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Image registration method using 
representative feature detection 
and iterative coherent spatial 
mapping for infrared medical 
images with flat regions
Hao‑Jen Wang1,2, Chia‑Yen Lee2*, Jhih‑Hao Lai2, Yeun‑Chung Chang3 & Chung‑Ming Chen1

In the registration of medical images, nonrigid registration targets, images with large displacement 
caused by different postures of the human body, and frequent variations in image intensity due 
to physiological phenomena are substantial problems that make medical images less suitable for 
intensity‑based image registration modes. These problems also greatly increase the difficulty and 
complexity of feature detection and matching for feature‑based image registration modes. This 
research introduces an automatic image registration algorithm for infrared medical images that 
offers the following benefits: effective detection of feature points in flat regions (cold patterns) that 
appear due to changes in the human body’s thermal patterns, improved mismatch removal through 
coherent spatial mapping for improved feature point matching, and large‑displacement optical flow 
for optimal transformation. This method was compared with various classical gold standard image 
registration methods to evaluate its performance. The models were compared for the three key steps 
of the registration process—feature detection, feature point matching, and image transformation—
and the results are presented visually and quantitatively. The results demonstrate that the proposed 
method outperforms existing methods in all tasks, including in terms of the features detected, 
uniformity of feature points, matching accuracy, and control point sparsity, and achieves optimal 
image transformation. The performance of the proposed method with four common image types was 
also evaluated, and the results verify that the proposed method has a high degree of stability and can 
effectively register medical images under a variety of conditions.

Medical image registration is a major area of image registration research, as medical images are often multitem-
poral and have strict image registration requirements. Among the different types of medical imaging, infrared 
imaging is particularly useful because of its substantial advantages, namely that it is low cost, does not involve 
the use of radiation, is painless, and can provide information solely using energy emitted from the human body. 
Because multitemporal infrared images can reflect long-term changes in the body’s heat map, they are considered 
a potentially powerful tool for chemotherapy evaluation and early cancer  detection1,2.

However, infrared images pose many challenges in image registration. These images only reflect the surface 
temperature of the human body, have low contrast, have insufficient intensity resolution, and provide heat map 
information that can vary substantially among individuals. In such images, multiple flat areas with uniform gray 
levels may appear. Defining effective feature points in these areas is difficult. In addition, there are few related 
studies in infrared breast image registration, so it is still important and worthy research  topics3,4.

Image registration is a critical step in computer vision, pattern recognition, and medical diagnosis. Image 
registration methods can be divided into two categories, namely intensity-based and feature-based  methods5,6. 
Intensity-based registration methods are often used for small-displacement registration tasks, such as any two 
consecutive frames of a video and are effective for non-rigid image registration. Intensity-based registration 
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methods are often used for small-displacement registration tasks, such as any two continuous frames, in a video 
and are effective for non-rigid image  registration7,8. However, if intensity-based registration is used for images 
with highly variable image intensity such as grayscale images, accurate registration is difficult. Feature-based 
registration has been extensively researched and  applied5,6,9. Because it could easily achieve the registration 
tasks as large displacements, brightness changes, or rotation changes by good selection and optimization of 
feature detection and matching. In other words, for feature-based registration, whether the method used in the 
process is appropriate is critical. Feature-based registration includes three steps. First, feature points detection: 
representative features from the source image and the target image are detected. Second, feature matching: small 
windows at feature points in the source image are compared with windows of the same size at feature points in 
the target image. Matched feature are control points used for the image transformation. Finally, transformation: 
the control point are used to determine a transformation model which registers the image, that is, registers the 
source image to the target image. Each step is closely connected and inseparable.

Feature point detection. In previous studies, classical feature point detection methods include corner-
point and spot methods (local extreme points)5,6,10. However, corner detection methods (e.g., FAST, SUSAN, 
MSFD and curvature scale-space (CSS)11–13) can generate rich and accurate corners, but are susceptible to inac-
curacies for images with homogenous backgrounds and are therefore unsuitable for low-contrast images. Spot 
detection methods such as Hessian’s determinant or maximum stable extreme  region14–16 and the feature detec-
tion algorithms  SIFT17,18 and  SURF19 rely on extreme points in a region to detect feature points. Aldana-Iuit et al. 
introduced a feature detector named  Sadder20. The detector can effectively detect saddle conditions. Compared 
with traditional methods, the Sadder detector can obtains higher  repeatability21. But the algorithm of this detec-
tor depends on intensity profile of image. Thus, these algorithms are likely to overdetect or underdetect feature 
points in low-contrast regions of grayscale infrared medical images. Therefore, slight changes in the thermal 
mode can cause spot detection failure or inaccuracy. In recent years, deep learning has also been used to detect 
feature points, which can be roughly divided into supervised  learning22–24 and unsupervised  learning25–27. How-
ever, the use of deep learning inevitably requires a lot of data as training. Not applicable to this study.

