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Simple Summary: Primary central nervous system lymphoma is a rare and aggressive form of non-
Hodgkin lymphoma. While it is highly responsive to first-line chemo and radiation treatments, rates
of relapse are high, demonstrating the need for improved therapeutic strategies. Recent advancements
in the understanding of the pathophysiology of this disease have led to the identification of new
potential treatment targets and the development of novel agents. This review aims to discuss different
targeted strategies and review some of the data supporting these approaches, and discusses recently
completed and ongoing clinical trials using these novel agents.

Abstract: Primary central nervous system lymphoma (PCNSL) is a rare lymphoma isolated to the
central nervous system or vitreoretinal space. Standard treatment consists of cytotoxic methotrexate-
based chemotherapy, with or without radiation. Despite high rates of response, relapse is common,
highlighting the need for novel therapeutic approaches. Recent advances in the understanding of
PCNSL have elucidated mechanisms of pathogenesis and resistance including activation of the B-cell
receptor and mammalian target of rapamycin pathways. Novel treatment strategies such as the
Bruton’s tyrosine kinase (BTK) inhibitor ibrutinib, phosphatidylinositol-3 kinase (PI3K) inhibitors,
and immunomodulatory drugs are promising. Increasingly, evidence suggests immune evasion
plays a role in PCNSL pathogenesis and several immunotherapeutic strategies including checkpoint
inhibition and targeted chimeric antigen receptor T (CAR-T) cells are under investigation. This
review provides a discussion on the challenges in development of targeted therapeutic strategies, an
update on recent treatment advances, and offers a look toward ongoing clinical studies.
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1. Introduction

Primary central nervous system lymphoma (PCNSL) is a rare variant of extra-nodal
non-Hodgkin lymphoma that affects only the central nervous system (CNS) and/or vitre-
oretinal space in the absence of systemic involvement. This differs from secondary CNS
lymphoma (SCNSL) in which CNS disease may represent progression or a relapse of a
systemic lymphoma that may harbor different genetic features. CNS lymphoma affects
approximately 1600 people per year in the United States and is more common in the elderly,
with a median age of 67 at diagnosis [1]. Immunodeficiency is a risk factor for PCNSL, but
the disease may also occur sporadically in immunocompetent patients. This review will
focus on advances in the treatment of immunocompetent patients with PCNSL.

The presentation of PCNSL may be varied and diagnosis requires a high degree of
clinical suspicion. Symptoms may be focal, related to direct tumor involvement of the
eye, brain, or spinal cord, or may be non-specific. Up to 50% of the time, patients present
with cognitive decline and behavioral changes that may not prompt immediate neuro-
imaging [2]. When imaging is obtained, magnetic resonance imaging (MRI) with and
without contrast is the modality of choice. PCNSL often presents with characteristic homo-
geneously enhancing, diffusion restricting, deep brain lesions. Full disease staging requires
an MRI of the spine, a lumbar puncture, and a slit lamp examination. To differentiate a
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PCNSL from SCNSL, systemic work up is required. A positron emission tomography (PET)
scan of the body should be performed. If a PET cannot be obtained, patients should undergo
computed tomography (CT) of the chest/abdomen/pelvis to look for lymphadenopathy,
paired with a bone marrow biopsy and a testicular ultrasound in men.

PCNSL is highly chemo- and radio-responsive. While surgical sampling is often
required for diagnosis, tissue studies suggest involvement of the whole brain [3]. Mul-
tiple retrospective studies have failed to demonstrate a survival benefit with extensive
surgery [2,4,5] and as a result, resection is typically not pursued.

Chemotherapy alone, particularly methotrexate (MTX)-based treatment, results in dra-
matic clinical and radiographic responses, often inducing remission. While MTX is broadly
considered an important component of first-line treatment, there is a lack of consensus re-
garding the optimal chemotherapy regimen. Polychemotherapy regimens that include MTX
are associated with improved response rates and progression-free survival (PFS) as com-
pared to MTX monotherapy [6]. However, there is a paucity of prospective randomized data
comparing MTX-based regimens and as a result, different practice approaches have devel-
oped. Common regimens include rituximab/MTX/procarbazine/vincristine (R-MPV) [7],
MTX/temozolomide/rituximab) (MT-R) [8], MTX/cytarabine/thiotepa/rituximab (MA-
TRix) [9], rituximab/MTX/carmustine/teniposide/prednisolone (R-MBVP) [10], and ritux-
imab/MTX (R-M) [11]. The optimal dose of MTX is not known, though most practitioners
agree that a dose of at least 3 g/m2 is required for adequate penetration of the CNS [12].
Some regimens utilize dosages up to 8 g/m2 [8] though toxicity often necessitates dose
reductions and there is no clear benefit to these higher doses. Ultimately, choice of regimen
often comes down to institutional and practitioner preference.

