 98 1329 301 ± 111 4 ± 3

CDK2 P24941 42 26-Jun-03 127 1237 343 ± 78 5 ± 2

HIV-RT P04585 15 19-Jul-99 46 614 369 ± 79 5 ± 2

a HIV-PR was annotated in the PDB within three UniProt families, treated each with their own date cutoffs, respectively: 22-Dec-05, 11-Apr-97,

and 11-Jun-02
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The four largest sites had volumes spanning

2000–3000 Å3. PTP1b is the largest, by far, with a char-

acteristic ligand binding mode that involves a salt-bridge

typically between a carboxylate on the ligands and Arg-221

on the protein (marked as 1 in Fig. 3). The site can

accommodate extremely large ligands, including some that

span the longest extents of the envelope depicted. BACE1

is an aspartyl protease, where the common recognition

motif of inhibitors includes interaction with the active-site

aspartic acid residues (2 in the figure). HIVPR, another

Fig. 3 The four binding sites with the largest volumes

Fig. 4 The protein binding sites with volume sizes ranked 5–8
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aspartyl protease, is analogously marked (3 in the figure).

MAPK14 has its hinge binding region marked (4).

In Fig. 4, thrombin has the S1 binding pocket marked

(1), with ligands typically containing basic moieties for

salt-bridging to an aspartic acid residue, but neutrally

charged S1 elements emerged over time in development of

thrombin inhibitors. PPARc has a complex active site, with

a site frequently occupied by a ligand carboxylate (2) and a

helix (3) around which the typically very flexible ligands

bend. The PPARc ligands in Fig. 4 all exhibit a canonical

binding mode, but a very different alternate mode was

discovered over time. CA-II ligands interact with an

essential zinc ion (marked 4), very often containing a

sulfonamide that is thought to interact in its anionic form

[36]. The active site opening is fairly wide, offering op-

portunities for many different protein-ligand interactions.

HSP90 is marked with a characteristic interaction to resi-

dues Asp-93 and Ser-52 (5).

For all ten targets, the overall volume that is explored by

the test ligands is much larger than that observed within the

structures used for docking. Even considering the full

complement of the ‘‘early quarter’’ of protein-ligand

complexes for each target, the scope and variety of inter-

actions observed later in time represent very challenging

problems for binding mode prediction. For this reason, an

effective strategy for choosing representative protein

structures from among those available at a particular time,

independent of any knowledge of the future ligands to be

predicted, is critical.

Systematic choice of representative protein

structures

Given a collection of protein structures, there will be re-

dundancy among many variants, and there will also be

outliers. In order to perform well with respect to docking

new ligands, structures must be chosen to be representative

of the important variants in the collection. The procedure

we have adopted computes all pairwise distances between

structures based on protein binding pocket similarity, using

the PSIM approach [33, 34]. Given these data, choosing a

specified number K is accomplished using K-means clus-

tering, with the exemplars for each cluster being those that,

on average, are closest to all cluster members (essentially

the cluster centers).

A mutual alignment is constructed using single-linkage

hierarchical agglomerative clustering. Figure 2 shows the

alignment tree along with the five chosen variants for

CDK2. Note that the five chosen representatives (the pro-

tein ensemble) come from different parts of the tree. With

the exception of 1H1P, all are clearly part of groups of

closely related protein variants (the values on the graph’s

edges are protein pocket similarity scores). The protein

alignment is done to maximize the surface concordance of

the protein variants according to the PSIM metric.

Exploitation of known substructural fragments

In Fig. 5, the core scaffold (2-anilino-pyrimidine) of the

ligand in question can, for example, be found in the ligand

of 1H01 (among several others). In this case, the common

substructural fragment offers an excellent guide as to the

correct primary alignment of the test ligand. Non-exhaus-

tive dynamic substructural matching of a test ligand to the

full set of previously known bound ligands is done in order

to identify well-positioned fragments. These fragments are

used to provide additional search focus on binding motifs

that are supported by experimental evidence.

For each molecule to be docked, a set of substructural

matches (containing at least four heavy atoms) are

Fig. 5 Dynamic substructure matching of a ligand to be docked to

ligands whose bound poses are known is used to provide additional

search focus on known binding motifs. Note that the ligand

conformations shown are from the respective crystal structures to

illustrate the relative alignments of known fragments to those present

in the subject ligand
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identified from the set of bound ligands. The search for

matching substructures is performed in a depth-first man-

ner, while keeping track of the largest yet-discovered

substructure and the total number of recurrence initiations.

The search is terminated either by exhaustion or when

more than 10,000 recurrence initiations have occurred

since the last discovery of a larger matching substructure

between the molecule to be docked and the known mole-

cule. Redundant matches are eliminated for each known

molecule. After identifying all such substructural matches

for all of the user-provided molecules, the GSIM 2D

similarity score [37] is computed between each substruc-

tural match and the whole ligand, with the top scoring

matches being retained (with a default maximum of 50

matches for docking a particular ligand).

The substructural matches are used in addition to the

standard alignment procedures within the Surflex-Dock

search algorithm [10, 38]. The additional computational

cost of this additional search focus is low, because the

substructure identification procedure is non-exhaustive and

computing a maximum of 50 additional alignments per

ligand conformation is computationally inexpensive. The

median docking times using a single computing core on a

standard desktop workstation circa-2013 were roughly

5 min per ligand for targets with typically sized ligands

(e.g. CDK2), but for targets with highly flexible ligands

(e.g. HIV-PR), times increased to 10–20 min per ligand.

Use of molecular similarity to influence pose ranking

The experimentally determined configuration of the 2XNB

ligand (tan sticks, lower left of Fig. 2) manifests a core

hinge-binding interaction common among many early

CDK2 inhibitors. Clues as to the likely positions and ori-

entations of the pendant groups may be found as well (e.g.

favorable positions for cations to make salt-bridges). Here,

the 3D similarity of each predicted ligand pose from

docking to the set of those previously known is computed.

These similarity values are re-cast as probabilities, and the

natural relationship between probabilities and energies is

exploited in order to provide a correction to the energetic

score for each pose. Using the new scores, pose families

are generated. In this example, the cluster of prediction

poses covers that derived from experiment, with the closest

being 0.5 Å RMSD.

Figure 6 shows a predicted pose for the 2XNB ligand

(A), along with a depiction of its surface shape and elec-

trostatic similarity to the bound pose of the ligand of 1FVV

(B). Green sticks indicate high shape similarity, and blue

and red sticks depict high similarity in polar characteristics

(positive and negative features, respectively). While both

compounds are aniline derivatives, it is the similarity of the

more structurally divergent parts of the molecules that

drive the high similarity.