In 2017, Lee et al.28 developed an algorithm to solve the problem of image registration for infrared images 
of humans. However, the algorithm cannot detect the features of flat areas, leading to an uneven distribution of 
feature points and a deviation in registration for images with many flat areas. Even though feature point detection 
in flat areas is critical for the registration of human images, no research has been conducted on algorithms with 
this capability. Therefore, the present study developed a feature point detection algorithm that can effectively 
detect features in flat areas of infrared images and ensure the uniform placement of feature points in each posi-
tion of the image for more accurate image registration.

Feature matching. Because of changes in human physiology or the environment and the characteristics of 
infrared images, feature matching is more difficult in infrared images than in in visible light images. To overcome 
these problems, this study used the relationships among feature points for matching and mismatch removal. 
In similar studies Zhou et al.29 utilized a factorized graph-matching method that avoids the calculation of the 
pairwise adjacency matrix, and they decomposed the adjacency matrix into submatrices to reduce the com-
putational burden. However, Zhou’s method is more suitable for rigid images. In many matching techniques, 
descriptors are created for similarity measurement which improve the effectiveness of feature point matching. 
In the research published by Gesto-Diaz et al.30, different classic descriptors, such as SURF, MI, and HOG, were 
evaluated for the potential for use in matching. The pattern of local gravitational force local descriptor is hand-
crafted float-type descriptors prosed by Bhattacharjee et al. can be regarded as a combination of force magnitude 
and angle and shown promising  performance31. Wang et al.32 based on scene geometric structure constraints and 
numerical statistical features of feature invariant scale transformation proposes a method aimed at improving 
the performance of feature point matching stage named GeoMatch. It can greatly improve the matching speed 
of SIFT descriptors.

However, although the above method can achieve matching, it does not consider how to perform Mismatch 
removal in the case of matching errors. Mismatch removal is also a critical step in improving the registration 
quality. Fischler et al.33 introduced the RANdom SAmple Consensus (RANSAC), which iteratively estimates 
the parameters of the mathematical model from a data set. Thresholds are used to determine whether the data 
are outliers, and outlying i.e., mismatched) points are removed. However, image registration of breast infrared 
images is a nonrigid transformation, but the threshold approach in the RANSAC implementation is only appli-
cable to rigid transformations. In 2012, Ma et al.34 published a method of mismatch removal through coherent 
spatial mapping (MR-CSM), which they developed using thin plate splines (TPSs)35. Their algorithm uses a 
gentle deformation constraint model during the iterative process and removes matching pairs that are far away 
from each other. Same authors have realized a follow-up technique named VFC (Robust Point Matching via 
Vector Field Consensus) using the similar idea as CSM. In the article published in  201436, it claimed to have a 
high matching accuracy rate.

Since these two (MR-CSM and VFC) methods are similar concepts, considering that the matching time 
will account for most of the overall alignment time in this research, when the total time complexity of the VFC 
algorithm is high, VFC is not used as the basis Development method. Because MR-CSM is applicable to image 
pair cases that contain nonrigid transformations and outperforms many state-of-the-art methods, it was used 
in the present study to develop a novel feature point matching strategy.

Transformation model. Transformation is the last step of image registration. The transform function 
estimates the displacement vector of each pixel. This vector corresponds to mapping that is used to transform 
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the source image. The process may or may not consider matching pairs. However, matching pairs can be an 
important reference for image transformation. Reddy et al.37 devised a rigid transformation method based on 
the Fourier–Mellin transform. Matching pairs are not considered in the transformation; spectrum phase correla-
tions are used to calculate the position of the largest peak value of the inverse fast Fourier transform of the phase 
difference to obtain the transformation parameters, such as the displacement, rotation angle, and magnification. 
As an example of nonrigid transformation, Chui et al.38 introduced the TPS robust point matching (TPS-RPM), 
which uses TPSs and matches points according to point distance. However, during the matching process, all 
points must be matched without consideration of whether a point is an outlier, which results in the risk of a poor 
final transformation.

Diffusion models are other useful nonrigid transformation methods that do not consider matching pairs. 
 Thirion39 introduced the Demon method. The boundary of the target image is regarded as the registration target, 
and the boundary of the source image is regarded as a deformable grid. The source image is further diffused and 
deformed by the optical flow method. The method consists of two iterative steps: First, the differences in pixel 
values and the gradient are used to calculate the displacement of each pixel. Second, a Gaussian filter is used to 
smooth the displacements between the pixels. Vercauteren et al.40 developed diffeomorphic Demons, in which 
Lie group theory is used to modify the update rule of the Demons displacement so that the update is faster and 
the transformation is less distorted. However, such algorithms only consider the differences in grayscale values. 
Hence, they are intolerant to changes in grayscale.

In 2011, Brox et al.41 presented the large-displacement optical flow (LDOF). The method first involves the 
use of the segmentation method developed by Arbelaez et al.42, which is based on the watershed algorithm, to 
divide the target and source images into subregions, with the center of each subregion regarded as a feature 
point. Next, matching is conducted with a SIFT descriptor. The obtained matching pairs. Control points, are 
then substituted into the LDOF energy function to calculate the vector value of each pixel. This algorithm can 
realize large displacements to obtain pixel-level image mappings.

