First report of three novel *Bartonella* species isolated in rodents and shrews from nine provinces of Thailand

Decha Pangjai¹, Burin Nimsuphan², Wimol Petkanchanapong¹, Wattanapong Wootta¹, Maskiet Boonyareth¹, Wuttikon Rodkvamtook³ and Sumalee Boonmar⁴

Department of Medical Sciences, National Institute of Health, Ministry of Public Health, Nonthaburi 11000, Thailand;
Department of Parasitology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok 10900, Thailand;
Armed Forces Research Institute of Medical Science, Royal Thai Army, Bangkok 10400, Thailand;
Akkhraratchakumari Veterinary College, Walailak University, Thasala, Nakhon Si Thammarat 80160, Thailand.
Corresponding author: Sumalee Boonmar, e-mail: sumalee.bo@wu.ac.th
Co-authors: DP: decha.p@dmsc.mail.go.th, BN: fvetbrn@ku.ac.th, WP: wimolp@gmail.com, WW: wpong@hotmail.com, MB: maskiet.b@dmsc.mail.go.th, WR: rwuttikon@gmail.com
Received: 23-02-2022, Accepted: 24-05-2022, Published online: 08-07-2022

doi: www.doi.org/10.14202/vetworld.2022.1624-1631 **How to cite this article:** Pangjai D, Nimsuphan B, Petkanchanapong W, Wootta W, Boonyareth M, Rodkvamtook W, Boonmar S (2022) First report of three novel *Bartonella* species isolated in rodents and shrews from nine provinces of Thailand, *Veterinary World*, 15(7): 1624-1631.

Abstract

Background and Aim: *Bartonella* spp. are Gram-negative zoonotic bacteria that are transmitted to humans by several types of animal hosts, including rodents. Several studies have been conducted on the prevalence of *Bartonella* infections in rodents. However, the risk of rodent-associated *Bartonella* spp. infection in humans remains unclear. This study aimed to estimate the prevalence and genetic heterogeneity of *Bartonella* spp. in rodents and shrews from nine provinces of Thailand using culture and molecular techniques.

Materials and Methods: A total of 860 blood samples from rodents and shrews across nine provinces of Thailand were collected from January 2013 to June 2016. *Bartonella* spp. were isolated from all samples using conventional culture techniques and polymerase chain reaction. Phylogenetic tree analysis was used to align the *Bartonella* sequences obtained from this study.

Results: The prevalence of *Bartonella* spp. in rodents and shrews was 11.5% (99/860, 95% confidence interval: 9.38–13.64%). The following nine species of *Bartonella* were detected: *Bartonella tribocorum*, *Bartonella rattimassiliensis*, *Bartonella queenslandensis*, *Bartonella elizabethae*, *Bartonella chanthaburi* spp. nov., *Bartonella satun* spp. nov., *Bartonella coopersplainsensis*, *Bartonella ranong* spp. nov., and *Bartonella henselae*. The prevalence of *Bartonella*-positive animals differed significantly among provinces.

Conclusion: To the best of our knowledge, the three novel *Bartonella* spp. isolated from rodents and shrews across Thailand were detected for the first time in this study. Further studies on the epidemiology of *Bartonella* infection in rodents and its interaction with human health should be conducted in accordance with the Thai government's "One Health" approach to humans, animals, and the environment.

Keywords: Bartonella spp., phylogenetic analysis, polymerase chain reaction, rodents.

Introduction

Bartonella spp. are Gram-negative intraerythrocytic bacteria including more than 40 species and subspecies [1]. Several *Bartonella* spp. have been confirmed as zoonotic pathogens, such as *Bartonella elizabethae*, *Bartonella tribocorum*, *Bartonella henselae*, *Bartonella vinsonii*. Sub spp. *arupensis*, and *Bartonella tamiae*, most of which are transmitted by reservoir hosts and blood-sucking arthropods [2].

Rodents are known to be the main reservoir hosts for different *Bartonella* spp.; however, some species involve other animals as well. *B. henselae* utilizes cats and *Bartonella bovis* and *Bartonella chomelii* utilize cattle as

Veterinary World, EISSN: 2231-0916

reservoirs [3]. Several *Bartonella* spp. have been isolated from rodents in several countries, including Thailand [4–9]. These pathogens are associated with various human diseases, such as cat scratch disease (*B. henselae*), trench fever (*Bartonella quintana*), Oroya fever (*Bartonella bacilliformis*), and endocarditis (*B. tamiae*) [10–12]. In particular, past exposure to rats has been reported in three patients from Thailand with fever, myalgia, and headache [13]. Several reports of these infections in rodents in Thailand have been described [6–9, 12–15]. However, the risk of rodent-associated *Bartonella* spp. infection in humans remains unclear.

The study aimed to estimate the prevalence and genetic heterogeneity of *Bartonella* spp. in rodents and shrews from nine provinces of Thailand using culture and molecular techniques and phylogenetic analysis.