We have previously introduced the idea of using pose

families of closely-related ligand configurations to repre-

sent the results of docking [38]. Rather than treating the

final predicted pool of n poses as individual and indepen-

dent predictions, pose families are constructed based on

RMSD, and they are ranked based on Boltzmann-derived

probability scores. A given score of x (between 0 and 1) for

a particular pose family means that it is expected for the

experimentally observed bound configurations of the ligand

in question to fall within that family with probability x.

Figure 7 shows the two top-scoring pose families for the

A

B

Fig. 6 Molecular similarity to bound ligands of different scaffold

types can help in pose-ranking
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ligand of 2XNB. Without adjustment based on prior

knowledge of other bound ligands, using only docking

scores, the bottom (incorrect) pose family received a

probability score of 0.57, with the top receiving a score of

0.31. The challenge is to make use of knowledge of prior

ligand binding modes in order to distinguish the correct

binding mode (A) from the incorrect mode (B).

The procedure we employ takes an idea from statistical

potentials, which derive energy functions from observed

distributions of molecular configurational properties

(typically distances). In the case of amino-acid residues,

the free-energy of interactions between residue types i and j

is given as follows [39]:

wij ¼ �RT ln
qijðrÞ
q�

� �
ð1Þ

The notion is to determine the distribution of observed

configurations compared with a reference state. Con-

figurations that are common in the observed data relative to

the reference state lead to a high relative likelihood and

consequently a favorable negative energy. Here, we use

this idea to provide an energetic correction predicted

molecular poses, where those that appear to be more

‘‘native-like’’ are treated in an analogous fashion to amino-

acid distances that are frequently observed within ex-

perimental data. We must compute a relative likelihood

that a given pose for a ligand is native-like given infor-

mation about the experimentally determined poses of other

ligands.

Suppose we have a collection of docked poses for a

ligand, denoted L1...n, some of which are close to native and

some not. We can use a similar formulation to Eq. 1 by

expressing the similarities of these poses to native poses in

terms of probabilities. We have previously shown how to

transform the results of molecular similarity computations

into probability values by comparing the magnitude of a

similarity score for molecule A versus B to the distribution

of scores for A and B compared with a random background

set of molecules [40, 41]. In that work, given the maximal

similarity of A to B (in any energetically reasonable con-

formation of either molecule) the problem was to assign a

probability of observing a similarity value or that magni-

tude or higher. In the present case, we have a different

situation, in two respects. First, we have particular poses of

a ligand L1...n that fit within the active site of a particular

protein; as such, they represent a small fraction of the

configurational space available to the ligand. Second, we

have a set of native poses of multiple active-site bound

ligands, one each (denoted K1...m). We compute the mean

and standard deviation of the distribution of Surflex-Sim

3D pairwise molecular similarities between the predicted

poses L1...n and the known bound poses K1...m (denoted l
and r).

So, we have estimated l and r for the population of all

poses of L that fit within the active site, based on the results

of the docking procedure. For a particular pose Li, its av-

erage similarity to the set of bound poses is computed

(similarity function denoted by S). Within the population of

poses for L that fit within the active site, the average of

these m similarities should have a distribution with mean l
and with variance r2=m. We define a correction to the

energy associated with pose Li as follows:

si ¼
1

m

Xm
j¼1

SðLi;KjÞ ð2Þ

r0 ¼ rffiffiffiffi
m

p ð3Þ

pi ¼ 1� 1

2
1þ erf

si � l

r0
ffiffiffi
2

p
� �� �

ð4Þ

wi ¼ �RT ln
1

pi

� �
ð5Þ

Equation 4 is simply the area under the right-hand side

(high similarity) of the expected distribution of average

similarity values to the known poses. A predicted ligand

pose that looks much less native-like than other predicted

poses would receive a low similarity score, resulting in a

value close to 1 from Eq. 4 and an energetic correction of

Fig. 7 The top scoring pose families for the 2XNB ligand for

knowledge-guided docking (a marked ‘‘G-’’) and unguided docking

(b marked ‘‘U-’’). The crystallographic pose (two alternates) are

shown in thick tan sticks with the docked pose families shown in

contrasting color
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close to zero. Conversely, a predicted ligand pose that

looks very native-like compared with other poses would

receive a low probability and a large, favorable energy

correction from Eq. 5. In practice, a lower bound of 1�
10�6 is used for the probability scores to limit the max-

imum size of the score adjustment.

Recall from Fig. 7 that the two top-scoring pose families

for the ligand of 2XNB were incorrectly ranked, with the

bottom (incorrect) pose family receiving a probability score

of 0.57 and the top 0.31. After the similarity-based adjust-

ment of docking scores using similarity to known, bound

inhibitors, the probability scores changed to 0.0001 and 0.98,

respectively. The value of the docking score adjustment for

the singlemost native-like pose of the ligandwas?3.1 (units

of pKd). The labels ‘‘G-Fam-1’’ and ‘‘U-Fam-1’’ indicate

‘‘knowledge-guided protocol family number 1’’ and ‘‘un-

guided protocol family number 1’’ respectively. This label-

ing conventionwill be used throughout the figures to identify

protocols and pose family rank numbers.

Computational protocols

Automatic procedures were used for protein and ligand

preparation (including protonation and assignment of tau-

tomeric states), test ligand pose randomization, binding site

alignment within each target, and setup of all docking runs.

Manual inspection of protein-ligand complexes for clear

errors resulted in corrections for less than 5 % of struc-

tures. The full PINC benchmark along with the scripts used

to produce the primary results of this study are available at

www.jainlab.org.

Data set preparation

The pipeline for automated curation and alignment of the

ligand-bound protein variants was described in a previous

study that was focused on binding site comparison [34],

and the overall strategy and characteristics are described

above. Manual curation was required post facto to identify

and correct ligand structural errors (typically bond order

mistakes), and to identify cases where the automatic pro-

cedures yielded examples inappropriate for testing varia-

tions of docking procedures. Such cases included those

where a metal ion is generally not present in a binding site

(e.g. in thrombin and CDK2) but where one is required for

ligand binding (e.g. zinc-dependent thrombin inhibitors

and magnesium-dependent CDK2 ligands) and cases where

the ligand was occupying a non-overlapping site. No at-

tempt was made to ‘‘match’’ the test sites to the training

sites in terms of protein configuration, protonation or tau-

tomeric state, or ligand similarity or size. The only re-

quirement was that ligands for a site within a particular

target bound in roughly the same place (i.e. that the cen-

troid of any particular ligand was not too far from the

centroid of all of the ligands).

For each target, the collected curated structures (both

training and testing) were subjected to all-by-all protein

pocket alignment (using Surflex-Dock’s psim_align_all

command). The command produces pairwise alignments

(similarity scores and corresponding transformations)

along with (potentially multiple) single-linkage hierarchi-

cal protein-similarity trees, where the alignments within

each tree are from the ‘‘descendant’’ protein to it’s ‘‘par-

ent.’’ Using the PDB deposition dates, the earliest 25 % of

complexes were partitioned from the remaining complexes,

which were used for testing. Five exemplars for each target

were chosen from the early complex set using Surflex-

Dock’s psim_choose_k command.