The main contributions of the present study include feature point detection in flat areas and feature matching 
optimization. The feature point detection algorithm improves the registration model’s capability of obtaining suf-
ficient feature points with a uniform distribution. The new matching strategy uses MR-CSM and matching point 
addition strategies combined with LDOF and uses two-stage iteration to correct matching errors and determine 
optimized matching pairs. These optimized matched pairs are used as control points of the transformation. The 
optimization process in this method achieves superior image registration.

Develop a feature point detection algorithm for flat regions of infrared images.
Combine MR-CSM with LDOF to develop a matching strategy and optimal transformation estimation method 
for an infrared image registration algorithm.
E valuate the proposed algorithm’s performance and applicability in comparison with those of other devel-
oped methods.

Results and discussion
To evaluate the performance of the proposed registration method on breast infrared images, the reliability and 
stability of the proposed method was demonstrated under four registration situations in three key steps (feature 
point detection, feature matching, and transformation). The four situations were large displacement with many 
flat regions (TYPE I), small displacement with few flat regions (TYPE II), small displacement with many flat 
regions (TYPE III), and large displacement with few flat regions (TYPE IV), shown as Fig. 1. The proposed 
method’s feature point detection performance was compared with that of the image registration algorithm 

Figure 1.  Results of four registration situations: (a) TYPE I, (b) TYPE II, (c) TYPE III, and (d) TYPE IV.
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developed by Lee et al. and the SIFT and SURF algorithms. The transformation results were compared with those 
of Lee et al. image registration algorithm and an optical flow algorithm to ensure the validity and reliability of 
the proposed method.

Feature point detection. To characterize the effectiveness of the proposed method’s detection of feature 
points, the proposed method was compared with the classic feature point detection algorithms SIFT and SURF. 
Table 1 shows the detected feature points (red dots on the infrared image) under the four registration situations.

Table 1 shows that SURF detected the fewest feature points, whereas the performance of the other three 
methods varied according to the feature detection area in image. The number of feature points detected with 
the method developed by Lee et al. was similar to that of SIFT, but the method developed by Lee et al. could not 
detect feature points in flat areas. The SIFT method resulted in the excessive clustering of feature points in some 
areas and could not detect feature points in flat areas. The visualization results demonstrated that regardless of 
the type of alignment, the method proposed in the present study can detect numerous evenly distributed feature 
points, which is beneficial in the subsequent registration steps.

Figures 2, 3, and 4 display the quantitative results of feature point detection. Figure 2 shows the number of 
detected feature points and offers a visualization of the results in Table 1.

The SURF method detected the fewest feature points, whereas the method developed by Lee et al. and the 
SIFT method detected a similar number of points. In all registration situations, the proposed method detected 
the largest number of feature points. In particular, for TYPE I (the most difficult registration task), the proposed 
method exhibited the best feature point detection performance.

This study adopted the definition of spatial entropy proposed by Martínez et al.43 to demonstrate that 
higher feature point distribution uniformity leads to a better image transformation. The spatial entropy is 
Huni =

�r�
rran

 , which measures how far the real distribution of pairs is from a completely random one. The spatial 
entropy is a descriptor of the uniformity of feature point distribution the mean nearest neighbor distance is 
�r� = 1

n

∑n
i=1 dis_Xi , where dis_Xi is the distance between a feature point i and its nearest neighbor. The vari-

able n is the number of feature points. If Ipixels represents all pixels of Image I, then the expected average distance 

between nearest neighbors is given by rran = 1
2

√

Ipixels
n  . Figure 3 shows that the method proposed in this study 

determines the set of feature points with the highest uniformity of the four methods compared. The SURF 
method does not lag behind other methods significantly in terms of uniformity, and some outliers of box plot 
even perform similarly to the proposed method.

The definition of spatial entropy was modified to obtain a parameter that could be used to evaluate the sparsity 
of feature points, Hspa =

�r�
Aper

 , where Aper =
n

Ipixels
 is the number of feature points per pixel. Figure 4 shows that 

the proposed method yielded the least sparse feature points among the methods evaluated.
For all four registration tasks, the proposed method detected a larger number of feature points than did the 

other methods.

Table 1.  Detected feature points under the four registration conditions.

 TYPE I TYPE II TYPE III TYPE IV 
The proposed method 

Lee et al. 

SIFT 

SURF 
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The obtainment of a dense feature distribution that is effective for image registration depends on the detec-
tion quantity, distribution uniformity, and overall density of features, which are displayed in Figs. 2, 3, and 4, 
respectively. Although Fig. 3 shows that SURF has high uniformity, Figs. 2 and 3 demonstrate that this result was 
attributable to insufficient detection quantity, leading to an improved uniformity score when calculated on the 
basis of the expected average point distance. However, a model cannot be considered to have good feature point 

Figure 2.  Compare the number of feature point detection by four methods in each types.

Figure 3.  Compare the feature point distribution uniformity calculated by four methods in each type.