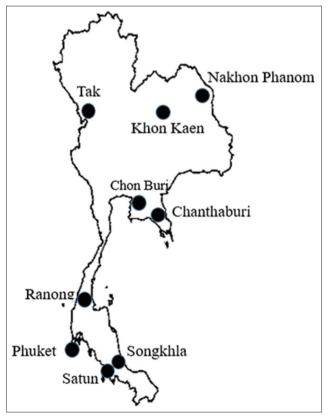
Materials and Methods

Ethical approval

The study was approved by the Institutional Animal Care and Use Committee of the National Institute of Health (NIH), Thailand.

Copyright: Pangjai, *et al.* Open Access. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/ by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons.org/publicDomain Dedication waiver (http:// creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Study period and location


The study was conducted from January 2013 to June 2016. The blood samples were collected from nine provinces of Thailand; Khon Kaen, Nakhon Phanom, Tak, Chon Buri, Chanthaburi, Ranong, Phuket, Songkhla, and Satun (Figure-1). The samples were processed at the Department of Medical Sciences, NIH Laboratory, Ministry of Public Health, Nonthaburi, Thailand.

Sample collection

We calculated the minimum sample size based on a previous study by Pangjai et al. [6] using the Epitools program (www.epitool.net) with 95% confidence interval (CI) and 2.5% precision. Based on the results, 401 samples should have been collected. Overall, 860 small mammals, comprising 800 rodents and 60 shrews, were captured using traps from nine provinces of Thailand. Animal species were identified by their morphological characteristics before they were euthanized using a Carbon oxide (CO₂) chamber. A total of 0.5-2 mL of blood samples were aseptically collected through cardiopuncture and immediately placed in sterile ethylenediamine tetra-acetic acid tubes. The samples were transported to the Department of Medical Sciences, NIH Laboratory under chilled conditions and stored at -20°C until further processing.

Isolation of Bartonella

Bartonella was isolated according to a previously described method [16] with slight modifications.

Figure-1: Geographic locations of nine provinces in Thailand where rodents and shrews were captured for this study [Source: http://geosurin.blogspot.com/2009/09/blog-post-17.html].

Briefly, frozen blood samples were thawed at 25°C, and 200 µL of each sample was centrifuged at 1,800xg for 70 min. The sediment was mixed with an equal volume of Medium 199 (Life Technologies, USA) supplemented with sodium pyruvate and fetal bovine serum (Life Technologies, United States). The mixture was then inoculated onto brain heart infusion agar (BHIA, Difco, United States) plates containing 5% defibrinated rabbit blood. The plates were incubated at 35°C under 5% CO, for 2–4 weeks. Consequently, Gram-negative coccobacilli grew as small, rough, and gravish colonies and required long culture periods, which were tentatively considered as Bartonella species. The bacteria were subcultured in fresh media and all isolates were maintained in Trypticase Soy Broth with 20% glycerol (v/v) for further characterization.

DNA extraction and polymerase chain reaction (PCR) amplification

The genomic Bartonella DNA was detected using specific PCR primers as described previously by Boonmar et al. [16]. Genomic DNA was extracted from each isolate using InstaGene Matrix (BioRad, Hercules, United States). Primers targeting the β -subunit of RNA polymerase (rpoB) [17] (primer pair 5'-CGCATTGGCTTACTTCGTATG-3' sequences, and 5'-GTAGACTBATTAGAACGCTG-3') and citrate synthase (gltA) [18] (primer pair sequences, 5'-AATGCAAAAAGAACAGTAAACA-3' and 5'-GGGGGACCAGCTCATGGTGG-3') were used for PCR. PCR was performed using 20 µL of reaction mixtures containing 20 ng of extracted DNA, 200 µmol/L of each deoxynucleotide triphosphate, 1.5 mmol/L of MgCl₂, 0.5 U of Go-Taq DNA polymerase (Promega, Madison, Wisconsin, United States), and 1 pmoL of each primer. The thermal cycling conditions of PCR included a denaturation step at 94°C for 2 min, followed by 35 cycles of 94°C for 30 s, 53°C for 30 s, and 72°C for 1 min, with a final step of 72°C for 7 min. Positive and negative controls were included in each experiment. Finally, 10 µL of each PCR product was subjected to electrophoresis on 1.5% agarose gels containing ethidium bromide and visualized on an ultraviolet transilluminator. The expected length of PCR products was 825 bp (*rpoB* primers) and 379 bp (gltA primers).

Phylogenetic analysis

The Clustal X program [19] was used to align *Bartonella* sequences obtained from this study. The data will be deposited in the GenBank/EMBL/DDBJ databases. A phylogenetic tree was drawn based on the aligned sequences of *gltA* and *rpoB* genes using the neighbor-joining method with Kimura's two-parameter distance method in MEGA 11 [20]. Bootstrap analysis was conducted using 1,000 resamples. The *Brucella melitensis* strain 16M sequence was used as an out-group.

