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A B S T R A C T   

Currently, the number of cases and deaths of SARS-CoV2, especially among the chronic disease groups, due to 
aggressive SARS-CoV2 infection is increasing day by day. Various infections, particularly viral ones, cause a 
cytokine storm resulting in shortness of breath, bleeding, hypotension, and ultimately multi-organ failure due to 
over-expression of certain cytokines and necrosis factors. The most prominent clinical feature of SARS-CoV2 is 
the presence of elevated proinflammatory cytokines in the serum of patients with SARS-CoV2. Severe cases 
exhibit higher levels of cytokines, leading to a “cytokine storm” that further increases disease severity and causes 
acute respiratory distress syndrome, multiple organ failure, and death. Therefore, targeted cytokine production 
could be a potential therapeutic option for patients severely infected with SARS-CoV2. 

Given the current scenario, great scientific progress has been made in understanding the disease and its forms 
of treatment. Because of natural ingredients properties, they have the potential to be used as potential agents 
with the ability to modulate immune responses. Moreover, they can be used safely because they have no toxic 
effects, are biodegradable and biocompatible. However, these natural substances can continue to be used in the 
development of new therapies and vaccines. 

Finally, the aim and approach of this review article is to highlight current research on the possible use of 
natural products with promising potential as immune response activators. Moreover, consider the expected use of 
natural products when developing potential therapies and vaccines.   

1. Introduction 

Infection with SARS-CoV2, the virus that causes SARS-CoV2, is 
characterized by binding to the angiotensin-converting enzyme 2 
(ACE2) and viral spike protein [1]. Activation of spike proteins is 
mediated by TMPRSS2, which play an vital role in the infection [2]. 
After onset and subsequent endocytosis, SARS-CoV2 infection causes an 
increase in a kinase that mediates pneumonia (PAK1), pulmonary 
fibrosis, and other critical lung damage factors. Elevated levels of PAK1 
also reduce adaptive immune response and facilitate viral replication 
[3]. SARS-CoV2 infection has been associated with increased levels of 
activated proinflammatory chemokines and cytokines, causing atypical 
pneumonia with rapid respiratory impairment and lung failure [4]. 
Cytokine release has been shown to be important in the spectrum of 
SARS-CoV2 infection. This mechanism is more related to organ 
dysfunction than viral load [5]. In this line, a retrospective observational 
study found higher serum levels of proinflammatory cytokines such as 
TNF, IL-1, andIL-6 in patients with severe SARS-CoV2 [6]. 

It has been reported that SARS-CoV2 has a higher lung damage rate 
of about 3.7% than influenza with a lung damage rate of >1% (WHO, 

2020). Some scientific evidence suggests that some groups of severe 
SARS-CoV2 cases may have cytokine storm syndrome and respiratory 
failure due to cytokin storm, which are the leading causes of death [7]. 
Therefore, molecules that can modulate this unregulated response may 
be an effective drug useful in treating the cytokine storm syndrome 
associated with SARS-CoV2 infection [8]. 

SARS-CoV2 infection causes abnormal release of cytokines and 
proinflammatory molecules is closely associated with lung damage [9, 
10]. Uncontrolled release of cytokines such as IL-1β, IL-6 and Monocyte 
Chemo-attractant Protein (MCP)-1, in combination with a reduction in 
natural killer cell numbers, can cause the so-called “cytokine storm” [11, 
12] (Fig. 1). 

Therefore, the use of antiviral drugs alone until a specific vaccine is 
available may not be sufficient to stop cytokine storm and shortness of 
breath in critically SARS-CoV2 patients. To reduce all-cause lung dam-
age, it is important to identify new therapies that can prevent or reduce 
cytokine storms and their aftermath. Immunomodulators of natural 
origin can be useful as preventive and therapeutic tools in reducing 
cytokine storms and their associated effects. Therefore, available ap-
proaches emphasize this cascade for reduced inflammation and immune 
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modulation. Many research projects are underway in the biotechnology 
and academic fields to find new drugs and vaccines against cytokine 
storm. 

SARS-CoV2 infection causes inflammation by activating inflamma-
tory lung damage pathways of the immune system. A growing number of 
indications show that apart from viral damage and uncontrolled 
inflammation due to an unregulated immune response of the host con-
tributes to disease severity and death ([13–17]; Geng et al., 2020). 

Consistent with this hypothesis, patients with severe SARS-CoV2 
showed significant increases in serum levels of proinflammatory mole-
cules (inflammatory cytokines, D-dimer, ferritin, and C-reactive pro-
tein), liver dysfunction, disseminated intravascular coagulation, and 
thrombotic tendencies that indicate the occurrence of immunological 
complications such as cytokine storm. Due to the hyperactive nature of 
the immune response in severe SARS-CoV2, the reorientation of some 
disease-modifying anti-inflammatory drugs, such as baricitinib (JAK 
inhibitor) and tocilizumab (IL-6 receptor inhibitor) possible treatment 
for SARS-CoV2 ([13–17]; Geng et al., 2020) (Fig. 2). 

The most critical cases of SARS-CoV2, which require intensive 
ventilation care and often result in prolonged ventilation dependence 
and death, are the result of an exaggerated inflammatory response to 
infection (England et al., 2020). SARS-CoV2 infection has been associ-
ated with increased levels of activated proinflammatory chemokines and 
cytokines, causing atypical pneumonia with rapid respiratory impair-
ment and lung failure [4]. 

Cytokine storm have been shown to be important factors in lung 
damage from SARS-CoV2 infection. In patients with severe SARS-CoV2, 
higher serum levels of proinflammatory cytokines were found compared 
to patients with mild disease [6]. The molecular mechanism involved in 
this immune process is the target of various synthetic drugs being tested 
in patients, including ciclesonide, hydroxychloroquine, ivermectin, and 
ketorolac, which are PAK1 blockers (Maruta et al., 2020). PAK1 is 
overexpressed in the lung in response to SARS-CoV2 infection and is an 
important mediator of cytokine storm, which frequently causes death in 
hospitlung damagezed patients (Maruta et al., 2020). 