Figure 4.  Compare the sparseness of detected feature points calculated by four methods in each type.
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detection when only one of the conditions is met, but rather when all conditions are met. The SIFT method’s 
performance was the most similar to that of the method developed by Lee et al., but the two methods had some 
differences, as indicated in Table 2. The SIFT method detects extreme points by using the Gaussian difference 
of images; however, this strategy causes feature point clustering and therefore hinders subsequent feature point 
matching. Although SIFT could detect feature points in some flat areas, the number of feature points detected in 
many flat areas remained sparse. Because the algorithm used by Lee et al. relies on detecting corners and intersec-
tions in the thermal map, the detected features primarily surround heat pattern and cold pattern (flat regions); 
therefore, the feature points detected within these regions are sparse. By contrast, the proposed method detected 
feature points in these flat regions and improve the image registration performance that would otherwise be poor 
due to the lack of control point pairs in these regions. The proposed method met all three of the feature point 
detection conditions. In particular, even for the TYPE I and TYPE III images, which had many flat regions, the 
proposed method yielded satisfactory feature point detection results.

Feature point matching. The proposed feature point detection algorithm performed feature matching by 
using each of four classic feature descriptors, and was comparable to the method developed by Lee et al., SIFT, 
and SURF with the same descriptors. Table 2 presents the feature matching results. The proposed feature point 
detection algorithm with the Shape Context (SC)44 descriptor correctly matched the most points correctly. The 
proposed algorithm performed well by detecting additional feature points in the flat regions to overcome a lack 
of control point pairs in flat regions, therefore achieving the dense feature distribution required for high image 
registration performance.

Table 2. Green lines represent correctly matched point pairs, whereas red lines represent incorrectly matched 
point pairs. The number and accuracy of points matched by the proposed method were both highest across all 
feature descriptors. For all feature detection algorithms, the matching performance was highest for the Shape 
Context descriptor, followed by SIFT, HOG, and MI. For all feature descriptors, the matching performance 
was highest when the proposed method was used, followed by when the method developed by Lee et al., SIFT, 
and SURF were used. Figures 5, 6, 7, 8 display quantitative data concerning the feature matching results for 
different registration situations. In each figure, different colors and shapes represent different combinations of 
feature point detectors and descriptors. The red boxes indicate the proposed method using the Shape Context 
descriptor. The yellow dots indicate the method developed by Lee et al. using the Shape Context descriptor. The 
vertical axis of the chart represents the matching accuracy (higher is better), and the horizontal axis represents 
the sparsity of the matching points Hspa (lower is better). The points in the top left corner of the chart represent 
the performance of an optimal feature point–descriptor combination. Precision and recall have often been used 
in research to evaluate matching performance. However, as recall is the ratio of correct matches to all match-
ing pairs, methods such as SURF have a misleadingly high recall value due to insufficientn feature detection. 
Therefore, in Fig. 5 through Fig. 8, precision and sparsity (Hspa) are used instead to perform a two-dimensional 

Table 2.  Visualize the comparison of matching result through different combinations of feature points and 
descriptors.

Descriptor 
Feature   

point Shape Context SIFT MI HOG 
Proposed 

Lee et al. 

SIFT 

SURF 
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Figure 5.  Quantitative comparison of matching in TYPE I through different matching combinations.

Figure 6.  Quantitative comparison of matching in TYPE II through different matching combinations.

Figure 7.  Quantitative comparison of matching in TYPE III through different matching combinations.
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evaluation of the matching performance. When the precision value is larger, the Hspa value is smaller, which 
means better matching performance.

Figure 5 displays the matching performance of different feature point-descriptor combinations in the TYPE 
I (large displacement and many flat regions) registration task. It can be clearly seen from the figure that the 
evaluated results of the proposed method are concentrated in the upper left corner of the graph, indicating that 
it has both low sparsity and high matching accuracy, and thus has the best matching performance. The method 
developed by Lee et al. achieved equivalent precision but higher sparsity compared with those achieved by the 
proposed method due to a lack of features detected in flat regions. This disparity was particularly noticeable in 
TYPE I images with more flat regions.

The figure shows the performance of matching sparsity Hspa. Because the proposed method, the method of 
Lee et al., and SIFT detect more feature points compared with SURF, they have lower matching sparsity when 
combined with the Shape Context, SIFT, and HOG descriptors, but not with the MI descriptor since it relies on 
measuring the consistency of gray-scale statistics in the two image regions. In TYPE I, the large displacements 
cause the grayscale distribution of the medical infrared image to be more likely to change, and the fact that there 
are many flat regions is not conducive to uniqueness for a descriptor based on grayscale statistics. Therefore, 
matching sparsity is higher.

By contrast, each feature point detection method had relatively good matching precision with Shape Context 
(red marks) and the MI descriptor (gray marks). Shape Context had better similarity measurement capabilities 
than the MI descriptors for the same matching sparsity. SIFT descriptors measure the similarity of 128-dimen-
sional gradient information, and HOG descriptors measure 16-dimensional gradient information. The gradient 
information on infrared medical images changes easily in TYPE I images, and thus is difficult to achieve correct 
matching.