Statistical analysis

Pearson's Chi-square test and Fisher's exact test were used to comparatively analyze the prevalence of

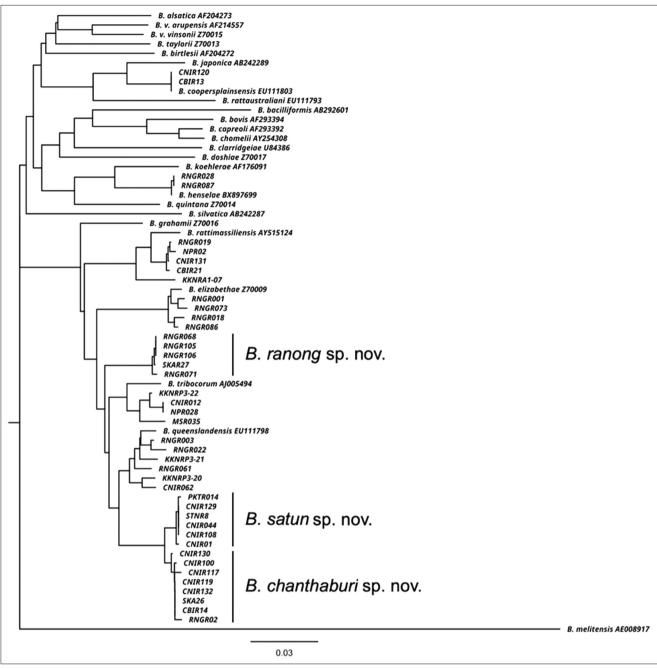
Table-1: Prevalence of nine Bartonella species from 860 rodents and shrews of nine provinces in Thailand.

animal species among provinces using the IBM SPSS Statistics software. The differences observed were considered statistically significant at $p \le 0.05$.

Results

A total of 860 small mammals were captured from nine provinces of Thailand, including 399 Rattus spp., 50 Bandicota spp., 351 other spp., and 60 Suncus murinus (shrews). Overall, 11.5% of blood samples from rodents (99/860, 95% CI: 9.38–13.64%) were positive for nine Bartonella species; the rodents included 86/399 Rattus spp. (21.5%), 5/50 Bandicota spp. (10%), 3/299 Mus musculus (1.0%), and 5/60 Suncus murinus (8.3%). The incidence and identities of the nine Bartonella spp. were as follows: 27.3% of B. tribocorum, 20.2% of Bartonella rattimassiliensis, 15.2% of Bartonella queenslandensis, 10.1% of B. elizabethae, 8.1% of Bartonella chanthaburi spp. nov., 6.1% of Bartonella satun spp. nov., 6.1% of Bartonella coopersplainsensis, 5.1% of Bartonella ranong spp. nov., and 2.0% of *B. henselae* (Table-1).

Table-2 shows the geographic distribution of the nine Bartonella spp. isolated from rodents and shrews. Of all animals carrying these pathogens, 22/414 (5.31%) were captured in the northeastern region of Thailand, 1/41 (2.5%) in the northern region, 5/40 (12.5%) in the central region, 25/148 (16.9%) in the eastern region, and 46/217 (21.2%) in the southern region. The prevalence of the nine Bartonella spp. in the nine provinces was as follows (in descending order): 35.1% (40/114 animals) in Ranong, 31.0% (14/45) in Nakhon Phanom, 16.9% (25/148) in Chanthaburi, 12.5% (5/40) in Chonburi, 7.7% (3/39) in Phuket, 5.4% (2/37) in Songkhla, 3.7% (1/27) in Satun, 2.5% (1/41) in Tak, and 2.2% (8/369) in Khon Kaen. Among the northeastern provinces, Bartonella prevalence in Nakhon Phanom was significantly higher than that in Khon Kaen (p < 0.001). Further, among the southern provinces, the prevalence in Ranong was significantly higher than that in Satun (p < 0.001). The phylogenetic tree of the 99 Bartonella-positive sequences of gltA and rpoB fragments is shown in Figure-2. Table-3 shows the GenBank accession numbers of the nucleotide sequences obtained from this study, which were deposited in the GenBank.


Discussion

The prevalence of rodent-associated *Bartonella* spp. has shown high diversity, with more than 20 such species reported worldwide. It is known that more than one *Bartonella* spp. can circulate in rodent communities, and the presence of multiple *Bartonella* genotypes in the same host has been reported [3, 5, 21], leading to emerging bartonellosis, particularly in Southeast Asia [22, 23]. The prevalence of these pathogens was reported to be 6% in Indonesia [24], 9.3–42.9% in China [25], 10.1–30.4% inLao PDR [26], and 13.5–13.8% in Malaysia [27], depending on the diagnostic method, location, environmental conditions, presence

