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a b s t r a c t 

The efficient diagnosis of COVID-19 plays a key role in preventing the spread of this disease. The 

computer-aided diagnosis with deep learning methods can perform automatic detection of COVID-19 us- 

ing CT scans. However, large scale annotation of CT scans is impossible because of limited time and heavy 

burden on the healthcare system. To meet the challenge, we propose a weakly-supervised deep active 

learning framework called COVID-AL to diagnose COVID-19 with CT scans and patient-level labels. The 

COVID-AL consists of the lung region segmentation with a 2D U-Net and the diagnosis of COVID-19 with 

a novel hybrid active learning strategy, which simultaneously considers sample diversity and predicted 

loss. With a tailor-designed 3D residual network, the proposed COVID-AL can diagnose COVID-19 effi- 

ciently and it is validated on a large CT scan dataset collected from the CC-CCII. The experimental results 

demonstrate that the proposed COVID-AL outperforms the state-of-the-art active learning approaches in 

the diagnosis of COVID-19. With only 30% of the labeled data, the COVID-AL achieves over 95% accuracy 

of the deep learning method using the whole dataset. The qualitative and quantitative analysis proves the 

effectiveness and efficiency of the proposed COVID-AL framework. 

© 2020 Elsevier B.V. All rights reserved. 
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. Introduction 

The outbreak of the novel coronavirus epidemic in the world 

as gotten everyone’s attention. This new coronavirus called SARS- 

oV-2 can cause serious infectious diseases which are also termed 

s Coronavirus Disease 2019 (COVID-19). Many patients develop 

ovel coronavirus pneumonia and progress into serious acute res- 

iratory illness Guan et al. (2020) . The pandemic has propagated 

ast due to person-to-person transmission Phan et al. (2020) and 

as resulted in around 17,023,229 cases all over the world with 

ver 6 67,10 6 death till July 30, 2020, which is a great threat to the

lobal human health. Therefore, the early recognition of COVID-19 

isk factors is critical for not only the cure of individual infected 

atients but also public disease containment. 

Currently, a reverse transcriptase polymerase chain reaction 

RT-PCR) is a gold standard for SARS-CoV-2 confirmation. How- 

ver, the laboratory test may take up to days because of the lim- 

ted supply and strict condition requirements, which may delay the 

iagnosis of suspected patients. While chest computed tomogra- 

hy (CT) is not so accurate as RT-PCR test in virus detection, it 
∗ Corresponding authors at: School of Computer Engineering and Science, Shang- 
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ay be more efficient and sensitive for clinical evaluation of SARS- 

oV-2 pneumonia and is better for quantitative measurement of 

he severity of lung involvement ( Ai et al., 2020 ). The significance 

f chest CT manifestations in the diagnostic procedure has been 

hown in several recent reports ( Chung et al., 2020; Lei et al., 

020; Song et al., 2020 ). The combination of CT scans and clini- 

al findings can make a quick and effective diagnosis possible. 

Recent advances in the applications of artificial intelligence 

AI) Shi et al. (2020) have inspired the development of AI-based 

omputer-aided diagnosis (CAD) system ( Esteva et al., 2019; Wang 

t al., 2020; Zhang et al., 2020; Xie, Ma, Robson, Chung, Bernheim, 

ani, Calcagno, Li, Li, Shan, et al. ) in many healthcare areas. As one 

f the important techniques of AI, deep learning has shown signif- 

cant diagnostic accuracy in disease detection of medical imaging 

 Ardila et al., 2019; Suzuki, 2017 ). Previous works have reviewed 

he effectiveness of quantitative models of chest CT in lung disease 

iagnosis ( Chen et al., 2020 ). 