Given the five identified cluster centers, the early com-

plexes in their mutual alignment, and the testing complexes

in the same mutual alignment, each target’s docking data

was derived. For each target, this consisted of the follow-

ing: protein[1-5].mol2 (protein active sites trimmed around

the bound ligand), ligand[1-5].mol2 (the bound ligands),

EarlyHints.mol2 (all ligands from the early complexes),

TestRef.mol2 (the test ligands in their bound poses), and

TestMols.mol2 (the test ligands as input to the docking

process). The test ligands were assigned random torsional

angles for all rotatable bonds, then they were minimized,

and their alignment parameters were assigned random

values. This procedure was employed in order to remove

bias and memory effects from the input to the docking

protocols. Preparation scripts were also produced to build

the input files for docking, including the ‘‘protomols’’ used

within the Surflex-Dock algorithm.

Every effort has been made to produce a clean bench-

mark, but the challenges in constructing large-scale sets

from the PDB should not be underestimated. The single

largest challenge is the variable quality of information

about bound ligands. For example, the ligand of 2XNB (see

Fig. 2) was incorrectly represented within the PDB as an

extremely high-energy tautomer of the correct structure

(the single-bond between the aniline nitrogen and phenyl

ring is swapped with the adjacent double-bond in the aro-

matic ring). We employ heuristic computational procedures

to identify and correct many such mistakes, but some are

detectable only by human inspection. Manual inspection

and correction affected less than 5 % of the complexes.

Docking protocols

Within the docking procedure itself, two variations were

tested, one using substructural hints (see Fig. 5) and one

without. The former was specified by adding the option -

lmatch EarlyHints.mol2 to the docking command
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gdock_list, and the latter omitted the option. Following the

docking procedure, two variations of pose-family gener-

ated were tested, one making use of bound ligand poses

(see Fig. 6) and one without. The former was specified by

adding the option -posehints EarlyHints.mol2 to the pose-

fam command, and the latter omitted the option. Additional

experiments to examine the effect of protein variant

choices were done by using alternate target input specifi-

cations, but all other aspects of the computations remained

the same.

The docking procedure employed was a variation of the

ensemble-docking protocol implemented within Surflex-

Dock and reported previously [38]. The previous ensemble

docking command of Surflex-Dock has been generalized

for this work in order to support multiple strategies for

controlling the optimization of ligand poses, but the scoring

function was unchanged. The generalized version makes

use of pre-searched conformations of ligands to be docked.

This procedure enumerates reasonable, diverse, low-energy

conformations (including flexible ring variations) of a

given input ligand (by default, up to 200 conformations are

retained). Ligand preparation for docking was made using

the search_library command of Surflex-Dock. Note that all

ligand preparation for docking was done beginning from

ligand coordinates with no ‘‘memory’’ of the crystallo-

graphic coordinates (see the description of the preparation

of TestMols.mol2 above).

The standard command employed for the docking runs

using substructural hints was: surflex-dock.exe-lmatch

EarlyHints.mol2-pgeom gdock_list Mols/pre-list Targets

loghints. The standard command for producing pose

families using bound ligand poses was: surflex-dock.exe-

posehints EarlyHints.mol2 posefam loghints. Docking was

performed using Surflex-Dock version 2.742.

Evaluation of results

The pose families resulting from docking under the dif-

ferent protocols were evaluated by computing, for each test

ligand, the minimum RMSD for each family to the refer-

ence pose of the ligand, correcting for internal symmetries.

In the case of HIVPR, C2-symmetry was also accounted

for because of the geometry of the active-site. The bulk of

analysis involves consideration of the cumulative his-

togram of RMS deviations on a per-target basis. The cu-

mulative histogram is simply a numerical integration over a

standard histogram which transforms the frequency count

(ordinate) for each binned value (abscissa) into a cumula-

tive proportion (range 0–1, ordinate) for each value

(abscissa).

In order to assess the degree of variation among protein

variants for each target, the global distribution of all

within-target protein similarity values was used to set a

threshold, below which protein variants were considered to

be novel. In an analogous fashion, binding modes for test

ligands were judged for novelty based on their maximal

similarity to previously known bound ligands (both in their

experimental poses). The threshold for ligand binding

mode novelty was also based on a global analysis for all

targets.

In some of the analyses, 2D molecular similarity was

employed to assess the degree to which a test ligand was

closely related to previously known ligands. The GSIM

method was employed in all such analyses [40]. Given two

molecules A and B as input, the method identifies all

subgraphs of molecule A up to depth 3 at each heavy atom.

For each subgraph, its existence is checked in molecule B.

The tally of matches is kept, weighted to favor subgraphs

rooted at heteroatoms. The computation is carried out bi-

directionally, and the result normalized to a scale of 0–1.

Results and discussion

The prediction task examined here parallels that frequently

seen by molecular modelers: given some new molecule that

is structurally different from those seen before, identify the

manner in which it binds the particular active site in

question. Questions about binding mode frequently occur

following verification of biological assay against a target of

interest following a high-throughput screen. They also arise

when new ligand structures are reported within the scien-

tific or patent literature. Understanding the geometric re-

lationship between new ligands and ones that have been

studied can be of great utility in shaping design decisions

during lead optimization. By partitioning our set of protein-

ligand complex data temporally, by target, we have tried to

mirror the interesting case: one where there is sufficient

uncertainty about the binding mode of a particular ligand

(or its effect on a binding pocket) that it is worth the time

and effort to make an experimental determination by X-ray

crystallography.

Table 2 summarizes the prediction results for each target

and overall. By combining substructural guidance during

docking and similarity-based guidance in ranking pose

families, we achieved a mean success rate for top-scoring

pose families of 62 %. Considering the top two pose

families, the overall success rate was 74 %. Figure 8 (left

plot) shows the cumulative histograms of success rates

aggregated for all targets under three protocols: (1) no

knowledge-based guidance; (2) guidance only from sub-

structural hints during docking; (3) and additional guidance

from knowledge of bound ligands for pose family ranking

(as with the results in Table 2). Each of the shifts in dis-

tribution of RMSD was statistically significant (p � 0.001

by Kolmogorov-Smirnov).
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At right in Fig. 8, performance is shown for all pose

families to illustrate the effects of using protein ensembles.

The red and blue curves show the effect of substructural

guidance during docking, which is marginal at the

2.0 Å threshold, but significant overall. The green curve

shows the effect of using the individual protein exemplars

singly for all targets, giving the overall performance for all

targets and all protein exemplars. The improvement using

protein ensembles was highly significant compared with

using single protein variants. The per-target patterns of

performance using different single variants compared with

using the ensemble exhibited some diversity, and this will

be discussed below.