Host species		Number			Numb	er of animal	s infected wi	Number of animals infected with Bartonella species	species		
	examined	of positive (%)	Bartonella cooperspl ainsensis	Bartonella elizabethae	Bartonella henselae	Bartonella queensla ndensis	Bartonella rattimassi liensis	Bartonella tribocorum	Bartonella chanthaburi spp. nov.	<i>Bartonella satun</i> spp. nov.	<i>Bartonella ranong</i> spp. nov.
Bandicota indica	46	5 (11.1)	H	0	0	2			0	0	0
Bandicota savilei	4	0	0	0	0	0	0	0	0	0	0
Berylmys berdmorei	Ŀ	0	0	0	0	0	0	0	0	0	0
Callosciurus notatus	m	0	0	0	0	0	0	0	0	0	0
Crocidura fuliginosa	23	0	0	0	0	0	0	0	0	0	0
Maxomys rajah	ß	0	0	0	0	0	0	0	0	0	0
Maxomys surifer		0	0	0	0	0	0	0	0	0	0
Menetes berdmorei	m	0	0	0	0	0	0	0	0	0	0
Mus caroli	10	0	0	0	0	0	0	0	0	0	0
Mus musculus	299	3 (1.0)	0	0	0	0	0	m	0	0	0
Rattus argentiventer	S	0	0	0	0	0	0	0	0	0	0
Rattus exulans	125	8 (6.4)	0	0	0	0	0	8	0	0	0
Rattus norvegicus	59	28 (47.5)	0	8	1	8	2	6	0	0	0
Rattus rattus	171	48 (28.1)	ъ	2	1	ъ	17	9	7	S	0
Rattus tenezumi	39	2 (5.1)	0	0	0	0	0	0	1	Н	0
Tupaia glis	2	0	0	0	0	0	0	0	0	0	0
Suncus murinus	60	5 (8.3)	0	0	0	0	0	0	0	0	Ю
Total	860	99 (11.5)	6 (6.1)	10 (10.1)	2 (2.0)	15 (15.2)	20 (20.2)	27 (27.3)	8 (8.1)	6 (6.1)	5 (5.1)

	Province	Number	Number			Numbe	r <u>of animal</u> s	infected wi	Number of animals infected with Bartonella species	pecies		
		examined	of positive (%)	Bartonella coopersplain sensis	Bartonella elizabethae	Bartonella henselae	Bartonella Bartonella queenslan rattimassi densis liensis	Bartonella rattimassi liensis	Bartonella tribocorum	Bartonella chanthaburi spp. nov.	Bartonella satun spp. nov	Bartonella ranong spp. nov
North- Eastern	Khon Kaen	369	8 (2.2)*	0	0	0	3/(Rr = 1, Bi = 2)	2/(Bi = 1, Rr = 1)	3/(Mm = 3)	0	0	0
	Nakhon Phanom	45	14 (31)*	0	0	0	0	3/(Rr = 3)	11/(Re = 8, Rn = 1, Rr = 2)	0	0	0
	subtotal	414	22 (5.31)	0	0	0	3/(Rr = 1, Bi = 2)	5(Bi = 1, Rr = 4)	14 (Mn = 3, Re = 8, Rn = 1, Rr = 2)	0	0	0
Northern	Tak	41	1 (2.5)	0	0	0	0	0	1/(Bi = 1)	0	0	0
Central Eestern	Chon Buri	40	5 (12.5)	2/(Bi = 1, Rr = 1)	0	0	0	2/(Rr = 2)	0	1/(Rr = 1)	0	0
	Chanthaburi	148	25 (16.9)	4/(Rr = 4)	0	0	2/(Rr = 2)	8/(Rr = 8)	2/(Rr = 2)	5/(Rr = 5)	4/(Rr = 4)	0
Southern	Ranong	114	40 (35.1)**	0	10/(Rn = 8, Rr = 2)	2/(Rn = 1, Rr = 1)	10/(Rn = 8, Rr = 2)	3/(Rn = 2, Rr = 1)	10/(Rn = 8, Rr = 2)	1/(Rr = 1)	0	4/(Sm = 4)
	Phuket	39	3 (7.7)	0	0	0	0	2/(Rr = 2)	0	0	1/(Rr = 1)	0
	Songkhla	37	2 (5.4)	0	0	0	0	0	0	1/(Rt = 1)	0	1/(Sm = 1)
	Satun	27	1 (3.7)**	0	0	0	0	0	0	0	1/(Rt = 1)	0
	Subtotal	217	46 (21.2)	0	10/(Rn = 8, Br = 2)	2/(Rn = 1, Rr = 1)	10/(Rn = 8 Br = 2)	5/(Rn = 2, Br = 3)	10/(Rn = 8, Rr = 2)	2/(Rr = 1, Rt = 1)	2/(Rr = 1, Rt = 1)	5(Sm = 5)
	Total	860	99 (11.5)	6 (6.1)	10 (10.1)	2 (2.0)	15 (15.2)	20 (20.2)	27 (27.3)	8 (8.1)	6 (6.1)	5 (5.1)
*Prevalen	ice in NakhonPh	lanom was si	ignificantly hig	her than in Kho	nKaen (p < 0.	001), **Prev	alence in Ran	ong was sign	*Prevalence in NakhonPhanom was significantly higher than in KhonKaen (p < 0.001), **Prevalence in Ranong was significantly higher than in Satun (p < 0.001)	han in Satun (p < 0.001)	

provinces. Thailand. and shrews in nine rodents Table-2: Geographic distribution of nine Bartonella species isolated from

Figure-2: Neighbor-Joining tree based on the concatenated sequences of 2 loci (*gltA* and *rpoB*) of *Bartonella* species. The phylogenetic tree was reconstructed using the Kimura 2-parameter substitution model. The tree was rooted using *Brucella melitensis* as an out-group. Bootstrap values resulting from 1000 bootstrap trials are indicated for each branch. Bar represents 0.03 estimated nucleotide substitutions per site. gltA=Citrate synthase, rpoB=RNA polymerase.