In general, although no specific drug has been reported, studies have 
shown that various administrations and dosing regimens inhibit the 
release of inflammatory cytokines, thereby increasing whiteness levels. 
Blood cell count and histologic examination increase ([18]; Park 2020). 
These results are encouraging as the potential of this molecule for early 
treatment of SARS-CoV2 patients SARS-CoV2 could be further 
investigated. 

Among the many therapeutic options that need to be explored, 
bioactive molecules have received a lot of attention due to the increasing 
use of their immunomodulatory, antioxidant, and anti-inflammatory 
properties. 

Given the current scenario, using foods rich in natural immuno-
modulators is a vital option to enhance immunity and reduce the risk of 
SARS-CoV2 contamination. Moreover, although the use of natural 
products as a therapeutic strategy has not yet become a lung damage, 
based on all the scientific evidence for the immunomodulatory potential 
of these bioactive molecules, the use of dietary supplements is a rational 
choice [19]. 

Here we review the literature the possible use of natural substances 
obtained from medicinal plants as cytokine storm inhibitors (Fig. 3). We 
highlight some natural products with promising potential. However, the 
focus is on naturally extracted substances. Therefore, the implications of 
the specific molecular properties of natural products that can be used for 
promising therapeutic interventions are discussed in detail. We also 
discuss how natural molecules generate critical adaptive immune re-
sponses to influence antibody development, and detail the basic 

Fig. 1. Possible mechanism of action of SARS-CoV2.  

Fig. 2. Markers of cytokine storm.  
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mechanisms that modulate the immune system. Finally, a contextual 
dialog will be opened about the potential of natural products as an 
effective and safe platform in the development of vaccines and potential 
therapies to strengthen immunity. 

This comprehensive review provides important updates on a number 
of natural products that have promise potential for SARS-CoV2 treat-
ment. However, as much of the research on the antiviral effects of 
bioactive products and Chinese medicine in this area is only preliminary, 
in-depth in-vivo studies on appropriate animal models are needed to 
uncover the underlying cellular and molecular mechanisms. There are 
several promising pharmacokinetic studies of natural products and 
should be carried out to obtain a pharmacokinetic profile, including 
absorption, distribution, metabolism and excretion parameters. More-
over, clinical studies are needed to test the effectiveness and safety of 
antiSARS-CoV2 in humans. More importantly, studies should be con-
ducted to examine potential interactions between TCM or natural 
products and available antiviral agents for antiSARS-CoV2 effects. 
Optimizing some of the above-mentioned lead molecules with known or 
novel mechanisms of action could lead to the possible development of 
new therapies for SARS-CoV2. 

2. TCM in treating cytokine storm in COVID19 

As TCM has the characteristics of a multicomponent, multipurpose, 
and reusable pathway to treat disease, it has great potential to treat 
SARS-CoV2. In this review, many medicinal plants and natural products 
have demonstrated promising anti-SARS-CoV2 activity through a vari-
ety of targeted approaches and could be further developed into thera-
peutic guides. Although natural bioactive products have shown 
potential to treat SARS-CoV2, there is still a long way to go before they 
can be used in the clinic. One of the main limitations in the development 
of natural bioactive products in medicine is their solubility and 
bioavailability. The high cost and complexity of clinical trials are other 
barriers to the development of new anti-SARS-CoV2 from bioactive 
products. Pharmaceutical industries face a number of regulatory chal-
lenges, such as more stringent test designs and increased safety re-
quirements for drug approval. 

Plant extracts are widely used for their potential to treat COVID19 
symptoms.   Popular TCM have been used not only via the anti- 
inflammatory route but also in a wider range of biological activities, 
such as antiviral, being considered [18]. 

Licorice can significantly reduce levels of proinflammatory cyto-
kines. Moreover, licoricehas specific goals related to immune response, 
inflammation, bacterial protection, endotoxin response, glucocorticoid 
response, antipyretic, sweating, etc. Each relationship, each time 
through a common goal for intergroup relations, shows different goals 
for materials and synergies paths (Han et al., 2019). 

Further studies were carried out with decoctions of rhubarb, a plant 

widely used as a food ingredient, has been studied for its potential to 
affect extravascular lung water in cytokin storm case. Therefore, this 
bioactive product can be used effectively in the early treatment of res-
piratory distress patients [20]. Similary, Xuanbai Chengqi has been used 
traditionally in China since the late 18th century. This natural product 
decoction has been tested for the treatment of COVID19. A clinical study 
found that pulmonary compliance, whether static or dynamic, was 
significantly higher in patients treated with the decoction than in the 
control group. Moreover, lung damage was lower in the treated patients 
(Mao et al., 2016). Details of some medicinal plants studies are given in 
Table 1. 

2.1. Propolis 

In preclinical studies, propolis upregulated the immune regulation of 
proinflammatory cytokines. This immune regulation includes macro-
phages, monocytes, and inflammatory pathways, reducing the risk of 
cytokine storm. Moreover, propolis holds promisingagent in treating 
some very dangerous co-morbidities in patients with SARS-CoV2, 
including respiratory diseases, high blood pressure, diabetes, and can-
cer. Given the current state of the SARS-CoV2 pandemic and limited 
therapeutic options, propolis is presented as a suitable and promising 
therapeutic option that is safe, available and easy to administer orally 
[28]. 

Propolis increase the production of antibodies against SARS-CoV2, 
reduce anchoring ACE2and TMPRSS2expression and limits entry of 
the virus. Moreover, propolis promotes NF-KB and monocyte/macro-
phage immunomodulation, reduce proinflammatory cytokine over-
production, and reduce PAK1 activation [28]. Propolis extract inhibits 
NF-B activation [29]. Induces Ca2+ lung damage in dendritic cells in 
Peyer’s patches and enhances immune response [30]. Attenuates in-
flammatory reactions via intracellular levels of ROS and NO with 
decreased IL-1 expression and IL-6 [31]. Regulates the cytokines IFN-γ, 
IL-6 and IL-10 in an experimental asthma model [32]. Increases TGF-β. 
and IL-10, which contributes to the regulation of the inflammatory 
process in acute pneumonia [33]. 