Although deep learning can make an accurate diagnosis, the 

erformance of deep neural networks depends on large numbers 

f labeled CT scans. However, the labeling work of chest CT scans 

equires not only lots of time and effort but also the domain exper- 

ise of medical professionals. Due to the fast spread of the COVID- 

9, large scale annotation of CT scans is impossible because of lim- 

ted time and heavy burden on the healthcare system. To meet 

https://doi.org/10.1016/j.media.2020.101913
http://www.ScienceDirect.com
http://www.elsevier.com/locate/media
http://crossmark.crossref.org/dialog/?doi=10.1016/j.media.2020.101913&domain=pdf
mailto:xingwu@shu.edu.cn
mailto:junshi@shu.edu.cn
https://doi.org/10.1016/j.media.2020.101913
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his challenge, the active learning method is introduced to effec- 

ively cut the cost of labeling by actively selecting the most infor- 

ative samples according to certain strategies. The effectiveness 

f deep active learning methods is shown in early studies ( Zhou 

t al., 2018; Yoo and Kweon, 2019; Yang et al., 2017; Smailagic 

t al., 2019 ). What’s more, large scale lesion annotation of COVID- 

9 is also impossible because of the fast spread of the disease. 

hus, a better choice is performing weakly-supervised COVID-19 

etection. To train a deep neural network with fewer labeled data 

nd patient-level labels, we propose a weakly-supervised deep ac- 

ive learning framework called COVID-AL to interactively diagnose 

OVID-19. The proposed COVID-AL is validated on the CT scans 

onstructed from cohorts from the China Consortium of Chest CT 

mage Investigation (CC-CCII). The experimental results demon- 

trate that COVID-AL can greatly cut the annotation cost for train- 

ng a deep neural network and consistently outperforms the state- 

f-the-art active learning methods in the diagnosis of COVID-19. 

The main contributions of this paper can be summarized as fol- 

ows: 

• We propose the COVID-AL framework that can simultaneously 

consider the data diversity and data uncertainty to improve the 

efficiency of active learning methods. Furthermore, a discretiza- 

tion method is also proposed to map the values of different 

scales to scale-free ranks. Thus the problem of sampling effi- 

ciency in active learning methods is addressed from the basic 

principle of data infomativeness. 
• We tailor-design a 2D U-Net for the lung region segmentation 

and a 3D residual network for the diagnosis of COVID-19. 
• We perform weakly supervised active learning with patient- 

level labels in the proposed COVID-AL framework, which out- 

performs the state-of-the-art active learning approaches in cut- 

ting the labeling cost and achieves effective diagnosis of COVID- 

19. 

The remaining parts of this paper are arranged as follows. 

he related studies are discussed in Section 2 . The detailed de- 

cription of the experimental materials, proposed framework, and 

lgorithms will be shown in Section 3 . Section 4 demonstrates 

he experimental results and corresponding empirical evaluation. 

ection 5 presents a discussion about the motivation and origi- 

ality of this work. This paper is concluded with future work in 

ection 6 . 

. Related work 

.1. Medical AI application 

There are many effective medical AI applications in pre- 

ious studies. Wu et al. (2020) integrated deformable convo- 

utional neural networks into attentive encoder-decoder, which 

an be employed in the diagnosis of gastroenteric diseases. 

rdila et al. (2019) trained a deep learning model on 42,290 

T scans from 14,851 candidates and achieved 0.944 ROC-AUC. 

hilamkurthy et al. (2018) proposed a deep learning method on 

he head CT task and obtained 0.920 ROC-AUC. For COVID-19 de- 

ection, Zhang et al. (2020) utilized a DeepLabv3 model to seg- 

ent the lung region and applied a 3D ResNet model to perform 

-way classification. The overall performance obtained an ROC-AUC 

f 0.981. Xie et al. (2020) trained a convolutional neural network 

o learn the features of CT scans and combined the features with 

linical information data using a multi-layer perceptron classifier. 

ang et al. (2020) proposed a weakly-supervised deep neural net- 

ork that could be trained using patient-level labels. They used 

nly 499 scans to obtain 0.959 ROC-AUC. 
2 
Although there have been some deep learning-based segmenta- 

ion or detection methods for COVID-19, there are few deep active 

earning methods for the diagnosis of it. 