Analogous plots for individual targets (all except for

CA-II, which exhibited little relative novelty in the context

of the other nine targets) are shown in Figs. 9 (overall

docking performance) and 10 (effects of protein ensemble

use). In Fig. 9, the blue and magenta curves correspond to

the top scoring pose family and top two, respectively, with

the yellow highlight bar showing the success rate for a

threshold of 2.0 Å. When using both types of knowledge-

based guidance, except for PPARc, typical success rates for
top-scoring pose family (the blue curves) ranged from 60 to

75 %. The gap between the red and green curves represents

the value of using substructural hints during the docking

process. The gap between the green and blue curves shows

the value of using similarity to known bound poses of li-

gands in addition to the substructural hints during docking.

Overall, as seen in Fig. 8, the value of substructural hints

was less (often substantially so) compared to similarity-

based information for pose family re-ranking.

The effects of using a protein ensemble versus using the

individual exemplars within the ensemble were more varied.

In all cases, it was possible to choose a particular protein

from among each set of five that would produce substantially

poorer performance than other variants or the ensemble

produced. In a few cases, fortunate choice of a particular

ensemble member yielded performance nearly as good as

seen from the ensemble (see the thrombin and HSP90 ex-

amples, in particular). In two cases (MAPK14 and BACE1),

performance using any single protein variant was substan-

tially worse than that observed using the ensemble.

The three most challenging targets from our previous

study (CDK2, thrombin, and MAPK14 [31]) yielded ex-

cellent performance in the current study, with mean per-

formance of 71 % for top-scoring pose family and 80 % for

Table 2 Summary of results in terms of success percentages at an

RMSD threshold of 2.0 Å for the top pose family, top 2, 5, and 10

Target N test Top family Top 2 Top 5 Top 10

PTP1b 52 50 67 77 83

BACE1 103 57 71 85 88

MAPK14 92 71 79 89 93

HIV-PR 127 55 69 75 80

Thrombin 114 68 76 81 83

PPARc 62 31 34 39 45

CA-II 128 63 77 88 94

HSP90a 57 57 72 91 91

CDK2 127 75 85 93 96

HIV-RT 46 63 78 87 91

Overall 949 62 74 83 87

Fig. 8 Overall performance of Surflex-Dock under different docking protocols (left) and considering the effect of using a protein ensemble

(right) compared with a single protein variant for each target (aggregated over five different selections each)
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the top two. In this study, the most challenging targets were

PPARc, PTP1b, and HIV-PR. These shared in common the

highest proportion of test ligands whose structures were not

only very different by 2D similarity to previously known

ligands, but they were also very different in terms of their

maximal 3D similarity (in their bound pose) to previous

ligands. Other aspects such as ligand size/flexibility and

binding site volume were less important.

In what follows, performance on each target will be dis-

cussed in some detail, with particular attention paid whether

Fig. 9 Overall docking performance under different docking protocols for nine targets. The key curves are blue (top scoring pose family using

the knowledge-guided protocol), magenta (top two pose families), and red (top pose family in the unguided protocol)
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the knowledge-utilization strategies had different impact on

different targets. The order in which the discussion is orga-

nized is from best to worst performance for top-scoring pose

family (using both types of structural guidance): CDK2,

MAPK14, Thrombin, HIV-RT, CA-II, BACE1, HSP90a,
HIV-PR, PTP1b, and PPARc. This corresponds to the order
seen in Figs. 9 and 10. Following that, the effects of our

protein selection procedure will be discussed.

Fig. 10 The effects of using single protein exemplars versus an

ensemble of five for nine targets. The key comparisons are between

the red curve (protein ensemble with no substructural guidance during

docking), blue curve (adding substructural guidance), and the

remaining curves (each from a single protein variant from the

ensemble, using no substructural guidance)
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CDK2

CDK2 was used as an example throughout the description

of the methodology, as it represents a typical case in terms

of performance within the overall benchmark. As seen in

Fig. 9, the use of substructural information during docking

produced a mild performance improvement (roughly 4 %

points), but the use of similarity-based knowledge of prior

known ligand binding modes produced a large improve-

ment (roughly 17 points).

The reasons are two-fold. First, except for a few target

cases, the search algorithms within the Surflex-Dock opti-

mization procedure are generally adequate for identifying

some close-to-correct poses within the set of 100 produced,

even without using any information about previously

identified binding motifs (the red curves in Fig. 10). Se-

cond, the difference in energy between native-like solu-

tions (e.g. Fig. 7a) and incorrect ones (Fig. 7b) is small,

often (as in this case) less than 1 kcal/mol. So the problem,

generally speaking, is not one of discovering a good so-

lution, but ranking it as such.

These observations paralleled our previous study, using

a much smaller data set from Sutherland et al. [29]. In that

work, CDK2 was among eight different targets, with 211

ligands used for testing overall. Pose ranking was the key

problem, with less than half of the cases in which a correct

pose was produced being correctly identified as such. In the

previous work, protein pocket adaptation (Cartesian-space

all-atom optimization) was used to influence pose family

rankings. In the most difficult cases, of which CDK2 was

one, such optimization was able to improve success rates

for top-ranked pose family by a few percentage points.

However, the case in which two variant methods for pocket

adaptation resulted in agreement between the top-ranked

pose families, there was a very substantial improvement in

success rate.

In the present work, rather than identifying cases in

which alternate methods agree on a particular ligand

(which may happen infrequently), the current approach

looks for agreement, measured by similarity, to the known

configurations of bound ligands whose structure was de-

termined at an earlier time point. For CDK2, this resulted

in a success rate of 75 % for top-ranked pose family and

over 85 % for the top two. Failures to identify any correct

solutions happened less than 5 % of the time.

The behavior of the CDK2 case with respect to protein

variant choice was also typical (see Fig. 10, top left). Two

particular variants, when used alone (the green and teal

curves), yielded poor performance. That is, even when

selecting from among the five variants, each of which was

itself the center of a cluster of variants, it was possible to

obtain one that could not be used to identify reasonable

poses for many ligands. Three other variants (the magenta,

brown, and dark blue curves) performed nearly as well as

the ensemble (red curve), except at lower thresholds of

RMSD, where a significant advantage for the ensemble

approach emerged. Importantly, it is not clear that one can

know whether a single variant can be generally successful

nor if that is the case which one will perform well. So,

making use of the ensemble is an effective strategy. In

some cases (discussed more below), it is essential.