Caffeic acid phenethyl ester (CPE) is considereda strong inhibitor of 
NF-kB activation in myelo-monocyte cells. Ansorge et al. [34] demon-
strated that propolis, CPE, hesperidin, andquercetin,can inhibit cytokine 
production. Moreover, CPE can reduce oxidation and inflammation by 
decreasing JAK2/STAT3 lung damage [35], also CPE inhibits phos-
phorylation of STAT3 and IL-6, which are responsible for the develop-
ment of proinflammatory Th17 [36].CPE, a component of propolis, is 
also known as an immunomodulatory agent [37] and should be 
considered as an alternative to reduce excessive inflammatory reactions. 
In a mouse model, propolis has an immunomodulatory effect on the 
expression of toll-like receptors and on the production of proin-
flammatory cytokines in vivo [38]. 

Fig. 3. Natural products as a cytokine storm inhibitors.  
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Propolis can reduce and ameliorate inflammatory diseases ([39]; 
Pineros et al., 2020) and has immunomodulatory properties [34]. 
However, these properties may vary depending on the plant of origin of 
the propolis as well as the extractionprocess and inflammation protocol 
used (cell culture, animal models, lipopolysaccharide induction) when 
testing propolis extracts [40]. Animal model studies have shown that 
propolis can reduce levels of TNF and IL-6, and can increase levels of 
IL-10 [33]. Kaempferol, a component of propolis, reduces VEGF 
(vascular endothelial growth factor), IL-6, and TNF-alpha [41]. Propolis 
also inhibits the production of IL-1 beta, an important component in 
diseases such as lupus, rheumatoid arthritis and other autoimmune 
diseases (Ramos et al., 2007). Although its mechanism of action is not 
well understood, this component of propolis has potential as an additive 
in the prevention of chronic inflammatory disease (Tozser et al., 2016). 

Older people are more likely to develop cytokine storm that may 
contribute to the development of cytokine storms, one of the leading 
causes of SARS-CoV2 death [42].The study, using aqueous propolis 
extract, demonstrated a reduction in key proinflammatory cytokines. 
Prostaglandin and leukotriene D4 levels were significantly reduced [43]. 

2.2. Natural ingredients 

The use of natural ingredients for the treatment of cytokine storm has 
been reported (Fig. 4).  However, as noted above, current treatments for 
SARS-CoV2-associated cytokine storm are also to treat symptoms, 
particularly respiratory disease, caused by inflammatory mediators. 
Therefore, several herbal supplements, isolated ingredients have been 
reported to modulate the expression of many inflammatory factors [44]. 

2.3. Alkaloids 

Alkaloids deserve special mention. They exhibit multiple pharma-
cological activities in vivo. Berberine is the main alkaloid in the rhizome 
of Coptis chinensis [45]. These alkaloids have been studied for their effect 
on the integrity of the endothelial glycocalyx because these structures 
are known to be damaged under cytokin storm. Berberine can reduce 
damage and improve the condition of the glycocalyx by inhibiting fac-
tors such as ROS. Yu et al. [46] reported that the potential of tetrahy-
droberberberubine against LPS-induced lung damage. This study found 
that administration of this alkaloid decreasedthe ratio of wet to dry lung. 
Moreover, coagulation, inflammatory cell infiltration and pulmonary 
edema are reduced by these alkaloids [46]. 

Tabersonin, inhibits pro-inflammatory mediators and enhancing 
anti-inflammatory mediators, it can be concluded that these bioactive 
molecules hold promise for early treatment of SARS-CoV2 [47]. Details 
of individual alkaloids studies are given in Table 2. 

2.4. Flavonoids 

Flavonoids are a broad class of molecules that have anti- 
inflammatory effects. These bioactive ingredients are known to 
improve health and slow several diseases (Ramawat and Merillon, 
[169]; [134,135]; [51–55]; [56,57]; [58]). In fact, computer studies of 
its antiinflammatory effect have shown that phospholipase A2 can be 
inhibited by flavonoids (Lattig et al., 2007). Moreover, flavonoids can 
prevent mast cell degranulation and immunoglobulin E (IgE) synthesis 
[59]. Due to its wide use in respiratory diseases, a diet high in flavonoids 
in cytokin storm patients may show useful results that could be further 
investigated to prevent the development of the syndrome in patients 
with SARS-CoV2. 

Acacetin is a flavonoid that occurs naturally in several plants ([60]; 
Hu and Huang; 2018; [61, 50]). These O-methylated molecules were 
investigated as potential candidates for cytokin storm treatment. Sonne 
et al. (2018) reported that the potential for this connection through two 
different mechanisms [50,60]. Sonne et al. (2018) found that this 
bioactive molecule can reduce lung damage and swelling by reducing 
MPO activity and inflammatory cells [61]. Moreover, this compound is 
able to regulate heme oxygenase-1, SOD, COX-2 and iNOS. On the other 
hand, Wu et al., [50] investigated the mechanism and came to the 
conclusion that this molecule is able to increase HO-1 levels and Nrf-2 
activity, while increasing TNF-α. 

Astilbine, is a flavonol molecule that has been tested for potency in 
vivo and in vitro against cytokin storm [62]. This compound was used to 
treat LPS-induced lung damage in mice and LPS-induced inflammation 
in human umbilical vein endothelial cells. In fact, astilbin was able to 
suppress the activity of MDA and MPO and reduce the expression of IL-6 
and TNF-α. In general, these molecules attenuate histopathological 
changes in the lung and neutrophil infiltration. 

Similar results were observed in an in vitro study with lung damage 
[63]. This type of plant is rich in flavonoids. Ryu et al. [63], produced 

Table 1 
Medicinal plants with potential activity to reduce cytokine storm.  

Medicinal plants Mechanism Refs. 