Without a consolidation strategy to follow MTX-based chemotherapy, the likelihood
of PCNSL relapse is high, with a median PFS of 21.5 months after a complete response
(CR) [13]. Historically, consolidation consisted of whole brain radiation therapy (WBRT)
though it is unclear whether WBRT results in an overall survival (OS) benefit and it is
associated with long-term neurotoxicity [13]. Whether a lower than standard dose of
WBRT adequately addresses the issue of neurotoxicity remains to be seen [14]. Increas-
ingly, myeloablative high-dose chemotherapy followed by autologous stem cell transplant
(HDC-ASCT) is the preferred consolidation strategy for eligible patients. Such an approach
after MTX-based therapy yields response rates of more than 90% [15] with median PFS of
74 months in one study [15] and not-reached in others [16,17]. For patients who are elderly
or frail, non-myeloablative chemotherapy with high-dose cytarabine with or without etopo-
side may be considered [8,10,18]. Maintenance chemotherapy in lieu of consolidation is
also a reasonable treatment approach [19,20]. In clinical trials, targeted or immunotherapies
are also being explored for this purpose.

Despite aggressive treatment for PCNSL, approximately 15% of patients have refrac-
tory disease [21] and relapse rates are high, particularly in patents who are not candidates
for HDC-ASCT. Traditional strategies for salvage therapy include MTX-rechallenge [22,23],
alternate cytotoxic chemotherapy regimens [24–26], and WBRT [27,28]. Prognosis for re-
lapsed disease is poor with a PFS of only about a year with aggressive salvage therapy [29].
As a result, there is a desperate need for novel therapeutic strategies. Recent developments
in the understanding of the pathogenesis of PCNSL have led to the investigation and use
of new, targeted approaches.

2. Pathophysiology

A vast majority of PCNSL cases are comprised of a diffuse large B cell lymphoma
(DLBCL) and express pan-B cell markers CD20, CD19, CD22, and CD79a. Other lym-
phomatous malignancies such as T-cell lymphoma, Burkitt lymphoma, and lower grade
lymphoproliferative neoplasms have been described but are less common and may warrant
special considerations with regard to treatment strategy.

Histologically, DLBCL in the brain is highly proliferative with an angiocentric growth
pattern. Based on the Hans criteria [30] and immunohistochemistry, a majority (>75%)
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of PCNSL cases are classified as activated B-cell-like (ABC)/nongerminal center sub-
type [31–33]. However further evidence with immunoglobulin heavy chain gene muta-
tional signatures and immunophenotyping suggest PCNSL has germinal center origin
or exposure [31,34–37] and increasingly, there is evidence PCNSL may demonstrate an
overlapping state of differentiation with concurrent expression of germinal center markers
such as BCL6 and activation markers such as cyclin D2 or MUM1/Interferon Regulatory
Factor 4 (IRF4) [31,38]. Ultimately the relevance of differentiating between ABC or germinal
center subtype in PCNSL is unclear and unlike in systemic lymphoma where the ABC
subtype confers a poorer prognosis, there is no clear survival advantage associated with
any particular subtype of PCNSL [39].

Single nucleotide variants and copy number alterations are frequent genetic events in
PCNSL. MYD88, CD79B, CARD11, and TNFAIP3 are amongst the most frequently mutated
genes. Systemically, MYD88 mutations are associated with the ABC subtype; but in PC-
NSL, MYD88, and CD79B have been described in both ABC and GCB subtypes of disease.
MYD88 missense mutations (most common L265P [40]) lead to constitutive activation of the
TLR pathway [41], while alterations in CD79B activate the BCR pathway [42]. Mutations in
the coiled-coil domain of CARD11 result in downstream activation of both pathways [43]
while alterations to TNFAIP3 can result in a loss of pathway inhibition. Ultimately, the
BCR/TLR pathways result in upregulation of nuclear factor kappaB (NFκB), a protein tran-
scription factor that promotes neoplastic proliferation and prevents apoptosis [44]. Copy
number alterations may also contribute to pathogenesis. Losses are common at 6p21.33
(HLA-B, HLA-C), 6q21-23 (TNFAIP3), and 9p21.3 (CDKN2A). Copy number gains may be
seen at 12q (MDM2, CDK4) and 9p24.1 (PD-L1, PD-L2). Somatic hypermutation (SHM)
is also thought to play a role in PCNSL pathogenesis and may offer further rationale for
use of immunotherapy. Genetic features of vitreoretinal lymphoma (VRL) have significant
overlap with PCNSL, and result in probable activation of the TLR pathway. Mutations in
MYD88 may be more common in VRL (and not limited to L265P) while CD79B mutations
appear less common [45]. SHM genes may be similarly mutated.