.2. Deep active learning 

In the field of medical image analysis, it is hard to build large 

abeled datasets since the labeling of medical images is time- 

onsuming as well as labor-intensive. For this reason, the research 

f active learning in medical imaging keeps attracting intensive 

nterests. Yang et al. (2017) proposed a suggestive deep active 

earning framework for medical image segmentation. The frame- 

ork is based on a fully convolutional network (FCN) architec- 

ure and selects the informative samples based on uncertainty. 

hou et al. (2017) combined deep active learning with transfer 

earning and proposed an active fine-tuning framework called AIFT. 

owever, this framework is only suitable for binary classification 

asks. Zhou et al. (2018) improved the AIFT and proposed a su- 

erior approach AFT ∗ for adapting multi-class cases. AFT ∗ is also 

sed in a carotid intima-media thickness video interpretation task 

 Zhou et al., 2019 ). Yoo and Kweon (2019) proposed a method 

o learn the loss of classification. They attached a loss prediction 

odule to the target classifier model and jointly trained them in 

ach round of active learning. The above-mentioned approaches 

nly considered a single sampling strategy in the active learning 

rocess. Yuan et al. (2019) proposed a multiple criteria deep ac- 

ive learning framework. However, due to excessive computational 

onsumption, they could only use a relatively shallow neural net- 

ork. OMelAL Smailagic et al. (2019) was a state-of-the-art active 

earning framework for medical image analysis, which selected the 

ost distant data points from the centroid in embedding space. 

ut this framework may not perform well when only weak labels 

re available. 

In a word, there has not yet been an effective weakly- 

upervised active learning framework for COVID-19 diagnosis. 

. Materials and methods 

.1. The datasets 

In real world applications, it is natural to apply the active 

earning framework on unlabeled datasets. However, in the exper- 

ment of this research, it will not be able to evaluate the perfor- 

ance of the proposed active learning framework without ground- 

ruth labels. Thus, we introduce a labeled dataset to evaluate the 

erformance of proposed COVID-AL framework. When the frame- 

ork queries labels from medical experts, it is provided with the 

round-truth labels. This experimental setup helps us to conduct 

he experiments without the costly interaction of medical experts 

nd enables quantitative evaluation of the framework performance. 

.1.1. The dataset for COVID-19 diagnosis 

The dataset for COVID-19 diagnosis was constructed from co- 

orts from the China Consortium of Chest CT Image Investigation 

CC-CCII) Zhang et al. (2020) . All CT scans are classified into 3 

lasses including novel coronavirus pneumonia (NCP) due to SARS- 

oV-2 virus infection, common pneumonia (CP), and normal con- 

rols (NC). The human subjects were considered clinically appro- 

riate for chest CT scans. The association of age and gender were 

ot taken into consideration. The CC-CCII dataset contains 617,775 

xial slices of CT scans from 4154 human subjects. Since the active 

earning iterations on the entire dataset would be too expensive in 

erms of computational resources and time, we use a subset of the 

T scans from 962 patients (304 for NCP, 316 for CP, and 342 for 

C respectively). The selection of the subset of CT scans is not in 

ontradiction to the following data augmentation. The selection is 
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Fig. 1. The knowledge transfer for lung region segmentation. 
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o reducing computing cost of experiments, whereas the data aug- 

entation is to imitate real world active learning applications. 

To support the diversity-based sampling strategy as well as to 

void overfitting, the CT scans are preprocessed with data augmen- 

ation. Random affine transformation and color jittering are applied 

efore the training process. On the one hand, the affine transfor- 

ation is composed of rotation, scaling, and shearing. On the other 

and, the color jittering randomly adjusts brightness and contrast 

f CT scans. 

.1.2. The dataset for lung region segmentation 

To improve the accuracy of COVID-19 diagnosis, the lung re- 

ion segmentation is indispensable, which is an essential pre- 

rocessing step to minimize the analytical region and sys- 

em computation. However, there is a lack of the lung re- 

ion annotation for the CC-CCII dataset. Thus the NSCLC dataset 

iser et al. (2020) is introduced to train a tailor-designed 2D U- 

et Ronneberger et al. (2015) for lung region segmentation. 