Xuanbai Chengqi Increase lung compliance  
Reduce plateau pressure 
Reduce incidence rate and the fat lung damage 
rate of complications 
Reduce end-expiratory pressure 
Increase dynamic lung compliance 

Mao et al., 
2016 

Lianqinjiedu Reduce body temperature 
Reduce TNF-α, and IL-6levels 
Reduce lung injuries 

[21] 

Physlung damages 
alkekengi 

Reduce TNF-α expression 
Reduce oxidation products accumulation 
Reduce COX-2, caspase-3, p53, ERK, JNK and 
NF-κBlevels  
Enhance Nrf2 translocation from the cytoplasm 
to the nucleus  
Reduce inflammation  
Reduce apoptosis 
Reduce oxidative stress 

[18] 

Rhubarb Increase oxygenation index  
Reduce pulmonary vascular and permeability 
index levels 

[20] 

Portulaca oleracea Reduce the lung wet-to-dry ratio  
Reduce IL-β, IL-6, TNF-α, PGE2, and TGF-β 
levels 
Reduce interstitial edema index 
Increase of IL-10 level  
Improvement of MDA, MPO and SOD level in 
white blood cells  
Increase CAT activities 

[22] 

Cordyceps sinensis Reduce histopathological injury degree 
Reduce MPO activity  
Inhibit neutrophils and macrophages count in 
BALF 
Reduce IL-6, IL-1β, NOandTNF-α levels 
Reduce NF-κB, COX-2 and iNOS DNA binding 
ability 
Reduce wet-to-dry weight ratio 

[23] 

Aster tataricus Repair of vascular endothelial 
Inhibit inflammatory cytokines release 

[24] 

Ulmus davidiana Reduce nitrite/nitrate, LDH and TNF-α levels in 
BALF Ameliorate TNF-α expression and nitrite 
levels 
Ameliorate IL-1β mRNA expression 

[25] 

Ilex kaushue Pulmonary protection 
Reduce superoxide generation 
Inhibit human neutrophil elastase activity 

[26] 

Sini Ameliorate lung injury  
Reduce MPO activity  
Reduce inflammatory factors in lung tissue 
Reduce of ACE expression 
Activate ACE2 angiotensin pathway 

[27] 

Licorice Reduce levels of proinflammatory cytokines 
Enhance immune response 
Reduce inflammation 
Bacterial protection 
Glucocorticoid response 
Antipyretic 

Han et al., 
2019  
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lung damage methanol extract which was able to increase NO produc-
tion, iNOS expression, and inhibit IL-6 and TNF-α levels. 

Emodin, a flavonoid isolated from Rhei Radix, was able to block 
SARS-CoV2 by interfering with the interaction of S-protein and ACE2. It 
also exhibits anti-inflammatory, antiproliferative, and anti-cancer 
properties. Dose-dependent emodin reduces asthmatic airway inflam-
mation by inhibiting activated macrophage polarization and STAT6 
phosphorylation. 

Scutellarein, another vegetable flavonoid, has anti-inflammatory 
effects by inhibiting COX-2 expression and inducing NOS by inhibiting 
the NF-κB pathway. The flavonoids of Lonicerae Japonicae, glycyrrhizin 
and resveratrol are also said to have anti-inflammatory effects. A high- 
profile study published in Science reports that desaminothyrosine, a 
microbial metabolite, can protect the host from influenza by suppressing 
type I interferon lung damage and enhancing pulmonary immunopa-
thology. Desaminothyrosine can be produced by human intestinal 

bacteria from the metabolism of flavonoids and amino acids. Moreover, 
desaminothyrosine is also a flavonoid decomposition product that is rich 
in certain foods and some Chinese medicines. 

Hydroxysafflor yellow A [64], hesperetin [65] and silibinin [66] 
were able to reduce LPS-induced cytokin storm in mice, while silymarin 
reduced puerarin-induced pulmonary changes in rabbits ([60]; Hu and 
Huang; 2018; [61,50,67]). In general, it could be concluded that the 
flavonoid have possible use against cytokin storm act to reduce in-
flammatory mediators associated with increased symptoms of cytokin 
storm. Animals treated with the molecule not only exhibited changes in 
these mediators, but also reduced pathological changes in pneumonia 
and improved abnormal lung tissue morphology. From these in vivo 
studies it can be assumed that suitable phytotherapy dosage forms based 
on these molecules are promising for clinical studies for the treatment of 
cytokin storm in COVID19 patients. 

Several flavonols, including kaempferol, fizetin, rutin, and myr-
icetin, can inhibit cytokine expression and synthesis (Higa et al., 2003). 
Quercetin has an immunosuppressive effect; this molecule inhibits 
cytokine production (Zaragoźa et al., 2020) and induces suppression of 
pyrindome containing 3 which is inflammatory activation (Owona et al. 
, 2020). Moreover, the simultaneous administration of quercetin induces 
immunomodulatory regulation and enhances the antiviral response 
(Colunga Biancatel [68]). Its positive effect on acute lung injury has 
been reported through the inhibition of inflammation containing 
pyrindome-3 (Tianzhu et al., 2014). Details of individual flavonoids 
studies are given in Table 3. 

2.5. Polyphenols 

Polyphenols are derived either from the phenylpropanoid route or 
from the acetate/malonic polyketide route in plant biochemistry. 
Several groups of certain phenolic molecules have been known, such as 
flavonoids, xanthones, bergenine, lignans, coumarins,curcumin and 
caffeic acidare obtained from various fruits and vegetables [69–71]. 

In fact, curcumin is the most important curcuminoidin terms of 
pharmacological action. Studies have shown that curcumin can effec-
tively suppress the increase in cytokines production. Abi et al. and Jains 
et al. reported that curcumin inhibits the release of cytokines such as 
TNFα, IL8, and IL1β. Moreover, secretion of IL8 in human esophageal 
epithelial cells and IL6 in rheumatoid synovial fibroblasts are controlled 
by curcumin [71–74]. Therefore, curcumin haspotential to prevent 
cytokine storm in SARS-CoV2 patients. 