One additional point is illustrated in Fig. 11. In the case

of the 2XNB complex, the deposited structure contained

two alternative poses for the ligand, the first of which was

used for the deviation calculations. The bottom of Fig. 11

shows the density corresponding to the ligand (red mesh)

along with the two modeled alternative poses, which ap-

pear to represent a good explanation of the observed den-

sity. The top of the figure shows the full set of poses for the

top-ranked pose family, along with an imputed density

surface (in transparent blue), contoured to provide a com-

parison with the experimental density. It seems probable

that numerous solutions exist which simultaneously respect

the internal energetics of the ligand, the observed density,

Fig. 11 The experimental electron density (red mesh) for the 2XNB

ligand is shown along with that computed for the entire top-scoring

pose family ensemble (thin cyan sticks with blue transparent surface,

a) and for the two alternate poses modeled in the crystallographic

experiment (thick tan sticks with gray transparent surface, b)

500 J Comput Aided Mol Des (2015) 29:485–509

123



and sensible interactions with the protein. While the posi-

tional variation seen at the left-hand-side of the ligand in

the full predicted pose family may extend beyond what is

supportable by experiment, more variation than is repre-

sented in the modeled structure may exist. We believe that

the perspectives of both the structural biologist and the

molecular modeler can benefit from broader consideration

of pose variants than has been historically done.

MAPK14

Overall performance on MAPK14 was very similar to that

seen for CDK2, with the exception that the benefit from

making use of substructural knowledge was slightly higher.

There was a roughly 9-point difference in success rates a

the 2.0 Å threshold when comparing the red and green

cumulative histograms of Fig. 9. The top scoring pose

family using both types of knowledge-based guidance was

70 %, and the top two pose families yielded 80 % correct.

Note that, as with CDK2, MAPK14 was among the three

most challenging targets in our previous work, but the

combination of knowledge-guidance from substructural

hints and similarity-based pose family re-ranking made it

the second-best in this work.

As with CDK2, there was significant performance var-

iation among the five chosen protein pocket variants, when

used singly (see Fig. 10, top middle plot). However, in

sharp contrast, the very best of these performed 26 %

points worse than the ensemble. In this case, joint use of

the five proteins was crucial to uncovering correct solutions

for many ligands. The only other target where this pattern

emerged was BACE1. These two cases were used for a

systematic test of different strategies for choosing protein

ensembles, the results of which will be discussed after the

individual protein targets.

Thrombin

Thrombin was the third of the three targets shared with our

previous cross-docking study, and as with the previous two

discussed, was one of the most challenging. In that work,

top-scoring pose family success was roughly 50 %, with

the top two pose families achieving roughly 60 %. Here,

the comparable numbers were 68 and 76 %, with the dif-

ference being essentially entirely attributable to the use of

similarity-based re-ranking of poses. Figure 12 shows the

results of docking for the test ligand from PDB structure

1ZGV, an example of a thrombin inhibitor with a non-basic

S1 binding pocket element. The result obtained from an

agnostic docking protocol yielded an RMSD of

3.7 Å (top), getting the placement of the S1-pocket ele-

ment correct, but flipping the remainder of the molecule

out of the correct pose. The unguided protocol contained an

excellent solution (0.7 Å), but the docking score for that

solution did not result in the top-scoring pose family. Use

of substructural guidance produced more numerous and

better solutions, which, with the inclusion of similarity-

based re-ranking, yielded a solution with just 0.6 Å de-

viation (bottom of Fig. 12). This case represented a

thrombin inhibitor of limited flexibility (just 6 rotatable

bonds), which presented little challenge with respect to

search adequacy but was difficult in terms of the precise

ranking among the poses produced.

A more challenging example, with 11 rotatable bonds, is

shown in Fig. 13. This structure was deposited in the PDB

in April 2011, nearly ten years after the most recent

structures from the ‘‘known’’ pool. The top-scoring pose

family in the agnostic protocol contained a single pose,

which was flipped completely around the central proline,

resulting in a deviation of 8.5 Å. Under the guided proto-

col, the top-scoring family (bottom left), achieved a degree

of congruence with the experimental solution, correctly

placing the sulfonamide substituent and obtaining grossly

correct positions for the proline linker and the chloro-

benzylamine (2.3 Å RMSD, 51 % probability score). The

Fig. 12 For thrombin, comparison between docking without knowl-

edge-based guidance (top right, pink) and with guidance (bottom,

cyan) for the ligand of 1ZGV, a triazolo-pyrimidine with a non-basic

S1 binding element, (top left in 2D and thick tan sticks in its

experimental pose)
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second pose family (46 % probability) was correct, devi-

ating 0.5 Å from the experimental pose.

The nominal docking scores of the various solutions

represented in Fig. 13 were within 1.0 kcal/mol of one-

another. Cases such as this, with flexible peptide-like li-

gands having low ligand-efficiency, are among the most

challenging in pose prediction. Approaches that seek to

disambiguate such pose variants using purely energetic

estimation approaches face a high bar. Note that the correct

position of the primary amine is away from the aspartic

acid residue within the S1 pocket of thrombin, instead

being apparently stabilized through intramolecular con-

tacts. Note also that the early complexes used to inform the

docking and pose-ranking protocol were dominated by

basic groups at the S1 position, with no examples of

chloro-phenyl or similar groups. The binding motif seen in

the linker from the S1 binding element (including the

sulfonamide) to the hydrophobic substituent was of use in

identifying the correct configuration.

HIV-RT

The HIV-RT ligands were bound in the non-nucleoside

binding site, which was the smallest site, by far, among the

ten targets studied (the next larger site of CDK2 was

slightly more than twice the volume). This, coupled with

limited ligand flexibility (an average of 5 rotatable bonds),

mooted the issue of search adequacy. No improvement was

observed using substructural hints during docking (see Fig.

9, left side, middle plot). In fact, over 95 % of test ligands

yielded a predicted pose with deviation less than

1.5 Å from experimental when considering the full set of

pose families produced (see Fig. 10). As was typical, par-

ticular choices of protein variant could yield poor results.

However, in this case, there was a single pocket variant

(protein 4) that performed indistinguishably from the

ensemble. HIV-RT was the only example where this was

clearly the case.

Despite the small volume, pose ranking for the small,

hydrophobic ligands was a challenge. Top-scoring pose

family performance was 63 %, with performance improv-

ing to 78 % when considering the top two families. Even

when considering the top ten families, performance was

91 %, still less than the 98 % success attainable (all but 1

of the 46 test ligands) when considering all pose families

that were generated.

Figure 14 shows the pocket volume along with docking

results that illustrate the challenge within this small pocket.

The top-scoring pose family (bottom left, cyan) deviated by

4.0 Å from experimental. The top-scoring family from the

unguided protocol was worse still (not shown). Clearly, the

second-ranked pose family (pink) matches the experimen-

tal pose better (0.5 Å RMSD), but the nominally large

difference in deviation between the two alternative stems

from two reasonable ‘‘flips.’’ The pyrimidine-dione is

flipped in the top-ranked configuration (‘‘G-Fam-1’’),

placing the N-ethyl at right, but the core scaffold is nearly

symmetric. The methyl and nitrile substituents are also

reversed, again not unreasonably. This is a case where

nominal RMSD gives an incomplete picture of how in-

formative a geometric prediction may be.