of vectors, and animal host species and their habitats. The prevalence of 11.5% reported in this study is similar to that reported in a study conducted in Malaysia [27]. In line with the previous studies, *Bartonella* spp. in our study was also frequently isolated from *Rattus rat*tus [7, 8]; however, other studies showed contrasting results [24–26]. The previous studies from Thailand have identified the presence of *B. elizabethae*, *B. hense*lae, Bartonella clarridgeae, and B. tamiae, which were known to cause infections in humans [6–9, 12–13]. Of these, we did not detect *B. tamiae* and *B. clarridgeae* in this study but we found the other two species in addition to *B. tribocorum*, *B. rattimassiliensis*,

B. coopersplainsensis, *B. queenslandensis*, and three novel *Bartonella* spp.

B. henselae is a well-known pathogen in wild and domestic cats and causes cat-scratch disease [28, 29]. It has been isolated from rodents in Thailand in a previous study [7, 8] and is associated with febrile Thai patients [13, 30]. This pathogen was detected in approximately 2% of the rodents from the Ranong Province. Notably, the three novels *Bartonella* spp. were also found in this province and were isolated from shrews.

B. elizabethae is widely distributed in Asian countries [7, 8, 25]. It is known to be associated with

Table-3: GenBank accession numbers for nucleotide sequences.

N	ucleotide sequences		accession bers
_		gltA	rpoB
В.	elizabethae_THRNGR001	MF105784	MF105860
В.	queenslandensis_THRNGR003	MF105785	MF105861
	tribocorum_THRNGR006	MF105786	MF105862
	tribocorum_THRNGR012	MF105787	MF105863
В.	elizabethae_THRNGR018	MF105788	MF105864
	rattimassiliensis_THRNGR019	MF105789	MF105865
	tribocorum_THRNGR020	MF105790	MF105866
	queenslandensis_THRNGR022	MF105791	MF105867
	henselae_THRNGR028	MF105792	MF105869
	elizabethae_THRNGR029	MF105793	MF105870
	rattimassiliensis_THRNGR032	MF105794	MF105871
	tribocorum_THRNGR033	MF105795	MF105872
	queenslandensis_THRNGR034	MF105796	MF105873
	elizabethae_THRNGR036	MF105797	MF105874
	queenslandensis_THRNGR037	MF105798	MF105875
	elizabethae_THRNGR043	MF105799	MF105876
	tribocorum_THRNGR044	MF105800	MF105877
	elizabethae_THRNGR045	MF105801	MF105937
	queenslandensis_THRNGR061	MF105802	MF105878
	ranong_THRNGR068	MF105803	MF105879
	ranong_THRNGR071	MF105804	MF105880
В.	elizabethae_THRNGR073	MF105805	MF105881
	queenslandensis_THRNGR074	MF105806	MF105882
	tribocorum_THRNGR077	MF105807	MF105884
	tribocorum_THRNGR079	MF105808	MF105885
	tribocorum_THRNGR080	MF105809	MF105886
	queenslandensis_THRNGR081	MF105810	MF105887
	tribocorum_THRNGR083	MF105811	MF105888
	elizabethae_THRNGR084	MF105812	MF105889
	elizabethae_THRNGR086	MF105813	MF105890
	queenslandensis_THRNGR091	MF105814	MF105892
	tribocorum_THRNGR094	MF105815	MF105893
	ranong_THRNGR105rpoB	MF105816	MF105894
	ranong_THRNGR106rpoB	MF105817	MF105895
	rattimassiliensis_THPKTR006	MF105818	MF105896
	satun_THPKTR014	MF105819	MF105897
	rattimassiliensis_THCTIR99	MF105820	MF105898
	chanthaburi_THCTIR100	MF105821	MF105899
	coopersplainsensis_THCTIR101	MF105822	MF105900
	rattimassiliensis_THCTIR103	MF105823	MF105901
	rattimassiliensis_THCTIR105	MF105824	MF105902
	rattimassiliensis_THCTIR106 rattimassiliensis_THCTIR107	MF105825	MF105903
D. D	satun_THCTIR108rpoB	MF105826 MF105827	MF105904 MF105905
	chanthaburi_THCTIR119 coopersplainsensis_THCTIR120	MF105829 MF105830	MF105906 MF105907
	coopersplainsensis_THCTIR120 coopersplainsensis_THCTIR128	MF105830 MF105831	MF105907 MF105908
	chanthaburi_THCTIR129	MF105832	MF105908 MF105909
	chanthaburi_THCTIR129 chanthaburi_THCTIR130	MF105832 MF105833	MF105909 MF105910
	rattimassiliensis_THCTIR131	MF105833 MF105834	MF105910 MF105911
	chanthaburi_THCTIR132	MF105835	MF105911 MF105912
	rattimassiliensis_THCTIR135	MF105836	MF105912
	rattimassiliensis_THCTIR135	MF105837	MF105915 MF105914
	queenslandensis_THKKNRP3-20	MF105838	MF105914
	queenslandensis_THKKNRP3-21	MF105839	MF105915
B.	tribocorum_THKKNRP3-22	MF105840	MF105917
	tribocorum_THKKNRP3-24	MF105841	MF105917
	tribocorum_THKKNRP3-25	MF105842	MF105919
	queenslandensis_THKKNRP3-29	MF105843	MF105919
	satun_THSTNR8	MF105843 MF105844	MF105920 MF105921
	chanthaburi_THSKAR26	MF105845	MF105921 MF105922
	ranong_THSKAR27	MF105846	MF105922
<u> </u>			
			(Contd)

Table-3: (Continued).