Increasingly, evidence suggests the tumor microenvironment also plays an important
role in PCNSL. IL-10 is a cytokine that may serve as a prognostic biomarker and also ap-
pears to lead to activation of signal transducer and activator of transcription 3 (STAT3) [46].
The Janus kinase 2 (JAK2)/STAT3 pathway results in transcription of target genes in-
volved in cellular proliferation, survival, and angiogenesis. STAT3 is expressed in a variety
of malignancies including PCNSL [46]. Tumor-associated macrophages (TAMs) interact
with PCNSL cells and promote tumor invasion, proliferation, and an immunosuppressed
environment. Quantification of TAMs may be important in prognosis [47]. TAMs also
overexpress PD-L1, suggesting a potential target for immunotherapy.

Overall, PCNSL appears to be biologically distinct from systemic lymphoma and
is increasingly considered a separate entity [48–50]. Genetic alterations seen in PCNSL
including activation of the B-cell receptor (BCR) and Toll-like receptor (TLR) signaling
pathways most closely resemble those observed in testicular lymphoma [51–53], suggesting
similar pathogenesis between these two immunoprivileged sites. Improved understanding
of the unique molecular profile of PCNSL has allowed for the recent investigation of
multiple targeted strategies (Table 1).

Table 1. Recent prospective trials of novel agents.

Author Year Agent(s) Phase Evaluable
Patients

Disease
Status

Median
Age, y

ORR (PR
+ CR)

mPFS,
mo

mOS,
mo

Korfel [54] 2016 Temsirolimus 2 37 R/R 70 20/37
(54%) 2.1 3.7

Grommes [55] 2017 Ibrutinib 1 20 (13
PCNSL) R/R 69 10/13

(77%) 4.6 15
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Table 1. Cont.

Author Year Agent(s) Phase Evaluable
Patients

Disease
Status

Median
Age, y

ORR (PR
+ CR)

mPFS,
mo

mOS,
mo

Lionakis [40] 2017

TMZ, etoposide,
liposomal doxorubicin,

dexamethasone,
rituximab, ibrutinib

1b 18 R/R,
new 66 15/18

(83%)
15.3 in
R/R NR

Rubenstein [56] 2018
Lenalidomide +

rituximab; lenalidomide
maintenance

1 14 (7
PCNSL) R/R 66 6/7 (86%) 6 NS

Tun [57] 2018 Pomalidomide +
dexamethasone 1 25 (23

PCNSL) R/R NS, >60 11/23
(48%) 5.3 NS

Ghesquieres [58] 2019 Lenalidomide +
rituximab 2 45 (34

PCNSL) R/R 69 22/34
(65%) 3.9 NS

Grommes [59] 2019 Ibrutinib + M(3.5) +
rituximab 1b 15 (9

PCNSL) R/R 62 8/9 (89%) NR NR

Soussain [60] 2019 Ibrutinib 2 44 R/R 70 26/44
(59%) 4.8 19.2

Narita [61] 2021 Tirabrutinib 1/2 44 R/R 60 28/44
(64%) 2.9 NR

CR: complete response; M: methotrexate; mOS: median overall survival; mo: months mPFS: median progression-free survival;
NR: not reached; NS: not specified; ORR: overall response rate; PCNSL: primary central nervous system lymphoma; PR: partial response;
R/R: relapsed/refractory; TMZ: temozolomide; y: years.

3. Molecular Targets
3.1. BCR/TLR Pathway

Discovery of alterations involving the BCR and TLR pathways has led to the most
significant recent breakthroughs in the treatment of PCNSL. The BCR signaling pathway
can be targeted at different signaling nodes. Upstream, the pathway may be downregulated
through targeting phosphatidylinositol-3 kinase (PI3K). Downstream, immunomodulatory
drugs like lenalidomide may be used to inhibit IRF4, which affects NFκB function. Proteo-
some inhibitors may prevent release of NFκB to the nucleus, where it results in alteration
of gene expression. Unfortunately, proteasome inhibitors are often too bulky to cross the
blood–brain barrier (BBB).