Figure 6 displays the matching performance of different feature point-descriptor combinations in the TYPE 
II (small displacement and fewer flat regions) registration task. Because TYPE II images were the least difficult 
images to register all methods exhibited relatively low sparsity (Hspa). However, the detection of numerous 
feature points reduces the matching accuracy if a feature descriptor with insufficient similarity measurement 
capability is used. Because the method developed by Lee et al. can detect enough feature points, its matching 
performance is similar to the proposed method. Comparing Fig. 6 with Figs. 5, 15, and 16, the overall matching 
sparsity data is observed to be relatively low for TYPE II images. However, when the matching sparsity is low 
and the number of detected feature points is large (i.e., for the proposed method, Lee et al., and SIFT) if the 
matching descriptors have insufficient similarity measurement capabilities, the matching accuracy rate will be 
relatively low By contrast, choosing a rich and discriminative descriptor such as the Shape Context descriptor 
increases the matching accuracy.

Figure 7 displays the matching performance of different feature point-descriptor combinations in the TYPE 
III (small displacement and less flat regions) registration task. The method of this research still has the best 
matching performance. A comparison of the matching performance for TYPE III images with that for TYPE 
II demonstrates that the matching sparsity is significantly reduced. The fundamental reason is that the method 
of Lee et al. cannot detect enough feature points in images with more flat regions and therefore the matching 
sparsity performance has decreased. For medical infrared images with more flat areas, descriptors that rely on 
metric grayscale statistics and gradient information, such as MI, SIFT, and HOG have difficulty establishing 
unique of the descriptors. Therefore, fewer feature points are accurately matched and the matching sparsity per-
formance is reduced. The matching accuracy is affected by the similarity measurement ability of the descriptor 
and the matching sparsity. Therefore, similarly to TYPE I and TYPE II images, the selection of a good feature 
point–descriptor combination is necessary for superior matching performance.

Figure 8 displays the matching performance of different feature point–descriptor combinations the TYPE 
IV (small displacement and less flat regions) registration task. Similar to the previous three registration tasks, 

Figure 8.  Quantitative comparison of matching in TYPE IV through different matching combinations.
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the matching combination proposed in this study has the best matching performance. In TYPE IV images with 
fewer flat regions, although the method of Lee et al. detects almost as many feature points as the method of this 
research, the performance is still worse. Therefore, the proposed method is most capable of registration of images 
with large displacements.

Matching performance was evaluated both visually and quantitatively, and the proposed method was found 
to generate higher-quality feature point matching pairs as image control points for image registration. Table 2 
shows how visual observation can be used to evaluate matching accuracy, and the proposed method clearly 
matched many feature points correctly. The proposed method exhibited the highest matching performance of 
all the algorithms for each descriptor. Table 2 also indicates that the quality of feature point detection affected 
the matching performance and therefore affected the registration performance. Table 2 also presents the regis-
tration performance of image matching when a good feature point–descriptor combination is selected and the 
matching method is properly set.

Transformation. Table  3 indicates the effects of different transformation methods on the registration 
results. The upper left cell of the table shows the source image and target image. The left side of the pictures in 
the remaining cells displays a comparison of the registration results from the target image and the source image 
through the use of canny edges. Green lines represent the overlaid part of the edge, white lines represent the edge 
of the source image, and red lines represent the edge of the target image after transformation with a particular 
method. On the right side of each cell, the transformed target image is displayed. The table compares optical flow 
transformations that do not rely on feature points, displays the results of registration with different feature points 
for LDOF and TPS methods that rely on feature point transformation, and uses MI to illustrate the quantified 
registration performance.

Table 3.  Comparison of registration results through various methods. p.s. The words separated by underscores 
represent the method of “Feature points”、 “descriptor”、and “transformation ” in order that used for 
registration; MI = mutual information; SC = Shape Context; TPS = thin plate spline.

wolF lacitpO egami tegraT egami ecruoS (MI:1.155)

SPT_CS_TFIS )761.1 :IM( FODL _CS_TFIS (MI:1.149) 

Lee et al. _SC_LDOF (MI:1.169) Lee et al._SC_TPS (MI:1.161) 

Proposed_SC_LDOF (MI:1.170) Proposed _SC_TPS (MI:1.163) 
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Table 3 reveals that the best registration results were obtained when good feature point detection and match-
ing mechanisms were selected and the best transformation model was used. During image transformation, TPS 
relies heavily on the detection of feature points. Therefore, registration results vary considerably according to 
the number of feature points. Because OF methods do not rely on feature points, they have disadvantages in 
the registration of images with distortion. Results from LDOF demonstrate that a combination of feature base 
(feature point matching) and intensity base can achieve large displacements.

Canny edges were also used in this study to evaluate the image transformation performance of each method 
for each registration task. The results are displayed in Figs. 17, 18, 19, 20. A higher proportion of green lines in 
an image represents a closer match, and therefore higher registration performance.