Nucleotide sequences		accession bers
	gltA	rpoB
B. tribocorum_THMSR035	MF105847	MF105924
B. satun_THCTIR01	MF105848	MF105925
B. tribocorum_THCTIR012	MF105849	MF105926
B. tribocorum_THCTIR043	MF105850	MF105927
B. satun_THCTIR044	MF105851	MF105928
B. queenslandensis_THCTIR062	MF105852	MF105929
B. queenslandensis_THCTIR064	MF105853	MF105930
B. coopersplainsensis_THCBIR13	MF105854	MF105931
B. chanthaburi_THCBIR14	MF105855	MF105932
B. coopersplainsensi_sTHCBIR20	MF105856	MF105933
B. rattimassiliensis_THCBIR21	MF105857	MF105934
B. rattimassiliensis_THCBIR23	MF105858	MF105935
B. rattimassiliensis_THKKNRA1-07	MF105859	MF105936
gltA=Citrate synthase, rpoB=RNA	ella	

polymerase, B. tribocorum=Bartonella

tribocorum, B. rattimassiliensis=Bartonella

rattimassiliensis, B. queenslandensis=Bartonella

queenslandensis, B. elizabethae=Bartonella elizabethae,

B. chanthaburi=Bartonella chanthaburi,

B. satun=Bartonella satun,

B. coopersplainsensis=Bartonella coopersplainsensis, *B.*ranong=Bartonella ranong, *B.* henselae=Bartonella henselae

endocarditis [31] and human neuroretinitis [32]. We found this species in approximately 10% of the rodents in the Ranong province near the Myanmar border, where there are several markets, which are visited by business travelers and workers. The Ranong Province showed the highest prevalence of *Bartonella* infection in animals (35.1%) among all provinces. Thus, the epidemiology of this infection in febrile patients with rodent exposure should be considered.

In this study, *B. tribocorum* was the most prevalent *Bartonella* spp. in rodents (27.3%) followed by *B. rattimassiliensis* (20.2%), both of which had been detected in febrile patients in Thailand in a previous study [13]. Almost all incidences of these species were in *Rattus* rodents, similar to that reported in the previous studies [4, 26, 30, 33].

The other two *Bartonella* spp.; *B. queenslandensis* and *B. coopersplainsensis* were also isolated from *Rattus* rodents. They have been isolated from rodents and fleas in Taiwan in a previous study [34].

We found three novel *Bartonella* spp. in the Chanthaburi, Satun, and Ranong provinces. The public health information concerning *Bartonella* infections in these three provinces remains unknown. Further collaboration between human and animal sectors can help investigate the possibility of new *Bartonella* spp. infections in febrile patients with rodent exposure in these three provinces.

Conclusion

To the best of our knowledge, this is the first study that reported the detection of three novel *Bartonella* spp. isolated from rodents and shrews in Thailand. In this study, nine different *Bartonella* spp. were detected and most of them were potentially zoonotic, using rodents as reservoir hosts. Further studies on the risk of this infection among humans, rodents, and the environment are needed to advance public health information.

Authors' Contributions

DP, BN, WP, WW, and NC: Collected the samples. DP and WR: Provided technical help during the experiments. PW and MB: Did the statistical analysis. SB: Designed the study and drafted and revised the manuscript. All authors have read and approved the final manuscript.

Acknowledgments

This work was supported by an NIH, Thailand Grant: Active surveillance and genotyping of *Bartonella* species in reservoir rodents of Thailand by multispacer sequence typing, diagnostic test development project. The authors are grateful to Dr. Ratana Tacharoenmuang from National Institute of Health and Miss Poom Preedakoon from National Science and Technology Development Agency for sequence analysis.

Competing Interests

The authors declare that they have no competing interests.

Publisher's Note

Veterinary World remains neutral with regard to jurisdictional claims in published map and institutional affiliation.