The NSCLC dataset has 402 CT scans with corresponding lung 

egion annotations. In each volume of the dataset, the label of the 

ackgrounds is 0; the label of the left lung is 1; the label of the

ight lung is 2. In the training of the segmentation network, the 

abel of both left and right lung regions is set to 1. The axial slices

n the volumes is cropped to the size of 352 ∗320 for model train-

ng. 

.2. The lung region segmentation 

.2.1. The framework of lung region segmentation 

Lung region segmentation is a critical preprocessing step in the 

OVID-19 diagnosis. Since lung region annotation is not available 

or CC-CCII dataset, the key idea of the proposed framework of 

ung region segmentation is knowledge transfer. As shown in Fig. 1 , 

 2D U-Net is pre-trained on the NSCLC dataset as the segmen- 

ation network and the knowledge is transferred to the CC-CCII 

ataset for lung region segmentation. 

On the one hand, the CT scans in the NSCLC dataset are split 

nto 2D slices to train the segmentation network. On the other 

and, the masks for the CT scan volumes are obtained by the 

re-trained segmentation network slice by slice without using the 

emporal information on the CC-CCII dataset. In this step, each CT 

olume in the CC-CCII dataset is provided with its corresponding 

asks before the active learning procedure. Because the original 

ata volumes in the CC-CCII dataset are preprocessed with lung re- 
3 
ion segmentation, the background information is removed for CT 

cans and leads to better detection and diagnosis of COVID-19. 

.2.2. The network architecture 

We tailor-design a 2D U-Net architecture as shown in Fig. 2 

o segment the lung regions for each CT slice. The slices are first 

ropped to 352 × 320 and input into the network. The encoder of 

he segmentation network extracts image features by double con- 

olutional layers and pooling layers in 4 steps of down sampling. 

he down sampling reduces each slice to 1/16 of its original size. 

hen, in 4 steps of up sampling, the decoder of the segmentation 

etwork uses skip connection to concatenate the feature map in 

he same stage. Finally, the output layer gives out a lung region 

ask whose size is the same as the size of the input CT slice. Thus,

he segmentation network is capable of utilizing multi-scale image 

eatures to learn a lung region mask for each input CT slice. 

.3. The diagnosis of COVID-19 with the COVID-AL 

In practice, with the fast spread of COVID-19, there will be large 

umbers of CT scans waiting for labeling, which can be considered 

s a large unlabeled data pool. It is unacceptable for medical ex- 

erts to carefully annotate all these CT scans, which is extremely 

ime-consuming and labor-intensive. As demonstrated in Fig. 3 , the 

roposed COVID-AL reads CT scans and picks the most informative 

ata samples with a hybrid sampling strategy. The COVID-AL then 

equests medical experts for labels of selected data samples. In 

ach active learning cycle, the new samples selected by the frame- 

ork will be added into the labeled dataset and removed from the 

nlabeled data pool. 

The details of the COVID-AL algorithm is demonstrated in 

lgorithm 1 . The central idea of the proposed COVID-AL is to con- 

ider both the diversity and the predicted loss for sample selec- 

ion simultaneously. The classification network draws the diagnos- 

ic conclusion according to the original CT volumes. The prediction 

onfidence can be used to compute the diversity of CT volumes. 

he loss prediction network is responsible for predicting the clas- 

ification loss for each CT volume. The informativeness of samples 

an be precisely represented by fusing the diversity and the pre- 

icted loss. 

.3.1. Diversity-based sampling strategy 

The diversity-based sampling strategy is supported by data aug- 

entation techniques discussed in Section 3.1.1 . With data aug- 

entation, the CT volume of one patient can generate multiple CT 
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Fig. 2. The network architecture for lung region segmentation. 

Fig. 3. The COVID-AL framework for weakly-supervised active learning. 
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olumes with the same ground truth labels. That is to say, only 

he patient-level labels are available for the COVID-AL framework. 

owever, the classification network may make different decisions 

n the classification of these augmented CT volumes, which results 

n inconsistent prediction. A higher degree of inconsistency indi- 

ates that more information is contained in the data sample. 