Table 4 shows the registration performance measured by MI evaluation of the different methods in the four 
registration types, and calculates the significance statement to show whether there is a difference in performance 
between the different methods. Table 5 shows the time performers of the proposed method in the four registra-
tion types. The results show that each case can be registered within 40 s, outperforming the method of Lee et al. 
Although the method of this study is inferior to the method of optical flow in terms of time efficiency, the method 
of this study can achieve more accurate alignment results, which is more in line with the purpose of this study.

The difference analysis of the quantification results (MI) of the different methods are: TYPE I, TYPE III, and 
TYPE IV. Significant differences were observed between the proposed method and other methods (P < 0.05). 

Table 4.  and Fig. 9, 10, 11, 12 demonstrate that the proposed method outperformed the method developed 
by Lee et al. in terms of both visualization and charting results. Therefore, the proposed method achieved 
better image registration for images with large displacements or many flat regions. Even in difficult cases, the 
algorithm proposed in this study performed well.

Proposed(A) Optical flow(B) Lee et al. (C)
Significance statement
(p-value)

Type I (15 cases) 1.141598 ± 0.0190168 1.132883 ± 0.0121690 1.131403 ± 0.0198858
(A,B) p-value = 0.001
(A,C) p-value = 0.000
(B,C) p-value = 0.585

Type II (8 cases) 1.147178 ± 0.0150833 1.138849 ± 0.0139354 1.139798 ± 0.0135367
(A,B) p-value = 0.001
(A,C) p-value = 0.001
(B,C) p-value = 0.001

Type III (6 cases) 1.132366 ± 0.0183055 1.124298 ± 0.0165760 1.122981 ± 0.0165402
(A,B) p-value = 0.025
(A,C) p-value = 0.000
(B,C) p-value = 0.615

Type IV (9 cases) 1.131028 ± 0.0278672 1.119034 ± 0.0254530 1.126921 ± 0.0261110
(A,B) p-value = 0.001
(A,C) p-value = 0.033
(B,C) p-value = 0.013

Figure 9.  Canny overlays of TYPE I images obtained with (a) the proposed (b) Lee et al. (c) Optical flow.

Figure 10.  Canny overlays of TYPE II images obtained with (a) the proposed (b) Lee et al. (c) Optical flow.



11

Vol.:(0123456789)

Scientific Reports |         (2022) 12:7932  | https://doi.org/10.1038/s41598-022-11379-2

www.nature.com/scientificreports/

For TYPE I and TYPE III images, the method developed by Lee et al. did not exhibit significantly different 
performance from that of LDOF, but a significant difference was observed between method developed by Lee 
et al. and the proposed method. These results demonstrate that the proposed method can outperform existing 
methods in terms of image registration in any registration situation.

According to the experimental results, although this method can achieve a good registration effect, it still 
has the following limitations. The method of this study is not effective for the case of surgically removed breasts, 
because it is difficult to find corresponding feature points in the images of the two time points for the surgically 
removed part. Although this research method is suitable for cases with large displacement, such as TYPE I and 
TYPE VI, if the patient’s displacement in the images at two time points is too large, such as sideways, the regis-
tration cannot be achieved through this research method. Fortunately, patients are usually asked to maintain a 
similar posture during the filming of such images as they were in the previous filming. Due to the limitation of the 
feature point detection method, this research method is only suitable for registration of infrared breast images.

Methods
This study was approved by the institutional review board (IRB) of National Taiwan University Hospital (NTUH). 
Sixty-one (61) breast cancer patients who were between the ages of 25 and 72 (with an average age of 50) were 
recruited via the IRB-approved protocol from July 2011 to Jan 2013. The patients were treated using chemo-
therapy and examined using a quantitative dual-spectrum infrared system. The cancer treatment guidelines 
are strictly in accordance with the standards that have been set by the NTUH. All methods were performed 
in accordance with the relevant guidelines and regulations and informed consent was obtained from all sub-
jects and/or their legal guardian(s). Two IR cameras (FLIR systems) were used to measure the 3–5-μm- and 
8–9.2-μm-wavelength bands of IR radiation. The cancer detectors consist of 320*256 elements. The spatial 
resolution and temperature are approximately 0.6 mm and 0.02 degrees Celsius, respectively. Infrared breast 
feature point matching, in combination with the registration techniques that are discussed in this study, realizes 
maximum effectiveness and registration accuracy. Figure 13 presents a detailed explanation of the procedures.

In this study, a total of 38 multitemporal infrared images were divided into four registration situations accord-
ing to the number of flat areas and the displacement degree of the target, as described in Sect. 2. The number of 

Figure 11.  Canny overlays of TYPE III images obtained with (a) the proposed (b) Lee et al. (c) Optical flow.

Figure 12.  Canny overlays of TYPE IV images obtained with (a) the proposed (b) Lee et al. (c) Optical flow.

Table 5.  Time performers of the proposed method in the four registration types.