Bruton’s tyrosine kinase (BTK), the central signaling node of the pathway, can be
targeted with ibrutinib. A prospective study of ibrutinib 560 mg daily in 52 patients
with relapsed/refractory PCNSL demonstrated a response rate of 52% [60]. A higher
dose of 840 mg daily may result in increased cerebrospinal fluid (CSF) concentration and
remains well tolerated [55,59] though the clinical benefit of this higher dosing schedule is
unknown and additional data suggests the enzymatic IC50 is not proportional to dose [40].
Response to ibrutinib occurs quickly with one ‘window study’ demonstrating a response
rate of 83% to only two weeks of single-agent ibrutinib, prior to the addition of further
chemotherapy [40]. Notably, these high response rates are in contrast the experience in
systemic lymphoma where single agent ibrutinib may result in a response rate of only
25% [62]. While this may be in part due a higher incidence of BCR/TLR alterations in
PCNSL such as MYD88, it is important to note that even PCNSL patients without obvious
genomic alterations in the BCR pathway demonstrate ibrutinib response [60]. It is also
worth noting that while concurrent CD79B and MYD88 mutations appear to sensitize
systemic lymphoma to ibrutinib [62], this same combination was associated with a poorer
response in CNS disease, perhaps due to decreased dependence on the BCR pathway [55].
These mutations appear to coincide in approximately 37% of cases of PCNSL [40]. CARD11
and TNFAIP3 mutations are potential sources of ibrutinib resistance given their activity
downstream BTK. While this has been described in systemic lymphoma [62,63] and PCNSL
with ibrutinib monotherapy [55], adequate responses were seen in patients with these
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potential resistance mechanisms when ibrutinib was used in combination with cytotoxic
chemotherapy [59].

Despite high rates of radiographic response, the progression-free survival provided
by ibrutinib monotherapy is less than 5 months, suggesting early development of resis-
tance [55,60]. With ibrutinib combination treatment, that PFS is extended to approximately
9 months in pre-treated patients [59]. Multiple studies are now incorporating ibrutinib
into combination therapy, paired with agents such as lenalidomide (NCT03703167), copan-
lisib (NCT03581942), checkpoint inhibition (NCT04421560, NCT03770416), and traditional
chemotherapy (NCT04066920, NCT02315326).

Ibrutinib has been incorporated to the National Comprehensive Cancer Network
(NCCN) guidelines for treatment of relapsed/refractory PCNSL. Studies investigating
ibrutinib for use in newly diagnosed patients are currently underway (Table 2). Some
newly diagnosed patients were included in a study of ibrutinib in combination with
temozolomide, etoposide, liposomal doxorubicin, rituximab, and intrathecal cytarabine
(DA-TEDDI-R) but the regimen was associated with high rates of toxicity, specifically
aspergillosis in 39% of treated patients [40]. The same combination is now being used with
prophylactic anti-fungal agents (NCT02203526). In the upfront setting, ibrutinib is also be-
ing studied in combination with MTX, vincristine, procarbazine, rituximab (NCT02315326,
NCT04446962), and is being studied as maintenance therapy following response to induc-
tion therapy (NCT02623010).

Table 2. Ongoing trials of novel agents.

Agents Clinicaltrails.Gov ID Trial Start Phase Target Accrual Eligible Age Country

Upfront Induction

Rituximab, MTX,
lenalidomide, nivolumab NCT04609046 2020 1 27 18+ USA

Rituximab, MTX, procarbazine,
vincristine; and

lenalidomide or ibrutinib
NCT04446962 2020 1b/2 128 18 to 60 France

Rituximab, MTX ± lenalidomide NCT04481815 2020 2 240 18 to 75 China

Rituximab, lenalidomide,
MTX, and TMZ NCT04737889 2021 2 30 18 to 70 China

Rituximab, MTX, procarbazine,
vincristine, and ibrutinib NCT02315326 2021 2 30 18+ USA

Upfront Maintenance

Nivolumab maintenance NCT04022980 2019 1b 20 65+ USA

MTX, rituximab, lenalidomide,
with lenalidomide maintenance NCT04120350 2019 1b/2 47 18 to 75 China

Rituximab, MTX, with
ibrutinib maintenance NCT02623010 2016 2 30 60 to 85 Israel

MTX or TMZ-based therapy
with procarbazine or

lenalidomide maintenance
NCT03495960 2019 2 208 70+ Italy

Lenalidomide/rituximab
maintenance NCT04627753 2020 2 30 19+ Korea

Nivolumab maintenance NCT04401774 2020 2 25 18+ USA

Relapsed/Refractory Disease

TMZ, etoposide, liposomal
doxorubicin, dexamethasone,

ibrutinib, rituximab,
IT-cytarabine

NCT02203526 2014 1 93 18+ USA
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Table 2. Cont.