The diversity of one candidate c i can be represented by the di- 

ergence d i of the generated volumes: 

 i = 

| y | ∑ 

k =1 

m ∑ 

j=1 

m ∑ 

l= j 
(p j,k 

i 
− p l,k 

i 
) log 

p j,k 
i 

p l,k 
i 

(1) 

In Eq. (1) , y is the category number of the classification task. m 

s the augmented volume number of each patient. 

Data augmentation can effectively improve model performance 

hen the training data is insufficient, but it will also inevitably 
4 
roduce uncertain noisy data in CT volumes. The above-mentioned 

iversity-based method utilizes the probability information of all 

utputted categories from the classification network �c , in which 

he result will be affected by noises. Thus, it is indispensable to 

emove noisy data. 

A processing approach is adopted to select only a portion of 

he CT volumes generated by each data sample for calculating 

he diversity. Due to the inconsistency of classification prediction 

entioned above, the classification network will produce different 

lassification predictions for multiple augmented CT volumes of a 

ingle patient. The main category y main of a certain candidate is 

efined as the category where the classification network has the 

argest average prediction confidence. 

 main = arg max y ∈Y 
b ∑ 

1 

p y 
i, j 

(2) 
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Algorithm 1 COVID-AL: Active learning framework for COVID-19 

diagnosis. 

Input: 

Unlabeled data pool U = { c i } , i ∈ [1 , n ] . {The pool has n can- 

didates} 

Single candidate c i = { x j 
i 
} , j ∈ [1 , m ] . {The CT volume of single 

candidate can generate m volumes with data augmentation} 

Segmentation dataset D s 

Segmentation network �s 

Classification network �c 

Loss prediction network �l 

Number of selected candidates in each learning cycle k 

Subset size u 

Output: 

Well-trained classification network �∗
c 

Labeled dataset L 

1: Pre-train �s on D s 

2: Predict masks for all data volumes in U by �s 

3: Randomly select k candidates from U and add them to L 

4: repeat 

5: Train �c and �l on L 

6: Randomly select a subset S with size u from U
7: for each c i in S do 

8: Compute diversity d i according to Eq.1 

9: Predict classification loss l i by �l 

10: end for 

11: for each c i in S do 

12: Rank d (s i ) ← the index of d i in the ascending order of { d i } 
13: Rank l (s i ) ← the index of l i in the ascending order of { l i } 
14: end for 

15: Rank h ← Rank d + Rank l {sum up in element-wise manner} 

16: Select the top k informative candidates with the largest 

Rank h and query their labels to put into Q 

17: L = L ∪ Q , U = U \ Q , 

18: until classification performance is satisfied 

19: return �c , L 
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The classification network �c outputs the probability distribu- 

ion of each category. If the probability for an input CT volume be- 

ng the main category is very low, then this input CT volume is 

ore likely to be noisy data. The augmented volumes are arranged 

n descending order of confidence on the main category y main , and 

he top r × 100% of the volumes are selected for calculating the di- 

ergence d i . This method can effectively eliminate the influence of 

oisy data and accelerate the calculation of diversity. 

.3.2. Loss-prediction-based sampling strategy 

Intuitively, the classification network will have higher classi- 

cation loss when deciding on hard samples. The classification 

oss directly depicts the informativeness of data samples. For the 

eal world application of COVID-AL, it is infeasible to compute 

he classification loss without ground-truth labels. Thus, our loss- 

rediction-based method is to train a regression network to dy- 

amically fit the loss of the classification network. In this way it’s 

ossible to predict the classification loss on unlabeled data. 

A loss prediction network �l is used to select candidate sam- 

les based on the predicted loss. The loss prediction network is 

esigned for a regression task to predict the current classifica- 

ion loss of the input unlabeled data. The loss prediction network 

s attached to the classification network to obtain the 3D feature 

aps as input. The 3D residual blocks of the classification network 

an extract volume features. The classification loss is computed by 

omparing the predicted probability and ground truth labels with 

ertain criteria. The loss prediction network uses the feature maps 
5 
s input and it takes the classification loss as ground truth labels 

or training. 