BACE1

Apart from being a more challenging case, BACE1 ex-

hibited the same overall pattern as MAPK14 in terms of the

performance benefits of knowledge-based guidance and

sensitivity to use of pocket variants compared with the full

ensemble. Substructural guidance during docking provided

a roughly 12-point improvement in performance (Fig. 9),

and similarity-based re-ranking produced roughly 17 points

on top of that, resulting in top-scoring pose family per-

formance of 57 %. Performance improved to 71 and 85 %

when considering the top two and five pose families, re-

spectively. The ensemble approach produced a more than

25-point improvement over the next best single protein

Fig. 13 Comparison between without knowledge-based guidance

(top) and with guidance (bottom) for the thrombin ligand within

3RML, showing the top two pose families in the guided case
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variant (Fig. 10). The effect of protein variant selection

strategy for BACE1 will be discussed below.

Note that BACE1 had the second-most flexible set of

test ligands (next to HIV-PR), with mean flexibility of 10

rotatable bonds (�7). It was also the second largest site by

volume (next to PTP1b), with the site enveloping 2360 Å3.

BACE1 is generally considered to be a challenging target,

in part because of the size and flexibility considerations, so

the pose-prediction performance we observed was striking.

Here, top-ranked pose family performance on diverse and

highly flexible ligands in a temporally segregated cross-

docking test matched that observed on challenging cognate

docking benchmarks [13, 14, 23] for multiple docking

methods (including methods such as Glide, ICM, GOLD,

and Surflex-Dock).

HSP90

The pattern of performance improvements for HSP90 most

closely paralleled that of CDK2, albeit at lower levels of

overall success. Substructural guidance during docking

provided a roughly 10-point improvement in performance

(Fig. 9), and similarity-based re-ranking produced roughly

13 points on top of that, resulting in top-scoring pose

family performance of 57 %. Performance improved to 72

and 91 % when considering the top two and five pose

families, respectively. The ensemble approach produced a

5-point improvement over the best single protein variant

(Fig. 10), and it was roughly 30 points better than the worst

variant.

HIV-PR

HIV-PR was, by a significant margin, the target with the

most flexible ligands (an average of 16� 5 rotatable

bonds). That fact, coupled with an active site volume of

nearly 2000 Å3, and a reasonably flexible protein, created

an a priori expectation of high difficulty. It was atypical in

that it was the only target for which substructural guidance

during the docking process yielded a larger improvement

(15 points) than similarity-based re-ranking (10 additional

points). This was likely due to the extreme flexibility of the

test ligands. Top-scoring pose family performance was

55 %, increasing to 69 % for two, and 75 % for top five.

The value of substructural hints is clearly seen in Fig. 10

(bottom left plot), where the difference between the red and

blue curves is only the use of substructural guidance. At the

2.0 Å threshold, such guidance yields a six-point advan-

tage (for an overall success rate for all pose families of

84 %). At the 1.5 Å threshold, the improvement was 20

points; clearly a very significant impact. Similar to BACE1

and MAPK14, but to a lesser degree, the use of a protein

ensemble produced better results than any single protein

variant.

Figure 15 shows a typical peptide-like inhibitor (the li-

gand of 1ZSR), having over 20 rotatable bonds. Two views

are shown of the top-scoring knowledge-guided pose

family, with the crystallographic pose shown in tan and

with a transparent surface. The RMSD of the closest pose

within the family was 0.8 Å, and as the inhibitor meets

solvent (bottom left and front right in the figure) it exhibits

a greater degree of mobility in the docking result. We

believe that this picture of a binding-mode prediction is

more informative, and likely more accurate, than one

where a single pose is displayed.

Especially given the demanding characteristics of HIV-

PR, we view the performance of the knowledge-guided

protocol as being a success. More broadly, to summarize

thus far, performance using the knowledge-guided protocol

for all but two of the ten targets reported here (PTP1b and

PPARc, discussed below) met or exceeded 55 % for top-

ranked pose family and all but one (PPARc) met or ex-

ceeded 67 % for the top two. Except for perhaps two tar-

gets, the level of performance seen here for cross-docking

Fig. 14 The HIV-RT pocket volume (top) is shown along with

docking results for the ligand of 3LAL: tan sticks for the experimental

pose, cyan for the top-scoring pose family with knowledge-based

guidance, and pink for the second-ranked family
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matches that of challenging cognate docking benchmarks.

It significantly exceeds that previously reported on sub-

stantial cross-docking benchmarks such as those described

in the Introduction, where success rates of 20–30 % were

common in cross-docking with single protein variants [28–

31]. Note also that this is the only temporally segregated

benchmark of which we are aware, and it is also one of the

largest and most diverse in terms of both target types and

ligand structural variety.

PTP1b

PTP1b had the largest active site (over 3000 Å3), and its

ligands were quite flexible (an average of 10� 5 rotatable

bonds). The unusual aspect of performance for this target

was that, at the 2.0 Å threshold, no real improvement re-

sulted from use of either method for making use of prior

knowledge, at least for top-scoring pose family. At larger

deviations, there was a clear benefit for using substructural

guidance (see Fig. 9), but not for similarity-based re-

ranking. PTP1b also had the largest increase in success in

moving from a single pose family to two (17 % points).

Figure 16 illustrates the challenge of this binding site with

an example of the improvement seen between the top and

next best scoring pose family under the guided protocol.

The top scoring pose family, despite having placed the

buried substituent correctly, places the rigid ‘‘arm’’ of the

inhibitor in an incorrect position along the surface of the

protein (7.9 Å RMSD). The second-ranked pose family

(0.5 Å RMSD) was correct. The nature of binding for large

inhibitors in this class is mainly on the protein surface,

where much less physical constraint exists to constrain

potential docking solutions.

PPARc

PPARc was an outlier in terms of performance under all

circumstances: with and without knowledge-based guid-

ance and using any number of top-scoring pose families.

For the other nine targets, using the knowledge-guided

protocol, the success rate at the 2.0 Å threshold was 0:62�
0:08 for the top-scoring pose family. For the top two, it was

0:75� 0:06, and for the top five, it was 0:85� 0:06. Per-

formance for PPARc was, respectively, 31, 34, and 39 %

under the same docking protocol, representing decreases in

performance of 4r or greater.

The active site of PPARc was of moderate volume

(1400 Å3) and the ligands were of moderate flexibility (an

average of 8� 4 rotatable bonds) for this set of targets. The

reasons for the difficulty appear to stem from two primary

drivers: (1) diversity in protein active site configurations

when bound to the test ligands; and (2) the fraction of novel

binding modes of test ligands compared with training

ligands.