Agents Clinicaltrails.Gov ID Trial Start Phase Target Accrual Eligible Age Country

Tisagenlecleucel NCT04134117 2019 1 6 18+ USA

Acalabrutinib and durvalumab NCT04462328 2020 1 21 18+ USA

Fludarabine, cyclophosphamide,
axicabtagene ciloleucel NCT04608487 2020 1 18 18+ USA

Ibrutinib with rituximab
and lenalidomide NCT03703167 2019 1b 40 18+ USA

Copanlisib with ibrutinib NCT03581942 2018 1b/2 45 18+ USA

Pembrolizumab, ibrutinib,
and rituximab NCT04421560 2020 1b/2 37 18+ USA

PQR309 NCT02669511 2015 2 21 18+ Germany

Nivolumab NCT02857426 2016 2 47 18+ USA

Abemaciclib NCT03220646 2017 2 10 18+ USA

Ibrutinib, rituximab, ifosfamide
and etoposide, with

ibrutinib maintenance
NCT04066920 2019 2 30 20 to 79 Korea

Nivolumab and ibrutinib NCT03770416 2019 2 40 18+ USA

Nivolumab and pomalidomide NCT03798314 2019 1 3 18+ USA

Acalabrutinib NCT04548648 2020 2 32 18+ USA

Ibrutinib versus lenalidomide,
with MTX, rituximab, etoposide NCT04129710 2020 2 120 18 to 75 China

Orelabrutinib NCT04438044 2020 2 39 18 to 75 China

Paxalisib NCT04906096 2021 2 25 18+ USA

Tirabrutinib NCT04947319 2021 2 44 18+ USA

IT: intrathecal; MTX: methotrexate; TMZ: temozolomide.

It is unclear whether the next generation of BTK inhibitors such as tirabrutinib and
acalabrutinib will offer any advantage over ibrutinib. Tirabrutinib was recently studied in a
phase I/II dose escalation trial in Japan for treatment of relapsed/refractory PCNSL. Overall
response rate (ORR) was 64% though PFS was only 2.9 months. Tirabrutinib is highly selec-
tive for BTK, theoretically reducing toxicity. Nevertheless, nearly half the patients (47.7%)
experienced a grade 3 or greater adverse event including three cases of grade 3 skin reaction
(2, erythema multiforme) and one case of a grade 5 interstitial lung disease and concurrent
Pneumocystis jirovecii (PJP) in a patient not treated with PJP prophylaxis [61]. A phase II
study in the United States is anticipated (NCT04947319). Acalabrutinib, another second
generation BTK inhibitor, is currently being studied in patients with relapsed/refractory
primary and secondary CNS lymphoma (NCT04548648, NCT04462328).

3.2. PI3K/mTOR Pathway

PI3K is a family of kinases that function as second messengers in multiple signal
transduction pathways. Mammalian target of rapamycin (mTOR) is a ubiquitously ex-
pressed member of the PI3K family of proteins and a potential therapeutic target. The
PI3K/AKT/mTOR pathway is highly conserved regulating cell growth and prolifera-
tion [64]. It functions via influence on BTK resulting in activation of NFκB via the BCR
pathway but also leads to the activation of independent signaling pathways [41,42]. Inhibi-
tion of mTOR has demonstrated modest activity in the treatment of mantle cell lymphoma
and systemic DLBCL [65,66].

Temsirolimus, an mTOR inhibitor, was the first targeted agent studied in the treatment
of PCNSL. A phase 2 study of relapsed/refractory PCNSL patients yielded a response
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rate of 54%, notably higher than that observed with systemic lymphoma, but with a PFS
of only 2.1 months. Importantly, CSF pharmacokinetics in fourteen samples failed to
confirm presence of temsirolimus in all but one specimen which contained a marginal
concentration of drug [54]. This was in contrast to a glioma study which demonstrated
presence of intratumoral temsirolimus with tissue/blood concentration ratios ranging
from 0.69–3.37 [67]. The mismatch between observed response and duration of control
may speak to the importance of selecting a therapeutic agent that will treat both the
intraparenchymal and leptomeningeal compartments or be a function of early development
of resistance mechanisms.