The loss prediction task is different from traditional regression 

roblems in many aspects. The distribution and the scale of the 

lassification loss vary significantly during the learning of the clas- 

ification network. In the early stages of active learning, the classi- 

cation loss is relatively large; while in the later stages, the clas- 

ification loss becomes very small. Under this circumstance, using 

ean square error (MSE) as the loss function may not lead to good 

esults. What’s more, the ultimate goal of loss prediction is to cor- 

ectly sort the samples according to the predicted loss, not to pre- 

isely predict loss values. Thus it is intuitive to enlarge the margin 

etween a small loss and a large loss. 

A data pair-based loss function is designed to discard the im- 

act of scale changes of regression. The COVID-AL considers a pair 

f input data samples at the same time and compares their loss. In 

eep learning, training data is input into the network in the form 

f mini-batches in most cases. Supposing the batch size is an even 

umber B, the samples of one batch can be treated as B/ 2 sample 

airs. The loss prediction network can be trained by comparing a 

air of predicted losses. In this way, the influence of scale change 

s eliminated. The loss function of the loss prediction network is 

esigned as follows: 

L ( ̂ l p , l p ) = max (0 , −Z(l i , l j ) · ( ̂ l i − ˆ l j ) + ζ ) 

 . t . Z(l i , l j ) = 

{
1 l i > l j 
−1 otherwise 

(3) 

In Eq. (3) , l p represents the loss pair (l i , l j ) and 

ˆ l p represents

he predicted loss pair ( ̂ l i , ̂  l j ) . ζ is a positive constant which repre-

ents the margin between large loss and small loss. The meaning 

f Eq. (3) is as follows: when l i > l j , the expected loss prediction

etwork should give the prediction 

ˆ l i > ̂

 l j and the difference be- 

ween them exceeds ζ , otherwise a penalty is imposed to the loss 

rediction network to update its weights. 

.3.3. Hybrid sampling strategy 

The key idea of the hybrid sampling strategy is to integrate the 

iversity-based sampling strategy and the loss-prediction-based 

ampling strategy mentioned above. The problem is that differ- 

nt types of informativeness metrics have different data scales and 

annot be combined directly. In the hybrid sampling strategy, a dis- 

retization method is proposed to map the values of predicted loss 

nd diversity to scale-free ranks. The candidate samples are sorted 

n ascending order according to the predicted loss and computed 

iversity, respectively. The sorted indices are Rank l and Rank d . The 

andidate sample s i with larger predicted loss value has larger 

ank i 
l 
. Similarly, the candidate sample s j with larger diversity value 

as larger Rank 
j 

d 
. Since the ranks are scale-free, we can get hybrid 

ank Rank h by summing up Rank d and Rank l in an element-wise 

anner as illustrated in Eq. (4) . 

ank h ← αRank d + βRank l (4) 

The weight of the diversity-based sampling strategy and loss- 

rediction-based sampling strategy is controlled by the parameters 

and β . It is easy to adjust the weight in the hybrid strategy to 

dapt to the tasks. 

.3.4. The network architecture 

The detailed information of the network architecture is illus- 

rated in Fig. 4 , which consists of a classification network and a 

oss prediction network. The classification network is a 3D deep 

esidual network Hara et al. (2017) trained with 3D CT volumes. As 

hown in the upper part of Fig. 4 , the classification network con- 

ists of a network stem, two 3D residual blocks, and a classifier. 
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Fig. 4. The network architecture of COVID-AL. 
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he network stem is constructed with a 3D convolutional layer, 

 batch normalization layer, and a pooling layer. In each residual 

lock He et al. (2016) , a 3D feature map is passed into a 3D convo-

utional layer with a batch normalization layer and a shortcut con- 

ection. The output feature maps of each residual block are added 

n an element-wise manner. The high-level feature maps are input 

nto the classifier, which contained three 3D convolutional layers 

ith pooling and a fully-connect (FC) layer activated by softmax 

unction. The adaptive 3D max-pooling layer makes the network 

apable of learning in a weakly-supervised manner. The classifier 

nally outputs the predicted probability of being NCP (novel coron- 

virus pneumonia), CP (common pneumonia), and NC (normal con- 

rol). 