Zhang et al. [71] stated that this molecule can reduce lung damage, 
inflammation and lung damage by decreasing NF-kB, IFN-β, TNF-, and 

Fig. 4. managing of cytokine storm in COVID-19.  

Table 2 
Alkaloids with potential activity to reduce cytokine storm.  

Alkaloid Mechanism Refs. 

Berberine Inhibit syndecan-1 shedding and 
heparan sulfate 
Reduce pro-inflammatory cytokines  
InhibitNF-κB lung damage  pathway 

[45] 

Total alkaloids from 
Dendrobium crepidatum 

Inhibit NO production  
Downregulate lung damage  pathway of 
Mitogen-activated protein kinase 

[48] 

Protostemonine Reduce pro-inflammatory 
cytokinesproduction  
Reduce iNOS expression 

[49] 

Protostemonine Inflammatory cell infiltration 
attenuation 
Reduce Pro-inflammatory cytokine  
Eliminate lung edema   
Inhibit MPO activity 
Suppress p38 MAPK, iNOS expression 
Supress NO production 

[50] 

Tetrahydroberberrubine Reduce Edema and inflammatory cells 
infiltration 
Reduce nitrate/nitrite content in BALF. 
Reduce TNF-α  
Reduce myeloperoxidase activity  
Reduce inflammatory markers in cells. 

[46] 

Tabersoninefrom Catharanthus 
roseus 

Attenuation of pathological lung injury 
Inhibit neutrophil infiltration  
Inhibit IL-6 , IL-1β, andTNF-αexpression  
Inhibit MPO activity  
Suppress NF-κB 

[47]  
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other inflammatory factors. Similarly, bergenine and phenethyl ester of 
caffeic acid reduced edema by reducing levels of MPO, IL-6, TNF-, ac-
tivity, and other inflammatory factors. 

Moreover, several studies indicate that plants rich in polyphenols 
have been tested for their therapeutic benefits in preventing cytokin 
storm (Fig. 5). Rosmarinic acid [75] was investigated for various models 
of inflammation in mice. The results showed that polyphenolreduced 
markers of liver, kidney and lung dysfunction by modulating NF-κB and 
metalloproteinase. Similarly, Chen et al. [26] showed that Ilex Kaushue 
aqueous extract and 3,5-dicapheoylquinic acid inhibited neutrophil 
elastase activity and superoxide formation and reduced lung damage in 
mice. This extract also enhances lung protection [26]. Details of indi-
vidual polyphenol studies are given in Table 4. 

2.6. Coumarin 

Coumarins are phenolic molecules consisting of a benzene ring and a 
-pyrone. Isofraxidine, a coumarin, isolated from Sarcandra glabra and 

Acanthopanax senticosus, is said to have an anti-inflammatory effect. 
Niu et al. [76] showed that this molecule reduced lung damage  in mice 
from lung injury after intraperitoneal injection to 15 mg/kg. The authors 
observed an inhibitory effect on histopathological changes in the lung 
and COX-2 expression. Moreover, the levels of inflammatory cytokines 
are also reduced. Similar anti-inflammatory and promising in vivo results 
from a mouse model with lung damage were obtained from the study by 
Li et al. [37] and Wang et al. [9]. Details of individual coumarin studies 
are given in Table 5. 

2.7. Glucoside 

Glucoside is assigned to compounds related to glucose. These mol-
ecules can be identified by the presence of intermolecular glucosidic 
bonds (Ramawat and Mérillon [169]). Fraxin, is a glucoside with several 
biological andpharmacological effects [77]. This connection was also 
investigated in an LPS-induced lung damage model in mice. He suc-
ceeded in reducing the pathological changes in the lung tissue of the 
animals examined. Moreover, the pulmonary inflammatory response is 
reduced because the production of IL-6, TNF- and IL-1β is inhibited. On 
the other hand, polydatin, has been shown to be useful in LPS-induced 
cytokin storm by inhibiting apoptosis in mice [37]. 

Liu et al. [78] conducted a similar study on forsythosideand its effect 
oninflammation in RAW macrophages 264.7. This molecule is a phe-
nyletanoside, found in some plants, and has been known to have neu-
roprotective, antibacterial, and antioxidant properties. The authors 
examined the anti-inflammatory properties of this molecule and found 
that initial treatment with this molecule could reduce histopathological 
changes in the lungs and edema, inhibit inflammatory cytokines, and 
reduce infiltration of inflammatory cells into the lungs. Similar results 
by Lu et al. [79] who showed that this glucoside is also capable of 
reducing histologic changes in the lung and inhibiting inflammatory 
cytokines. 

2.8. Terpenes 

Terpenoids are the most abundant bioactive compounds among 
herbs and plants (Ramawat and Mérillon [169]). Bisabolol and bisabolol 
nanoparticles have been reported to decrease lungdamage by sup-
pressing proinflammatory mediators in a mouse model of acute lung 
injury. Despite their different chemical structures, similar results were 
obtained for picfeltarraenin,  dehydrocostus lactone, bigelovii A, iso-
alantolatone and bardoxolone are responsible for the reduction in COX2 
and IL-8expression and PGE2 production. 

It has been reported that cucurbitacin is an antiproliferative agent by 
inhibiting the activation of components of STAT3andJAK2 [80]. Inhi-
bition of the JAK/STAT pathway increases p21WAF1 expression inde-
pendently of p53 activity, thereby leading to stop the accumulation and 
proliferationof T lymphocytes and inhibiting cytokines production [81, 
82]. Moreover, cucurbitacins have been shown to inhibit the expression 
of CD69 and CD25 [83]. Cucurbitacins can inhibit the JAK/STAT3 
pathway. Interestingly, cucurbitacins inhibit of COX-2, TNFexpression 
and pro-inflammatory mediators (Bernard et al., 2010; [84]). Such a 
strategy could be used to limit the growth of cytokine production in 
SARS-CoV2patients. 