(Unit: second) Type I (15 cases) Type II (8 cases) Type III (6 cases) Type IV (9 cases)

Proposed 23.744 ± 1.516 34.401 ± 3.691 27.346 ± 0.838 26.1806 ± 1.683

Optical flow 0.915 ± 0.094 0.899 ± 0.016 0.906 ± 0.037 0.885 ± 0.009

Lee et al 41.96 ± 3.814 42.847 ± 3.572 43.148 ± 2.906 42.989 ± 3.421



12

Vol:.(1234567890)

Scientific Reports |         (2022) 12:7932  | https://doi.org/10.1038/s41598-022-11379-2

www.nature.com/scientificreports/

each type is shown in the Table 6. The multitemporal infrared images of each case consist of a set of source and 
target images taken at different time points.

Feature point detection. Three types of feature points are considered: vascular intersections and Harris 
corners in the heat pattern and intersection features in the cold pattern. A flow chart is shown in Fig. 14. The 
method of Harris corners and intersection features used in this study is from Lee et al.28. The process of each step 
is explained below, where the cold pattern corresponds to the flat region. In mathematics, a Hessian matrix is a 
block matrix that is composed of the second-order partial derivatives of a multivariate function. For an image, 
calculating the Hessian matrix eigenvalues of each pixel corresponds to calculating the principal curvature of 
each pixel. A positive principal curvature is referred to as convex and negative as concave. Therefore, this study 
uses the principal curvature to distinguish the heat pattern and the cold pattern of an infrared image.

First, the image I is Gaussian-filtered into. Then, the Hessian matrix is established, as expressed in Eq. 1. 
Finally, the signs of eigenvalues with large absolute values are considered in (2). Figure 15 presents the result of 
feature point detection in a cold pattern.

Where �1 and �2 are the eigenvalues of the calculation matrix H.  ∂x and ∂y represent the partial differentiation 
of the image I in the x and y directions, respectively. Gσ is Gaussian-filter, where σ = 2.

This is the classic Frangi technique. By evaluating the value of the eigenvalue, it can be determined whether 
the calculation area is a bright area or a dark area. Here, the thermal imaging uses eigenvalue to distinguish it 
as a hot area and a cold area.

(1)H = Gσ ∗





∂2I
∂x2

∂2I
∂x∂y

∂2I
∂x∂y

∂2I
∂y2





Figure 13.  Flowchart of the proposed registration algorithm.

Table 6.  The number of four registration situations.

Type I Type II Type III Type VI Total

Number of cases 15 8 6 9 38

Figure 14.  Flowchart of the feature detection process.



13

Vol.:(0123456789)

Scientific Reports |         (2022) 12:7932  | https://doi.org/10.1038/s41598-022-11379-2

www.nature.com/scientificreports/

Feature matching and optimization of image registration. After feature detection, Shape Context 
is used to establish a feature point descriptor, which is used to conduct initial matching via the proximity matrix 
(in which every distance between rows is minimal). The initially matched points are provided to the MR-CSM 
for optimization of the matching of the features, thereby reducing the constraint parameter sensitivity and the 
deficient local representability of matching to enhance the matching performance.

Feature description

This study describes feature points in SC. For convenience, vascular intersections of the heat pattern, inter-
section features of the cold pattern, and Harris corners of the heat pattern are represented as W points, B points, 
and C points in the remainder of this paper. SC was conducted for W, B, and C points to obtain the descriptors, 
as shown in Fig. 16. The similarities between the descriptors of the target image and those of the source image 
are calculated as follows:

Among them, I2w, I2B, I2C, I1w, I1B, I1C are the SC descriptor of the above three feature points in the images 
at two time points respectively. k represents the order of each record square in the descriptor.

When applying the SC to conduct the initial matching, the number of matching pairs remains insufficient 
and the pairs are unable to provide sufficient effective information for the transformation model. To overcome 
this problem, this study developed a matching algorithm that mutually iterates the two processes and effectively 
realizes the objective that is specified above. Initially, matching pairs are generated through matching with the 

(2)Binarization
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
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Figure 15.  (a) An original image; (b) the binarization result; (c) the skeleton result of the cold pattern; and (d) 
the detection result of the cold pattern.

Figure 16.  Shape context descriptors (a) for W points, (b) for B points, and (c) for C points. Feature point 
matching.



14

Vol:.(1234567890)

Scientific Reports |         (2022) 12:7932  | https://doi.org/10.1038/s41598-022-11379-2

www.nature.com/scientificreports/

SC descriptor. Then, stage one is entered, wherein the TPS model of the MR-CSM is used to remove mismatched 
points. The result is presented in Fig. 17, where the removed points are recorded. The pseudo-code of the match-
ing in this study is shown in the Fig. 20a.

Stage two: The matching pairs that were reserved in the first stage are used to add the remaining points. The 
relative distance that is used in the calculation is illustrated in Fig. 18, where circle points represent matching 
pairs from the first stage and cross points represent the remaining points to be added. Every pair that has similar 
relative distance from the matching pairs that remain after stage one is regarded as a candidate matching pair, and 
the calculation equation for the relative distance between matching pairs is presented in (6). Among them, P1,P2 
represent the coordinate of matching pairs of the target image and the source image, respectively. k represents 
the order of each record square in the descriptor. During the matching process in this study, the pseudo-code 
for adding correct matching pairs is shown in the Fig. 20b

Among the candidate pairs, the pair with the minimum distance from the SC descriptor is selected as the 
matching pair. However, the pairs that were previously removed should be excluded. The above two steps are 
repeated until the matched points are stable. Figure 19 compares the results that are obtained with versus without 
stage two.