In the training process, the loss prediction network extracts the 

D feature maps from the residual blocks of the classification net- 

ork. As shown in the lower part of Fig. 4 . The feature maps are

assed into global pooling layers and fully connected layers and 

onverted to feature vectors. The output feature vectors are con- 

atenated into a complete feature vector that contained feature 

epresentation of different levels. The feature vector is input into 

nother fully connected layer to make loss prediction accordingly. 

. Experimental evaluation 

.1. Experimental setup 

The active learning process is conducted in 30 cycles. In each 

ctive learning cycle, 10 patient-level labels are requested from the 

edical experts. The number of data augmentation for each pa- 

ient is 8. The training batch size is set to 2. In each cycle, the

lassification network is trained until its convergence. The network 

s considered converged when the accuracy on validation set does 

ot increase within 20 epochs. The learning rate of the classifica- 

ion network and the loss prediction network is set to 0.001. The 

omentum is set to 0.9 and the weight decay is set to 0.0 0 05. The

oss prediction margin threshold ζ is set to 0.8. In the diversity- 

ased sampling strategy, the majority selection ratio r is set to 

.5. Randomization is injected into sampling by selecting a ran- 

om subset of the unlabeled data pool before applying the hybrid 

ctive learning strategy. The random subset size u is fixed to 200. 

he weight parameters α and β are set to 0.5. 
6 
We run 3 trials for the COVID-AL and the state-of-the-art active 

earning methods. We report the average performance on 3 trials 

or each method. In each trial, the dataset is randomly shuffled. 

0% of the data is used to form an unlabeled data pool. Another 

0% is for validation and the last 20% is for performance evaluation. 

.2. Comparisons against the state-of-the-art methods 

The proposed COVID-AL is compared against the following 

ctive learning sampling strategies: (1) Random sampling strat- 

gy (RAND) randomly selects k samples to be manually la- 

eled in each cycle. (2) Entropy-based sampling strategy (ENT) 

ang et al. (2016) selects k samples with highest softmax out- 

ut entropy in each cycle. (3) Diversity-based sampling strategy 

roposed in AFT ∗ (AFT ∗-DIV) Zhou et al. (2018) selects k samples 

ith highest softmax output diversity computed with augmented 

ata in each cycle. (4) Loss-prediction-based sampling strategy 

LP) Yoo and Kweon (2019) selects k samples with highest pre- 

icted loss in each cycle. (5) Core-set sampling strategy (CSET) 

ener and Savarese (2017) selects k samples with largest dis- 

ance from current set in each cycle. (6) OMedAL framework pro- 

osed a embedding-distance-based sampling strategy (OMEDAL) 

mailagic et al. (2019) to select k samples which is the farthest 

rom the centroid in the embedding space in eacy cycle. For all 

ethods, we use the masks predicted by the same segmentation 

etwork. We also use the same random seed for a fair comparison 

uring the active learning procedure. 

For the evaluation metrics, the diagnostic accuracy, precision- 

ecall curve, and ROC curve are used to represent the performance 

f different methods. The accuracy is reported for three way clas- 

ification, while the precision-recall curve and ROC curve show the 

apability of the COVID-AL framework to differentiate NCP from 

he other two classes (CP and NC). We also report PR-AUC and 

OC-AUC in Table 1 . 

The Fig. 5 shows the diagnostic accuracy of different active 

earning methods. All the active learning methods outperform ran- 

om sampling strategy (RAND). It means that deep active learning 

mproves the labeling efficiency in the diagnosis of COVID-19. Our 

roposed COVID-AL with hybrid sampling strategy achieves best 

erformance among all the active learning methods for the same 

ercentage of labeled data. In Fig. 5 , the horizontal solid line at the 

op represents the classification accuracy achieved by training the 
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Table 1 

The performance of the active learning methods. 