For PPARc, protein binding site diversity was the

highest among all proteins. We computed the maximal

binding pocket similarities for each cognate pocket for

each test ligand against the pockets for all ligands within

the known early pool. We assessed the fraction of such

similarities that fell below a threshold set based upon a

Fig. 15 HIV-PR (magenta), shown in top view (left) and side view (right), with the top-scoring predicted pose family for the ligand of 1ZSR

(cyan with experimental pose in tan)

504 J Comput Aided Mol Des (2015) 29:485–509

123



global analysis of computations for all proteins (see

Methods), calling those sites with lower similarity novel.

For PPARc, the fraction of novel protein active sites was

49%. Interestingly, the two targets that benefited the most

from making use of a protein ensemble (MAPK14 and

BACE1) also had high novelty fractions (33 and 18 %

respectively). Among the remaining targets, active site

novelty fractions were all below 10 %, except for HIV-RT

(22 %) whose limited volume appears to ameliorate that

effect.

To assess novelty with respect to test ligand binding

mode, we performed a similar computation using 3D

similarity of the bound configurations of test ligands

compared with those of the known early pool. For each test

ligand, the maximum similarity to the knowns was com-

puted. Novel binding modes accounted for fully 50 % of

the ligands for PPARc. This appears to explain the relative

challenge of PTP1b as well, with 40 % of test ligands

exhibiting novel binding modes. The remaining targets

exhibited novel binding modes less than 10 % of the time,

except for HIV-PR (28 %) which was also a relatively

challenging target.

To put this issue of binding-mode novelty in perspec-

tive, recall Fig. 3. The marked locations ‘‘2’’ and ‘‘3’’

correspond to those marked in Fig. 3: (1) the canonical

binding location for acids; and (2) helix 12, the canonical

helix around which many ligands are known to bind [42].

Location 2 is surrounded by four donor protons (two from

histidine residues, one from serine, and one from tyrosine).

Figure 17 shows 11 canonical ligands (tan) from within the

early pool of 21 complexes that contained carboxylates in

favorable contact with this part of the protein. Also shown

are the 9 worst failures (cyan, based on best RMSD among

the top ten pose families). All of the latter placed car-

boxylates in a completely different place than that seen in

the canonical binding mode. In addition, a critical arginine

residue moves several Angstroms in order to complement

the binding mode seen for these difficult test ligands.

The extreme difficulty of this target was well

documented in a structural sense by Itoh et al. [42], where

hydroxyoctadecadienoic acid variants were shown to be

capable of binding in three divergent modes to PPARc.
One mode was in the canonical position, another in the

alternative mode that was common among the docking

failures, and a third in which a second ligand could bind at

the same time as one binding in the canonical mode (where

there was also a critical contact made between the ligands).

The PPARc case represents a true limitation for the

methods described here. Binding modes that are com-

pletely unlike those seen earlier will not be recovered

through use knowledge from previous ligands, either in

terms of substructural matching for configurational search

or similarity-based pose re-ranking. Further, careful auto-

mated choice of protein pocket variants from among a set

that does not contain a crucial rearrangement cannot help

to identify novel binding modes as are seen with this target.

Effect of protein variant selection

As seen in Fig. 10, selection of protein variants matters in

all cases, at least to the extent that a poor choice of a single

variant could lead to significantly worse results than the

choice of an optimal variant. This was also true for CA-II

(whose plot is not shown), especially at more stringent

levels of RMS deviation. In all cases, performance of the

ensemble (red curves) was much better than the worst

single variant, and in no case was the ensemble worse than

the best of the single variants. In two cases, MAPK14 and

BACE1, the ensemble was more than 25 points better than

that seen with the best single protein variant. This was, in

part, explained by the analysis of protein pocket novelty,

with these two cases showing a relatively high fraction of

novel pocket variations among the test complexes.

In order to assess the degree to which the protein variant

selection strategywas successful, two additionalmethods for

Fig. 16 PTP1b (pink) is shown with the ligand of 1Q6S (tan sticks),

the relevant known molecules sharing the difuoromethylphosphate

(green), and the top two predicted pose families (cyan and light

magenta)
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selecting five variants were tried for MAPK14 and BACE1.

The first was a maximally diverse selection strategy. Recall

that the strategy described earlier made use of K-means

clustering (with K of 5) along with selection of a particular

variant for each cluster whose average similarity to the other

members was highest. For the maximally diverse choice, the

set of 5 proteins that were maximally dissimilar to one an-

other were chosen (using a greedy algorithm beginning with

the single protein pocket most dissimilar from all others).

The second was a purely random strategy, in which five

different sets of five were randomly chosen.

Performance was assessed using the protocol without

any knowledge guidance when considering all protein

families generated from docking. For the K-means strategy

used throughout the paper, the success rates were 95 % for

MAPK14 and 87 % for BACE1. The ‘‘diverse’’ strategy

success rates of 66 and 82 %, respectively. For MAPK14,

the drop of 29 points was highly statistically significant

(p \10�6 by exact binomial). For BACE1, the drop of 5

points was just significant at the p = 0.05 level.

Using random selections, the average performance for

MAPK14 was 82%� 14. Two of the five random selec-

tions performed as well as the K-means strategy (success

rates of 96 and 95 %), but three were significantly worse.

For BACE1, the average performance of the random se-

lections was 85%� 2, matching that of the K-means

approach.

The K-means approach was at least as good as the best

of any alternative selection method, and it was clearly

superior to the ‘‘diverse’’ approach. The latter essentially

identifies outliers in protein pocket conformational space,

which probably do not represent the bulk of relevant con-

figurations for predicting the binding modes of new

ligands. Perhaps surprisingly, choosing random sets of 5

proteins each was a better approach than choosing

maximally different variants. In fact, for MAPK14, a for-

tunate choice of variants was as good as the careful

K-means approach in 2/5 replications. For BACE1, the

random approach never performed better than the K-means

approach, but it did not perform worse either. Overall, the

evidence suggests that making use of the K-means ap-

proach will result in the best performance, but testing such

strategies on additional targets appears warranted.

Conclusions

We have presented a new benchmarking data set for

assessing pose prediction using molecular docking called

PINC. The benchmark is focused on targets of pharma-

ceutical interest (ten total), where, for each target there is

an average of 95 ligands for testing (minimum of 46 and

maximum of 128). The test ligands were partitioned from

the training ligands temporally, with the earliest 25 % of

complexes deposited in the PDB being used as information

for use in making predictions on the remaining 75 %. This

was done for two reasons. First, it is likely that new

complexes are sought in cases where uncertainty exists as

to either the binding mode of a ligand or its effect on the

protein conformation. Second, it has been well established

that random partitioning has significant liabilities in

assessing the performance of predictive modeling for drug

design, because ligands are the products of human inven-

tion, with their structures often reflecting their ancestry [24,

37, 40, 43, 44]. So, making use of a ‘‘future’’ ligand in

order to predict the binding mode of a ‘‘past’’ one can often

embed the correct answer within the prediction task.