References

- 1. Gutiérrez, R., Shalit, T., Markus, B., Yuan, C., Nachum-Biala, Y., Elad, D. and Harrus, S. (2020) *Bartonella kosoyi* spp. Nov. and *Bartonella krasnovii* spp. Nov., two novel species closely related to the zoonotic *Bartonella elizabethae*, isolated from black rats and wild desert rodent-fleas. *Int. J. Syst. Evol. Microbiol.*, 70(3): 1656–1665.
- 2. Regier, Y., Rourke, F.O. and Kempf, V.A.J. (2016) *Bartonella* spp. A chance to establish One Health concept in veterinary and human medicine. *Parasit. Vectors*, 9(1): 261.
- Gutiérrez, R., Krasnov, B.R., Morick, D., Gottlieb, Y., Khokhlova, I.S. and Harrus, S. (2015) *Bartonella* infection in rodents and their flea ectoparasites: An overview. *Vector Borne Zoonotic Dis.*, 15(1): 27–39.
- 4. Qin, X.R., Liu, J.W., Yu, H. and Yu, X.J. (2019) *Bartonella* species detected in rodents from eastern China. *Vector Borne Zoonotic Dis.*, 19(11): 810–814.
- Kamani, J., Morick, D., Mumcuoglu, K.Y. and Harrus, S. (2013) Prevalence and diversity of *Bartonella* species in commensal rodents and ectoparasites from Nigeria, West Africa. *PLoS Negl. Trop. Dis.*, 7(5): e2246.
- Pangjai, D., Maruyama, S., Boonmar, S., Kabeya, H., Sato, S., Nimsuphan, B., Petkanchanapong, W., Wootta, W., Wangroongsarb, P., Boonyareth, M., Preedakoon, P., Saisongkorh, W. and Sawanpanyalert, P. (2014) Prevalence of zoonotic *Bartonella* species among rodents and shrews in Thailand. *Comp. Immunol. Microbiol. Infect. Dis.*, 37(2): 109–114.
- Castle, K.T., Kosoy, M., Lerdthusnee, K., Phelan, L., Bai, Y., Gage, K.L., Leepitakrat, W., Monkanna, T., Khlaimanee, N. and Chandranoi, K. (2004) Prevalence and diversity of

Bartonella in rodents of northern Thailand: A comparison with *Bartonella* in rodents from southern China. *Am. J. Trop. Med. Hyg.*, 70(4): 429–433.

- Bai, Y., Kosoy, M., Lerdthusnee, K., Peruski, L.F. and Richardson, J.H. (2009) Prevalence and genetic heterogeneity of *Bartonella* strains cultured from rodents from 17 provinces in Thailand. *Am. J. Trop. Med. Hyg.*, 81(5): 811–816.
- 9. Panthawong, A., Grieco, J.P., Ngoen-Klan, R., Chao, C.C. and Chareonviriyaphap, T. (2020) Detection of *Anaplasma* spp. and *Bartonella* spp. from wild-caught rodents and their ectoparasites in Nakhon Ratchasima Province, Thailand. *J. Vector Ecol.*, 45(2): 241–253.
- Rattanavong, S., Fournier, P.E., Chu, V., Frichitthavong, K., Kesone, P., Mayxay, M., Mirabel, M. and Newton, P.N. (2014) *Bartonella henselae* endocarditis in Laos the unsought will go undetected. *PLoS Negl. Trop. Dis.*, 8(12): e3385.
- 11. Lee, S.C., Fung, C.P., Lee, N. and Shieh, W.B. (1998) Cat-scratch disease caused by *Bartonella henselae*: The first case report in Taiwan. *J. Formos. Med. Assoc.*, 97(8): 569–572.
- Kosoy, M., Morway, C., Sheff, K.W., Bai, Y., Cloborn, J., Chalcraft, L., Dowell, S., Peruski, L., Malony, S., Baggett, H., Sutthirattana, S., Sidhirat, A., Maruyama, S., Kabeya, H., Chomel, B., Kasten, R., Popov, V., Robinson, J., Kruglov, A. and Petersen, L. (2008) *Bartonella tamiae* spp. Nov., a newly recognized pathogen isolated from three human patients from Thailand. *J. Clin. Microbiol.*, 46(2): 772–775.
- Kosoy, M., Peruski, L.F., Maloney, S.A., Boonmar, S., Sitdhirasdr, A., Lerdthusnee, K., Baggett, H., Morway, C., Bai, Y. and Sheff, K. (2010) Identification of *Bartonella* infections in febrile human patients from Thailand and their potential animal reservoirs. *Am. J. Trop. Med. Hyg.*, 82(6): 1140–1145.
- 14. Saisongkorh, W., Wootta, W., Sawanpanyalert, P., Raoult, D. and Rolain, J.M. (2009) Candidatus *Bartonella thailandensis*: A new genotype of *Bartonella* identified from rodents. *Vet. Microbiol.*, 139(1): 197–201.
- Saengsawang, P., Morand, S., Desquesnes, M., Yangtara, S. and Inpankaew, T. (2021) Molecular detection of *Bartonella* species in rodents residing in Urban and Suburban Areas of Central Thailand. *Microorganisms*, 9(12): 2588.
- Boonmar, S., Saengsawang, P., Mitsuwan, W., Panjai, D., Kidsin, K., Sansamur, C. and Wichianrat, I. (2021) The first report of the seroprevalence of antibodies against *Bartonella* spp. in water buffaloes (*Bubalus bubalis*) from South Thailand. *Vet. World*, 14(12): 3144–3148.
- Renesto, P., Gouvernet, J., Drancourt, M., Roux, V. and Raoult, D. (2001) Use of rpoB gene analysis for detection and identification of *Bartonella* species. *J. Clin. Microbiol.*, 39(2): 430–437.
- Norman, A.F., Regnery, R., Jameson, P., Greene, C. and Krause, D.C. (1995) Differentiation of *Bartonella*-like isolates at the species level by PCR-restriction fragment length polymorphism in the citrate synthase gene. *J. Clin. Microbiol.*, 33(7): 1797–1803.
- Larkin, M.A., Blackshields, G., Brown, N.P., Chenna, R., McGettigan, P.A., McWilliam, H., Valentin, F., Wallace, I.M., Wilm, A., Lopez, R., Thompson, J.D., Gibson, T.J. and Higgins, D.G. (2007) Clustal W and clustal X version 2.0. *Bioinformatics*, 23(21): 2947–2948.
- 20. Tamura, K., Stecher, G. and Kumar, S. (2021) MEGA 11: Molecular evolutionary genetics analysis version 11. *Mol. Biol. Evol.*, 38(7): 3022–3027.
- Mardosaitė-Busaitienė, D., Radzijevskaja, J., Balčiauskas, L., Bratchikov, M., Jurgelevičius, V. and Paulauskas, A. (2019) Prevalence and diversity of *Bartonella* species in small rodents from coastal and continental areas. *Sci. Rep.*, 9: 12349.
- 22. Blasdell, K.R., Bordes, F., Chaisiri, K., Chaval, Y.,