Image transformation: estimating the transform functions. Upon completion of the matching, this 
study estimates the transform functions based on  LDOF41. LDOF is an optical flow method that uses matched 
point pairs to realize a "large displacement" and adds gradient information to increase the tolerance to grayscale 
changes in images. LDOF obtains the displacement u, v by solving the energy function E(w) by inputting the two 
task images and vector of the matching pairs. Its pseudo code is shown in the Fig. 21.

The energy function E is composed of four terms shows in (13), where w = (u, v)T is the sought displacement 
field, and x: = (x, y) denotes a point in the image. α, β, and γ are tuning parameters representing the importance 
of smoothness, region correspondences, and gradient stability  respectively41. In this research we set γ = 20, 
α = 50 and β = 10,000. The value of β must be set a larger, because this study focuses on the accuracy of matching, 

(6)
1

K

∑K

k=1
�P2k − P1k�

Figure 17.  Matched points: (a) in the initial matching and (b) after deletion of the mismatched points.

Figure 18.  Illustration of the addition of the remaining matched points. Points of the same color are 
corresponding pairs.
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followed by the smoothness of deformation. Because of the distribution of gradient for IR breast image registra-
tion is not the main consideration therefore the parameter γ is smaller. The details of solving this energy function 
in this study can be found in Attachment 1

Solving the energy function E(w) using the Euler–Lagrange equation, nested fixed point iteration and diver-
gence. Finally, successive over-relaxation (SOR) iteration is used to obtain du and dv . Add the current dis-
placement field w to the calculated dw to obtain the updated displacement field as shown in Eq. (14), where k 
represents the current number of updates. The iteration termination condition of SOR iteration is to calculate 
the error defined by Eq. (15)

where N is the total number of combinations i, j. ε is the settable threshold of error and k is the number of 
SOR iteration.The coarse-to-fine process is used to estimate the large displacement field. In the process, a pyramid 
image must be established, where Gaussian filtering is used during downsampling to make the process smoother. 
Then, the process starts from the large scale (coarse) and slowly updates to the small scale (fine) as Eqs. (16), 
(17), where s is the scale which is changed by scale factor η ∈ (0, 1).

E(w(x)) = Ecolor(w(x))+ γEgradient(w(x))

(13)+αEsmooth(w(x))+ βEmatch(w(x))

(14)dwk+1 = w + dw
k

(15)error =
1

N

∑

i,j

(

(

duk+1 − duk
)2

+

(

dvk+1 − dvk
)2

)

< ε

(16)us−1(x) =
us(ηx)

η

Figure 19.  Registration results (a) without matching pairs and (b) with added matching pairs.

Figure 20.  pseudo-code for (a) matching and (b) the addition of pairs.
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Conclusions
Automated infrared breast imaging registration via quantitative analysis of the completed registration of heat 
pattern information provides an efficient, noninvasive, and non-radioactive method for tissue-growth assess-
ment and early tumor detection in breast cancers. This study consists of three major parts and proposes a novel 
infrared image registration algorithm. In the first part, via a Hessian matrix calculation, this method obtains 
representative grid intersections of a flat region, and the feature points that are obtained in combination with 
the algorithm by Lee et al. This study also verified that the feature point detection method proposed in this study 
meets the requirements of sufficient, uniformly distributed, and representative feature points through the results 
of visualization and quantitative analysis in the four registration conditions. In the second part, based on the 
MR-CSM algorithm, a two-stage alternating iterative method was developed for correcting erroneous match-
ing results and continuously recording new matched points to realize optimal feature point matching. In the 
matching verification, the four registration situations are also used to verify that the proposed method has better 
matching performance than other classic methods in terms of matching precision and matching sparsity. In the 
third part, the matched point information that as obtained via the feature point matching strategy is provided 
to the LDOF algorithm for estimation of the transform functions, and using the concept of pixel-level displace-
ment, this method conducts LDOF deformation to obtain an optimized image registration. In the results that 
are obtained by the improved algorithm, the Canny overlay edges in the visualization values demonstrate effec-
tive registration. Comparing the results obtained by the improved algorithm proposed in this research with the 
results of other different matching descriptors and transformation models, it can be concluded that the method 
proposed in this research obtains the best registration performance. It has effective registration performance 
in the visual verification of Canny coverage edge in the four registration situations. The registration algorithm 
that is proposed in this study also promotes the development of medical imaging information and enhances the 
potential benefits of infrared imaging for breast cancer diagnosis. The future work of this research includes two 
aspects. In terms of method, this research is expected to collect more data to further verify the robustness of this 
research, and apply it to the development of deep learning models based on the proposed methods. In terms of 
application, this study is expected to use this registration tool to register the infrared breast images of before 
and after chemotherapy, and then obtain non-invasive quantitative indicators of chemotherapy effects through 
thermal map analysis of the corresponding affected area.
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