No effort was made to adjust the proteins used for

docking to suit the test ligands (either by selection or by

modification). Also, none was made to adjust test ligands

protonation or tautomeric state to match that of the proteins

used for docking (the test ligands were prepared with ref-

erence to their cognate proteins only). Last, no quality

parameters were used to limit the set of complexes that

formed the benchmark. Altogether, we believe the PINC

set to be the most relevant to the real-world problem of

structure-based pose prediction for small-molecule ligands

that exists.

We have presented two algorithmic enhancements to

Surflex-Dock, both allowing for exploitation of knowledge

of ligands whose binding mode had been previously de-

termined. The first, used during docking, automatically

identifies relevant matching subfragments between a sub-

ject ligand and known ones in order to focus additional

search on binding modes that have been seen previously.

The benefit of this method was typically 5–10 % points in

Fig. 17 Canonical early bound ligands of PPARc with a shared

binding mode (tan), along with the nine worst test cases (cyan), all

exhibiting a completely different binding mode for organic acids
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terms of improvement to top-scoring solutions at the

2.0 Å RMSD success threshold, but it was larger than that

for targets with particularly flexible ligands.

The second enhancement made use of an idea from sta-

tistical physics, where the degree to which a predicted pose

looked ‘‘native-like’’ was used in order to adjust its docking

score. A pose whose 3D similarity was unusually high to

those of known ligands in their experimentally determined

binding modes is quantitatively adjusted in energy based on

the estimated ratio of native-like to non-native probability.

This similarity-based re-ranking of poses yielded 10–20

points of improvement in success rates.

We also made used of a careful strategy to choose

among available protein variants using protein binding

pocket similarity [27, 33, 34, 45]. The strategically chosen

ensembles always performed as well as the best of all al-

ternative selection strategies, occasionally providing as

much as 25-point improvements over the best single pro-

tein variants and always providing substantial benefits over

the worst single variants.

All targets showed similar patterns of performance

benefits, with ensemble docking using five automatically

chosen protein variants, coupled with use of both types of

knowledge-based guidance for pose prediction producing

the best results. For nine targets (all but PPARc), perfor-
mance for this very challenging cross-docking problem

matched that seen for difficult cognate docking bench-

marks. In particular, the success rate at the 2.0 Å threshold

was 0:62� 0:08 for the top-scoring pose family. For the

top two, it was 0:75� 0:06, and for the top five, it was

0:85� 0:06. We believe that, in cases where there is

binding mode uncertainty, manual visualization of a

handful of possible solutions is something that most

modelers will be willing to contemplate.

Clearly, there are many different strategies that could be

explored to achieve performance benefits such as those we

present here. In particular, choice of protein variant on a

per-ligand basis, as opposed to the ligand-independent

approach we have used, could be useful. Certainly, it has

been established in earlier cross-docking studies that in

cases where the ligand to be docked is highly similar to the

cognate ligand of a particular crystal structure, the chances

of successful pose predictions from docking increase [30].

In this benchmark, the fraction of cases where any of the

known structures contain a ligand that is highly similar to

one to be docked is relatively low, and it is the lowest for

the most challenging targets. Likewise, there are many

ways in which one can combine ligand similarity ap-

proaches with protein structural data. It is our hope that the

public availability of this benchmark will help to both

develop and evaluate such methods.

As discussed earlier, the performance reported here rep-

resents a significant improvement in a numerical sense over

previous cross-docking studies (even those constructed with

less challenging intentions). The importance of this im-

provement depends, to some degree, on how docking is used

in practice. We have not addressed the virtual screening

application of the methods described here; that will be

something addressed in future work. The use-case consid-

ered here, prediction of bioactive poses, is relevant in at least

two ways: (1) hypothesis generation for lead optimization;

and (2) as a starting point for binding affinity prediction.

Often, docking is used as an informal adjunct to lead

optimization, in which consideration of the likely binding

mode of a ligand within an active site informs ideas about

new molecules. Based on the temporal construction of the

benchmark, it is likely that binding modes were in question

for many of the cases examined here. We obtained predic-

tion of correct binding modes within the top two solutions

75 % of the time for all but one of ten targets. Experienced

modelers working on familiar proteins could achieve some

of the benefits of the automated methods presented. We still

believe that the lead optimization scenario is onewhere there

is likely to be a practical impact for what we have reported

here. When a new series is identified, either through

screening or through public disclosure in the literature, rapid

exploitation of the information is clearly valuable. The

methods presented here make it possible to systematically

exploit large quantities of pre-existing biophysical data.

Another related, but subtly different, use of docking is to

build support for a modeler’s notion of how a ligand may

bind. In such cases, direct ‘‘steering’’ of the docking

method is used to decide whether any pose exists for the

ligand that appears compatible with the hypothesis and

with available structural data. The methods presented here

offer an agnostic means to see if the modeler’s hy-

pothesized binding mode is independently reproducible

within a highly-ranked pose family. When confirmation

exists, it should provide confidence in the hypothesized

binding mode. However, the methods do not directly sup-

port such active steering for hypothesis verification. The

methods are designed for automated use.

Perhaps more important, though, is that computational

approaches for predicting binding affinity increasingly are

dependent on close-to-correct relative (or absolute) binding

configurations in order to produce the most accurate re-

sults. We have recently developed a structure-based means

to influence the construction of physical binding site

models for predicting ligand affinity [27]. In that approach,

docking is used to help construct hypotheses for initial

ligand alignments in order to bias model induction toward

solutions that are closer to biological reality, and models

constructed in such a manner are able to make accurate

affinity predictions on a broad variety of new ligands.

Methods utilizing molecular dynamics, such as MM/GBSA

and MM/PBSA, require that accurate binding modes for all
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ligands be known [46–48], so the methods reported here

could be utilized in such protocols as well.

Another observation through the course of this study has

been that ligand binding modes are, nearly always, repre-

sentable by quite large sets of closely-related poses. We

believe that the picture that is promoted by looking at

protein-ligand complexes as single, static configurations is

inaccurate and that it limits creativity in thoughts about

molecular design. We hope to develop methods to help

identify ligand variations that better model the experimental

data in X-ray crystallography. We also plan to make use of

the concept of pose families and information fusion using

probabilistic methods to improve both the quality and in-

terpretability of 3D-QSAR methods.

The work presented here represents the first general-

ization of our ongoing work using such techniques for

predicting polypharmacology [40, 41, 49]. We believe that

hybrid approaches that combine information from docking

and scoring, ligand similarity, and protein pocket similarity

will frequently show synergistic performance improve-

ments for lead discovery and for predictions of binding

mode, affinity, and off-target biological effects.
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