Saponins are compounds that have surfactant activity due to their 
amphiphilic nature caused by the presence of terpene groups and sugars. 
These molecules are mostly present in various plant species and are also 
triterpenoid glucoside molecules (Ramawat and Mérillon [169]). 
Studies on the effect of glycyrrhizic acid on lung damage were carried 
out in this group. A mouse model of induced sepsis was developed by 
Zhao et al. [85] who found these saponins reduced lung damage and 
reduced the ratio of wet to dry lungs. Moreover, these compounds were 
able to reduce many inflammatory mediators [85]. Moreover, ginseng or 
ginsenosides, a class of molecules represents most of the therapeutic 
activity of ginseng (Ramawat and Mérillon, [169]). Ginsenoside Rb1, 

Table 3 
Flavonoids with potential activity to reduce cytokine storm.  

Flavonoid Mechanism Refs. 

Acacetin Suppress NO production 
Reduce inflammatory and edema  
Increase Nrf-2 activity  
Reduce IL-1β and TNF-α levels in lung 
tissues. 

[50]  

Puerarin Upregulation of caspase 3 
Downregulation of TGF-β1and Bcl-2 
Increase IL-10 levels 
Reduce IL-1, IL-2 and IL-4 production 
Reduce wet-to-dry ratio of lung tissue  
Reduce abnormal changes in lung 
tissue morphology 

Hu et al., 
2019 [60] 

Acacetin Reduce MPO activity. 
Reduce lung edema. 
Regulate COX-2, iNOS,HO-1andSODs. 
Reduce inflammatory cytokine 
concentration. 
Reduce infiltrated inflammatory cell 
number in BALF. 

[61] 

Astilbin Inhibit MAPK pathways and 
heparanase.  
Attenuate neutrophil infiltration.  
Reduce TNF-α and IL-6 expression.  
Reduce lung wet-to-dry weight ratios. 
Reduce heparan sulfate production. 
Suppress MPO and MDA activities. 

[62] 

Gnaphlung damageum 
affine methanolic extract 

Inhibit iNOS, IL-6 and TNF-α 
production.  
Inhibithuman neutrophil elastase 
(HNE). 

[63] 

.Hydroxysafflor yellow A Increase of slight collagen deposition. 
Reduce body weight loss and 
pathologic changes in pulmonary 
inflammation.  
Reduce IL-6, IL-1β,TNF-α Expression.  
Reduce protein levels. 
Inhibitnuclear factor NF-κB and α-SMA. 

[64] 

Hesperetin Reduce MPO activity. 
InhibitMAPK activation.  
Regulation of IκB degradation. 
Lung protective effect. 

[65] 

Silymarin Reduce the inflammation 
Ameliorate lung histological changes 
and pulmonary function  
Reduce neutrophils infiltration 
lymphocytes and macrophages  
Mitigate protein level in BALF 

[67] 

Silibinin Inhibit inflammatory cytokines 
production in BALF. Suppress NF-κB 
activation 
Supress pyrindomain-containing 3 
inflammasome expression. 

[66]  
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one of the most important ginseng molecules, attenuates histopatho-
logical variations in lung damage in mice. Like the saponins that have 
been mentioned, these molecules reduce inflammatory mediator’s 
expression [86]. 

Sun et al., [87] found that ginsenosides enhance lung permeability 
index, oxygenation index, and ancillary outcomes associated with the 
development of lung damage. 

Glycyrrhizic Acid reduce of lung wet-to-dry weight and ratio, alle-
viate lung injury,reduce IL-6 andIL-1β levels and also reduce MPO ac-
tivity, nhibit iNOS expressionand NO production, attenuate MDA 
production, preserveSOD activity, mitigate p-IκB-α expression [85]. 

Carotenoids are a type of tetraterpenoids, they are called pigments. 
They are derived from two diterpenes and have a conjugated polyene 
chromophore. Therefore,. These compounds are often found in chro-
moplasts of plants (Ramawat and Mérillon [169]). 

Zhang et al. [88] investigated that crocin was able to increase pul-
monary vascular permeability in mice by inhibiting inflammatory lung 
damage  pathways and improving pulmonary vascular permeability, 
regulating the expression of inflammation-associated proteins, inhibit-
ing inflammatorypathways, nuclear factor κB, heparinase, 
mitogen-activated protein kinase, cathepsin Land MMP-9 expression, 
and protecting endothelial glycocalyx heparan sulfate degradation [88]. 

Limonin supplements have also been shown to reduce IL-6 in healthy 
adults (PA et al., 2013). Limonin acts as a ligand for adenosine A re-
ceptors. The adenosine A receptor has been shown to have an antiin-
flammatory effect in a mouse model of acute lung injury (F-d-P et al., 
2012). This suggests that limonin may have a protective effect on lung 
function by mediating the release of inflammatory mediators and 
reducing lung resistance and elasticity. Overall, limonin may be 
important in combating acute lung damage in SARS-CoV2. 

Limonin attenuates proinflammatory cytokines (Fig. 6), increases 
antioxidant levels, including glutathione (MB et al., 2017). Limonin has 
shown a protective effect on the epithelial barrier and reduces intestinal 
inflammation by inhibiting TNF-induced NF-B translocation (PA et al., 
2013), as well as the NOS, COX-2, LOX, PGE2, TGF-β and ERK1/2 
pathways. It also enhances antioxidant and mucosal protection. More-
over, it attenuates pro-inflammatory cytokines such as NF-B and reduces 
neutrophil infiltration (DS et al., 2019). The progression and 

Fig. 5. Possible proposed effect of polyphenols on cytokin storm.  

Table 4 
Phenolic molecules with potential activity to reduce cytokine storm.  

Phenolic molecule Mechanism Refs. 

Bergenin TNF-α and IL-6 production in serum.  
Improve histological changes.  
Reduce pulmonary edema.  
Reduce IL-6 andIL-1β production  
InhibitNF-κB p65 phosphorylation  
Inhibit the expression of MyD88. 
Reduce MPO activity. 