Claude, J., Cosson, J.F., Latinne, A., Michaux, J., Morand, S., Pagès, M. and Tran, A. (2015) Progress on research on rodents and rodent-borne zoonoses in South-East Asia. *Wildl. Res.*, 42(2): 98–107.

- Kosoy, M. and Bai, Y. (2019) *Bartonella* bacteria in urban rats: A movement from the jungles of Southeast Asia to metropoles around the globe. *Front. Ecol. Evol.*, 7: 88.
- Winoto, I.L., Goethert, H., Ibrahim, I.N., Yuniherlina, I., Stoops, C., Susanti, I.I., Kania, W., Maguire, J.D., Bangs, M.J., Telford, S.R. and Wongsrichanalai, C. (2005) *Bartonella* species in rodents and shrews in the greater Jakarta area. *Southeast Asian J. Trop. Med. Public Health*, 36(6): 1523–1529.
- Ying, B., Kosoy, M., Maupin, G.O., Tsuchiya, K.R. and Gage, K.L. (2002) Genetic and ecologic characteristics of *Bartonella* communities in rodents in Southern China. *Am. J. Trop. Med. Hyg.*, 66(5): 622–627.
- Angelakis, E., Khamphoukeo, K., Grice, D., Newton, P.N., Roux, V., Aplin, K., Raoult, D. and Rolain, J.M. (2009) Molecular detection of *Bartonella* species in rodents from the Lao PDR. *Clin. Microbiol. Infect.*, 15(Suppl 2): 95–97.
- Tay, S.T., Mokhtar, A.S., Low, K.C. and Zain, S.N.M. (2014) Isolation and molecular identification of *Bartonellae* from wild rats (*Rattus* Species) in Malaysia. *Am. J. Trop. Med. Hyg.*, 90(6): 1039–1042.
- 28. Chomel, B.B., Boulouis, H.J. and Breitschwerdt, E.B.

(2004) Cat scratch disease and other zoonotic *Bartonella* infections. J. Am. Vet. Med. Assoc., 224(8): 1270–1279.

- 29. Chomel, B.B., Boulouis, H.J., Maruyama, S. and Breitschwerdt, E.B. (2006) *Bartonella* spp. in Pets and effect on human health. *Emerg. Infect. Dis.*, 12(3): 389–394.
- Bhengsri, S., Baggett, H.C., Peruski, L., Morway, C., Bai, Y., Fisk, T.L., Sitdhirasdr, A., Maloney, S.A., Dowell, S.F. and Kosoy, M. (2010) *Bartonella* spp. Infections, Thailand. *Emerg. Infect. Dis.*, 16(4): 743–745.
- Daly, J.S., Worthington, M.G., Brenner, D.J., Moss, C.W., Hollis, D.G., Weyant, R.S., Steigerwalt, A.G., Weaver, R.E., Daneshvar, M.I. and O'Connor, S.P. (1993) Rochalimaea elizabethae spp. Nov. isolated from a patient with endocarditis. *J. Clin. Microbiol.*, 31(4): 872–881.
- 32. O'Halloran, H.S., Draud, K., Minix, M, Rivard, A.K. and Pearson, P.A. (1998) Leber's neuroretinitis in a patient with serologic evidence of *Bartonella elizabethae*. *Retina*, 18(3): 276–278.
- 33. Müller, A., Gutiérrez, R., Seguel, M., Monti, G., Otth, C., Bittencourt, P., Sepúlveda, P., Alabi, A., Nachum-Biala, Y. and Harrus, H. (2020) Molecular survey of *Bartonella* spp. in rodents and fleas from Chile. *Acta Trop.*, 212: 105672.
- Tsai, Y.L., Chuang, S.T., Chang, C.C., Kass, P.H. and Chomel, B.B. (2010) *Bartonella* species in small mammals and their ectoparasites in Taiwan. *Am. J. Trop. Med. Hyg.*, 836(4): 917–923.