Method Accuracy PR-AUC ROC-AUC 

RAND 0.797 0.839 0.909 

ENT 0.829 0.902 0.935 

AFT ∗-DIV 0.850 0.929 0.955 

LP 0.856 0.939 0.955 

CSET 0.840 0.928 0.940 

OMEDAL 0.840 0.939 0.951 

COVID-AL 0.866 0.962 0.968 

Fig. 5. Comparison of the proposed COVID-AL with the state-of-the-art active learn- 

ing methods using the accuracy. 
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Fig. 6. Comparison of the proposed COVID-AL with the state-of-the-art active learn- 

ing methods using the precision-recall curve. 

Fig. 7. Comparison of the proposed COVID-AL with the state-of-the-art active learn- 

ing methods using the ROC curve. 
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lassification network on the whole dataset. The dashed line rep- 

esents 95% accuracy of that performance. On the CC-CCII dataset, 

ith only about 30% of labeled data, the COVID-AL is able to ob- 

ain an diagnostic accuracy of 0.867, which is over 95% of the per- 

ormance achieved when the classification network is trained over 

he whole dataset (accuracy of 0.909). 

We select the classification networks trained with different ac- 

ive learning methods when 30% of the dataset labels are queried. 

or every testing CT scan, the classification networks predict its 

robability of being NCP. By comparing the predicted probability 

ith the ground-truth labels, we plot precision-recall curve and 

OC curve in Figs. 6 and 7 respectively. 

The detailed information of the performance of each active 

earning method is illustrated in Table 1 when 30% of the labels 

re available. The proposed COVID-AL achieves 0.866 in accuracy, 

.962 in PR-AUC and 0.968 in ROC-AUC, which is the best perfor- 

ance among all the active learning methods. 

. Discussion 

The motivation of this study is to reduce the cost of label- 

ng when learning a deep neural network for COVID-19 diagno- 

is. There are many effective applications of COVID-19 diagnosis in 

revious studies. However, these AI applications heavily relied on 

arge amounts of labeled data and lacked interaction with human 

xperts. The main challenge is how to reduce the labeling cost of 

ifferent AI applications when time and human resources are lim- 

ted. The first solution is to train deep learning models with weak 

abels. In this way, it is not necessary to annotate the lesions of CT 

cans, which may save lots of time and labors. The second solution 

s to find out the most informative data samples to decrease un- 
7 
ecessary labeling effort s. Thus we merge these two solutions to 

esign and build the COVID-AL framework. 

We compute the informativeness of data samples from two dif- 

erent aspects: uncertainty and diversity. In the COVID-AL, uncer- 

ainty is represented by the predicted classification loss while di- 

ersity is represented by the divergence of input CT volumes. Data 

amples with high uncertainty are near the decision boundary of 

he classifier. The classifier tends to make wrong decisions on these 

ata samples. It means that these data samples can effectively 

oost the training of the classifier. The diversity indicates the de- 

ree of difference between multiple CT volumes augmented by a 

ingle candidate. Samples with high diversity can cover the sample 

pace and fully represent the features of samples. COVID-AL uti- 

izes a hybrid sampling strategy to select samples with both high 

ncertainty and diversity in each round of active learning. 

. Conclusion and future work 

We propose a weakly-supervised deep active learning frame- 

ork called COVID-AL for the diagnosis of COVID-19, which can 
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reatly reduce the cost of manual labeling for training models in 

hest CT scans and can further relieve the burden of the healthcare 

ystem when the pandemic is spreading fast. To the best of our 

nowledge, this is the first framework to actively learn a deep neu- 

al network model using patient-level labels to diagnose COVID-19. 

he proposed framework is capable of boosting the performance of 

eep neural networks by simultaneously considering diversity and 

redicted loss of unlabeled candidates. To verify the effectiveness 

f COVID-AL, extensive experiments have been conducted on CT 

cans collected from the CC-CCII. The experimental results demon- 

trate that the COVID-AL outperforms the existing state-of-the-art 

ctive learning methods. 

In the future, we plan to improve COVID-AL by combining clin- 

cal information with CT scans to achieve more reliable diagnostic 

onclusions. 
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