[70]  

Caffeic acid phenethyl 
ester 

Reduce MPO activity 
Prevention of LPS/MD-2/TLR4 complex 
formation.  
Reduce TNF-α, IL-6 levels 

[69] 

Curcumin Reduce inflammation and injury 
Improvement of cell survival.  
Reduce IFN-β; TNF-α 

[71] 

Rosmarinicacid Reduce paw edema   
Reduce AST, ALT and LDH.  
Reduce multiorgan dysfunction markers  
Modulate mettaloproteinase-9and NF-κB 

[75]  

Table 5 
Coumarins with potential activity to reduce cytokine storm.  

Coumarin Mechanism Refs. 

Imperatorin InhibitNF-κBand JAK/STAT.  
Reduce COX-2 and iNOSexpression.  
Reduce immune cell infiltration and edema. 
reduce TNF-α and IL-6 production. 

[37] 

Umbelliferone Attenuation of inflammatory cell infiltration in lung tissue.  
Reduce MDA and MPO activity 
Increase SOD activity. 
Reduce monocyteIL-1β, IL-6, MCP-1,and TNF-α in BALF. 
reduce wet-to-dry lung weight ratio. 

[9] 

Isofraxidin Reduce lung wet-to-dry weight 
Reduce macrophages and neutrophilscount in MPO and in 
BALF activity. 
Reduce TNF-α, BALF, PGE2 and IL-6levels   
InhibitCOX-2 expression and lung histopathological 
changes 

[76]  
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complications of SARS-CoV2 include cytokine storms;therefore, More-
over to their organ-protective effects, they inhibit potentially proin-
flammatory cytokines and chemokines. Therefore, in view of limonin 
multiple tissue remodeling and protective effects, limonin may be a 
research candidate for possible use in combating SARS-CoV2 infection. 

Terpenes could be future source of antiinflammatory agents for se-
vere viral infections. Details of individual terpene studies are given in 
Table 6. 

2.9. Quinone 

Quinone comes from aromatic molecules. 2-Hydroxymethylanthra-
quinone induces the suppression of many proinflammatory mediators 
such asIL-6,IL-1β, TNFandNO. Moreover, NF-B is activated and TLR4 
expression is downregulated.reduces pulmonary edema after LPS- 
induced lung injury [97]. Shikonin, a molecule that inhibits TLR4 acti-
vation, modulates several inflammatory mediators and reduces inflam-
matory cell infiltration Zhang et al. [47]. Details of individual quinones 
studies are given in Table 7. 

2.10. Glycoprotein 

Glycoproteins are molecules that show proteins in their amino acid 
side chains that are covalently bound to oligosaccharide chains. With 
respect to this molecule, two manuscripts represent isolated glycopro-
tein studies against lung damage. Wang et al. [98] used  ulinastatin 
(ginsenosides) in rats increasing the likelihood of using this compounds 
due to its potential to reduce lung edema in animal model [98]. In 
various ways, histidine-rich glycoproteins were able to enhance mouse 
viability, inhibit ROS production and other phenomena in 
sepsis-induced models [99]. These studies underscore the tremendous 

potential of glycoproteins to improve lung function. Details of individual 
glycoproteins studies are given in Table 8. 

2.11. Polysaccharides 

Polysaccharides have been studied for their potential in the pre-
vention and treatment of cytokin storm. In general, studies have used 
models of rat lung damage caused by LPS to determine whether the 
proposed treatment improve animal health. Polysaccharide of Lycium 
barbarum [69], Oudemansiella radicata polysaccharides [100] Oude-
mansiella radicata polysachharides [101], and Kochia scoparia fruit 
polysaccharides [102] showed positive results in improving induced 
mice. Among the most notable results, these polysaccharides appear to 
reduce lung damage by reducing oxidative stress, regulating inflam-
matory pathways and reducing neutrophil infiltration. Details of indi-
vidual polysaccharides studies are given in Table 9. 

2.12. Lipids 

Lipid-derived compounds and lipids have been studied in detail for 
their modulation of inflammatory pathways [103]. Oleic acid, a natu-
rally occurring fatty acid in plants widely used as a dietary supplement, 
shows promise against cytokin storm. This compound reduces neutro-
phil accumulation and lung damage. Moreover, these molecules also 
regulate inflammatory cytokines [104]. 

Mena et al. [105] confirmed that Acrocomia crispa fruit lipid extract 
reduces pulmonary edema after LPS-induced lung damage in mice. 
Spengler et al. (2017) found that surfactants phospholipids have 
anti-inflammatory activity and significantly improved the overall con-
dition of the lungs by improving ventilation and oxygenation efficiency. 
Moreover, demonstrated suppression of inflammation, inhibition of 

Fig. 6. Possible proposed effect of limonene on cytokin storm.  
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polymorphonuclear leukocyte activity and reduction of cellular 
apoptosis. Details of individual Lipids studies are given in Table 10. 

2.13. Steroids 

Steroids are terpenoid with four rings that differ by changing the 
carbon atoms number, side chain and type of functional group. Steroids 
are of a special class due to their chemical properties and endocrine 
function. Liu et al. [106] and Wu et al., [107] confirmed that ruscogenin 
and senegenin have anti-inflammatory effects on lung damage by 
reducing cellular apoptosis, modulating leukocyte activity, and inhib-
iting inflammatory mediators (Fig. 7). Details of individual steroids 
studies are given in Table 11. 

3. Cannabidiol 

Phytocannabinoids are a structural class of diverse naturally occur-
ring chemicals found in several species of the cannabis plant, including 
Echinacea angustifolia, Echinacea purpurea, Acmella oleracea, Echi-
nacea pallida, Radula marginata, and Helichrysum umbraculigerum. 
Cannabidiol is a phytocannabinoid that regulates immune responses in a 
number of experimental disease models, including laboratory work 
demonstrating post-injury benefits similar to acute respiratory distress 
syndrome in mice. Support the therapeutic use of cannabidiol in patients 
infected with COVID-19. Although a number of mechanisms have been 

Table 6 
Terpenes with potential activity to reduce cytokine storm.  

Terpenes Mechanism Refs. 