A study of buparlisib, a pan-PI3K inhibitor resulted in even lower response rates
(25%) [68]. Again, while pharmacokinetic data from a surgical glioma study demonstrate
intratumoral concentrations on par with those in plasma [69], CSF concentrations were
subtherapeutic in the CNS lymphoma population [68]. Further complicating the picture is
evidence indicating incomplete blockade of the PI3K/AKT/mTOR pathway, even when
intratumoral concentrations are achieved [69].

Current studies are underway with additional agents targeting this pathway. PQR309,
a dual PI3K/mTOR inhibitor, has shown promise in the preclinical setting. Paxalisib is
a PI3K/mTOR inhibitor with CNS penetrance. Each are being studied as monotherapy
for patients with relapsed/refractory PCNSL (NCT02669511, NCT04906096). Copanlisib,
another PI3K inhibitor, is being used in combination with ibrutinib (NCT03581942) in order
to address increased activation of the PI3K/AKT/mTOR pathway observed in CD79B
mutant lymphomas. Preclinical data suggest synergistic cell death with dual PI3K pathway
inhibition and ibrutinib [55].

3.3. Immunomedulatory Drugs

Lenalidomide and pomalidomide are second and third generation immunomodula-
tory drugs (IMiDs) with the potential for direct and indirect antineoplastic effects. IMiDs
suppress IRF4 which interfaces with NFκB, as well as MYC, frequently upregulated in PC-
NSL [8]. They also block the PI3K/AKT pathway, resulting in anti-angiogenic effects [70],
and appear to impact the immune microenvironment by modulating tumor-associated
macrophages [71].

Lenalidomide has been studied as monotherapy for treatment of recurrent/relapsed
PCNSL and SCNSL. Response was seen in 9 of 14 patients (64%) including within the
leptomeningeal and ocular compartments. CSF analysis suggested dose-dependent in-
creases in lenalidomide concentration with a CSF/plasma partition coefficient of >20%
following the 15 and 20 mg dose levels [56]. A phase 2 study of lenalidomide in com-
bination with systemic rituximab for relapsed/refractory PCNSL yielded an ORR 35.6%
with median PFS and OS 7.8 and 17.7 months with a follow up of 19.2 months [58]. The
combination was well tolerated and is now being studied in conjunction with ibrutinib
(NCT03703167) for treatment of relapsed/refractory PCNSL. A retrospective study of
rituximab/lenalidomide/ibrutinib demonstrated response in 8 of 14 heavily pre-treated
patients [72]. Multiple combinations using lenalidomide are being studied for both newly
diagnosed and relapsed disease (Table 2).

Another potential role for lenalidomide is use as a maintenance agent. In a retro-
spective study, low doses of 5–10 mg daily appeared to potentiate response to salvage
therapy, resulting in longer PFS following salvage therapy than with initial treatment [56].
A small prospective cohort of lenalidomide maintenance following induction therapy with
lenalidomide and rituximab induction did not yield as positive results [58]. The role of
lenalidomide maintenance following induction treatment for newly diagnosed disease is
currently under investigation (NCT04120350, NCT03495960, NCT04627753).

Pomalidomide is a third-generation agent that was studied in combination with dex-
amethasone in a phase I study of relapsed/refractory PCNSL and primary VRL patients [57].
ORR was 48% with a PFS of 5.3 months in all-comers and 9 months in responders. Notably,
one patient had pseudoprogression after 4 cycles of treatment. CSF analysis was performed
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in one patient; pomalidomide was detected with a CSF-to-plasma ration of 19 and 17% [57],
consistent with pre-clinical data [71]. Pomalidomide is now being studied in combination
with immunotherapy (NCT03798314).

IMiDs seem to be fairly well tolerated with toxicities most commonly consisting of
marrow suppression, infection, and fatigue.

4. Targeting the Immune System

Increasingly, evidence suggests immune evasion and immune response modulation
play a role in PCNSL pathogenesis and PD-L1 upregulation has been well-described [52].
Two small retrospective studies have reported encouraging outcomes. Nayak et al., treated
five patients (four PCNSL, one isolated SCNSL from testicular primary) with the anti-
PD-1 agent nivolumab. All five had objective radiographic responses with four patients
achieving a CR. PFS appeared promising at >13 months in all patients, and all were
alive at a median follow up of 17 months [73]. The study was of course limited by its
retrospective nature and several patients received either concurrent therapy (rituximab)
or had initiated nivolumab immediately following brain radiation. Still, it lent support
for further investigation into use of immunotherapy. A second, more recent retrospective
study reported six patients with PCNSL (3) and isolated SCNSL (3) treated with anti-PD-1
therapy, pembrolizumab (5) or nivolumab (1). Ambady et al., achieved CR in three of
six patients and reported progressive disease in the remaining. Interestingly, one patient
who achieved an initial CR progressed after therapy was discontinued but was able to
re-attain a CR upon re-initiation of immunotherapy [74]. PD-1 blockade tends to be well-
tolerated and has the potential to offer a viable alternative treatment strategy to patients
who are elderly or frail. Prospective studies are ongoing exploring its use as monotherapy
(NCT02857426) and in conjunction with other agents such as ibrutinib (NCT03770416,
NCT04421560), lenalidomide (NCT04609046), or pomalidomide (NCT03798314). PD-1
blockade is also being explored as a potential maintenance or consolidation strategy
(NCT04401774, NCT04022980).

Targeting tumors with chimeric antigen receptor T (CAR-T) cells is a novel strategy that
utilizes a patients’ own genetically engineered T cells to identify and bind a tumor-specific
target antigen. CD19-targeted CAR-T cells have been studied in systemic DLBCL with
encouraging results [75]. Initially patients with CNS disease were excluded from studies out
of concern for neurotoxicity and the potential for limited efficacy at immunoprivileged sites.
However, CAR-T cells have been identified in the CSF [75] and an index patient with SCNSL
and concurrent systemic disease demonstrated a CR in the brain following treatment with
CD-19 directed CAR-T cell therapy [76]. More recently, a retrospective report of patients
with SCNSL treated with off-label tisagenlecleucel, another CD19-directed CAR-T, yielded
responses in four of eight patients (two CR, two partial response at 28 days) [77]. Notably
T-cell expansion was evident even in patients with isolated CNS disease. The treatment
was tolerated well with no reports of greater than grade 1 neurotoxicity [77]. Preliminary
data from an ongoing clinical trial enrolling patients with PCNSL reported high rates
of toxicity with all patients developing at least grade 1 cytokine release syndrome and
neurotoxicity, though all toxicities were reversible [78]. At initial disease response, three
of five patients had achieved CR while the remaining 2 appeared to have stable disease.
Additional prospective studies of CD19 CAR-T agents tisagenlecleucel (NCT04134117) and
axicabtagene ciloleucel (NCT04608487) are underway in patients with CNS lymphoma,
with results eagerly awaited. Newer generations of CAR-T cells are in development and
may allow for modulation of the tumor microenvironment simultaneous with direct tumor
killing. This newer generation of agents known as T-cells redirected for antigen-unrestricted
cytokine-initiated killing (TRUCKs) express an additional transgenic inducible-cytokine
to be released upon tumor-antigen binding, inducing a pro-inflammatory response and
potentially mitigating the immunosuppressive lymphoma microenvironment [79].

Bi-specific T-cell engagers (BiTEs) are engineered bi-specific monoclonal antibodies
with two single-chain variable domains of different antibodies. One domain targets the
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CD3 receptor on T cells while the other targets a tumor-specific antigen. BiTEs form a link
between T cells and tumor, triggering cellular death via target cell lysis in the absence of
regular major histocompatibility complex (MHC) class I/peptide antigen recognition [80].
Blinatumomab, a CD19/CD3-BiTE has been approved for use in the treatment of B-cell
precursor acute lymphoblastic leukemia with minimal residual disease. It and a variety
of CD20/CD3-BiTEs are undergoing investigation for treatment of systemic DLBCL [81].
At this time, studies are not enrolling patients with CNS disease due to concerns for
neurotoxicity; however, this may be a treatment strategy in the future.

5. Other Targets

Other potential therapeutic targets are being explored in PCSNL. Loss of CDKN2A
is frequently observed [52] and may be targeted by cyclin dependent kinase inhibitors.
A small prospective study of abemaciclib in CNS lymphoma is ongoing (NCT03220646).
Venetoclax, a targeted agent against BCL-2, appears to penetrate the BBB—though at lower
concentrations—and may have some efficacy in CNS lymphoproliferative disease [82,83].
A prospective study of venetoclax with obinutuzumab, an anti-CD20 monoclonal antibody,
was halted due to low enrollment (NCT04073147).

Selinexor, an inhibitor of exportin 1, blocks nuclear export, leading to accumulation
of tumor suppressor proteins in the nucleus and resultant cell death. It is currently ap-
proved for the treatment of refractory multiple myeloma, relapsed systemic diffuse large
B-cell lymphoma, and is planned to be studied for treatment of PCNSL. Pre-clinical data
suggest selinexor may have synergy with ibrutinib, potentially paving the way for future
studies [84].

6. Challenges to Drug Development and Delivery

Development of new targeted treatments has been difficult. One challenge is that
PCNSL is a rare disease, limiting the ability to perform statistically significant head-to-
head comparisons of treatment strategies. Prior to large-scale clinical studies however,
it is important to achieve adequate understanding of drug pharmacokinetics in the CNS.
Many targeted drugs such as proteasome inhibitors are too large to penetrate the BBB.
Increasingly, it is being recognized that drug concentrations need to be explored in both
the leptomeningeal compartment and intraparenchymal tumor tissue as one appears to
be a poor surrogate for the other. Differences in concentration may be a result of frequent
breakdown of the BBB in intraparenchymal disease.

Penetration of the BBB remains a challenge in the treatment of CNS malignancies,
including PCNSL. One potential strategy to enhance drug delivery is disruption of the BBB,
which can potentially be achieved with drugs, ultrasound, or osmotic disruption. One
multi-center study of BBB disruption (BBBD) using mannitol followed by intra-arterial
(IA) MTX yielded an ORR of 81.9% (CRR 57.8%) with an OS of 3.1 years [85]. This
compared favorably to historical controls, particularly considering that approximately half
the patients enrolled did not undergo consolidation treatment. Another strategy for BBBD
include delivery of low doses of tumor necrosis factor-alpha (TNF) to the vasculature.
This has been followed by delivery of systemic lymphoma regimens with otherwise poor
CNS penetration (rituximab/cyclophosphamide/doxorubicin/vincristine/prednisone or
R-CHOP) with good response rates [86].

Development of drug resistance is also a complicating factor, particularly for molecular
strategies targeting only a single pathway. Combination studies are one potential strategy
to reduce resistance. For example, while ibrutinib is associated with a short PFS when
used as monotherapy, response appears more durable when it is used in combination. As
a result, ibrutinib is now under investigation as part of a number of potential treatment
regimens (Table 2). These studies are ongoing, and it remains to be seen whether this
strategy will improve efficacy and long-term control in PCNSL.
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7. Future Directions

The efficacy of MTX has meant that the investigation of most of these novel treatment
strategies has been in the relapsed/refractory setting. Only recently are studies starting
to incorporate the use of some of these newer agents into upfront treatment, and largely
in combination with MTX. It remains to be seen whether any of these agents will obviate
the need for MTX and for the most part, this is not being studied except in patients who
are considered ineligible for MTX-based therapy. While MTX is effective, it necessitates
frequent hospitalizations, leading to time away from work and family. Additionally, it
confers risk of MTX-related toxicity, as well as complications associated with inpatient
admission such as delirium, urinary tract infections, and thromboembolic events. Many of
the novel therapies are oral and most can be administered in the outpatient setting. If they
prove to be as effective as MTX, this may lead to a new treatment paradigm for PCNSL.

As we continue to develop novel strategies for this disease, it will become increas-
ingly important to develop minimally invasive biomarkers. Traditionally, patients are
monitored for recurrence with routine MRIs and possibly CSF sampling and ocular exams,
depending on their presentation. Monitoring of biomarkers such as interleukin-10 (IL-10)
may help monitor treatment response and allow for early detection of relapse [56,87].
Detection of circulating tumor DNA (ctDNA) may serve a similar role while allowing
for detection and confirmation of genetic arrangements. While this technology has been
unsuccessful in the serum of patients with PCNSL [88] in CSF, ctDNA has been used to
detect molecular alterations [59,89]. Studies are ongoing to determine whether detection of
ctDNA in the CSF is of prognostic import and can be used to monitor treatment response
(NCT04401774). Monitoring of ctDNA in the CSF may also allow for monitoring of the
presence of targetable mutations.

8. Conclusions

Advances in our understanding of the molecular drivers of PCNSL have led to the
development of novel drug strategies. We must ensure these drugs penetrate the CNS,
create responses, and that these responses are durable. Combination therapy may be one
way to avoid early resistance. Harnessing of the immune system is another strategy. Further
genetic characterization and monitoring will be crucial in furthering our understanding
and predicting response.
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