Bigelovii A Reduce inflammatory mediators 
Alleviate lung injury 
Reduce lung permeability, and neutrophil 
infiltration.  
Attenuate NF-κ B activation  
Inhibitp38 MAPK phosphorylation 
Reduce MCP-1, MIP-2 andIL-6levels 

[89] 

Bisabolol Reduce histological changes  
BlockNF-κB activationpathway  
Suppress IL-6, IL-1β and TNF-α,levels in BALF  
Reduce NO production in lung tissue  
Inhibit IκB-α degradation  
Reduce MPO activity 

[90] 

Euphorbia factor L2 Reduce TNF-α,IL-6,IL-8 andIL-1βlevels   
Reduce MPOactivity 
Attenuate pathological changes 
Inhibit NF-κB lung damage  activation  
Downregulate IκB-αandIKKα/β   
Suppressp65 translocation 
Suppress DNAbinding activity 

[47] 

HJB-1–17-Hydroxy- 
Jolkinolide B 

Alleviate pulmonary histological changes 
Suppress the degradation of IκB-α   
Reduce the accumulation of NF-κB p65 
subunit  
Reduce lung edema 
Suppress MAPK phosphorylation 
Reduce TNF-α, IL-6 and IL-1β expression in 
BALF 

[91] 

Picfeltarraenin IA InhibitPGE2 production 
Suppress IL-8 and COX2 expression 

[92] 

Bardoxolone Induce Nrf2  
Reduce neutrophil infiltration 
Improvement of SOD and GSH activities 
Reduce MPO levels 
Improve ROS production   
Ameliorate histopathological changes 
Improve TNF-α, IL-6 and IL-1β release 
Improve the expression of COX2and iNOS    
SuppressNF-kB   
Ameliorate p38, extracellular signal-regulated 
kinase 1/2 (ERK1/2) and JNK activation 

[93] 

α-bisabolol 
nanocapsules 

Reduce airway hyperreactivity, neutrophil 
infiltration, MPO activity, chemokine 
levelsand tissue lung injury.  
Reduce p38 andJNKphosphorylation 

[94] 

Cucurbitacine Inhibit the activation of components of 
STAT3   
Inhibitcytokine production by inhibiting JAK/ 
STAT pathway 
Immunosuppressants and anti-inflammatory 
effects 
Inhibit CD69 expressionand CD25 
Inhibit pro-inflammatory and TNFexpressions 
Inhibit NO synthase-2  
Inhibit COX-2-mediated NO production. 

[83]  
[82]  

Isoalantolactone SuppressIL-6, IL-1β, TNF-α, and NO 
expression  
Suppresspulmonary permeability and 
neutrophil infiltration 
Suppress Akt, ERK, andNF-κBactivation 

[95] 

Dehydrocostus 
Lactone 

Attenuate pathological injury 
Suppress NF-κB activity via p38 MAPK/MK2 
and Akt lung damageInhibit TNF-α, NO, iNOS, 
IL-1β, IL-6and IL-12  expression 

[96]  

Limonin Reduce IL-6 in healthy adults  
Mediate the release of inflammatory 
mediators 
Reduce lung resistance and elasticity 
Attenuate proinflammatory cytokines 
Increaselevels of antioxidants 
Inhibit TNF-induced NF-B translocation   
Inhibit NOS, COX-2, LOX, PGE2, TGF-β and 
ERK1/2 pathways  
Enhance mucosal protection 

PA et al., 
2013 
d-P et al., 
2012 
MB et al., 
2017 
DS et al., 
2019  

Table 6 (continued ) 

Terpenes Mechanism Refs. 

Attenuate proinflammatory cytokines such as 
NF-B  
Reduceneutrophil infiltration  
Inhibit potentially proinflammatory cytokines 
and chemokines  

Table 7 
Quinones with potential activity to reduce cytokine storm.  

Quinone Mechanism Refs. 

Shikonin InhibitNF-κBand MAPK 
activation. 
InhibitCOX2, TNF-α, IL-6, and 
IL-1β, expressions.  
Reduce inflammatory cell 
infiltration. 
Promote interferences in the 
TLR4 activation. 

[47] 

2-Hydroxymethyl anthraquinone from 
Hedyotis diffusa Willd 

Antagonizate NF-κBactivation  
Reduce MDA level in serum 
Suppress NO,IL-1β, IL-6, and 
TNF-α, expression. 
Increase GSH andSODlevels  
Attenuate MPO activity, and 
pulmonary edema 

[97]  

Table 8 
Glycoprotein with potential activity to reduce cytokine storm.  

Glycoprotein Mechanism Refs. 

Histidine-rich 
Glycoprotein 

Preserve neutrophils permeation 
Inhibit ROS production 
Inhibit hypercytokinemia and lung 
inflammation 
Improve mice survival 

[99] 

Ulinastatin Attenuate vascular permeability and pulmonary 
edema 
Inhibit endothelial glycocalyx destruction 
Reduce heparin sulfate production  
Reduce the activity of heparanase 

[98]  
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postulated to mediate the antiviral benefits of cannabidiol, including 
down regulation of SARS-CoV-2 receptors on the human epithelium and 
inhibition of proinflammatory cytokine production such as IL-1β, IL-6, 
TNF-α. Cannabidiol also improves lung structure and has a strong 

anti-inflammatory effect after experimental acute respiratory distress 
syndrome. The beneficial effects of cannabidiol are related to the 
regulation of apelin, an endogenous peptide with a protective effect on 
lung tissue. 

3.1. Vitamin 

Vitamins are a group of substances causally linked to immune 
competence. Moreover to their defensive stimulatory activity, several 
vitamins may act directly on the inflammatory response [44]. 

3.2. Vitamin D (VitD) 

VitD has been studied for the treatment of lung damage [108], who 
demonstrated that VitD3 could reduce lung damage by increasing the 
proliferation and migration of type II alveolar cells, inhibition of 
TGF-induced transient epithelial mesenchymal epitosis and epitope 
reduction induces cell apoptosis. These in vivo animal results promise to 
stimulate clinical studies of lung damage, as VitD is marketed as an 
available dietary supplement that would be a suitable alternative for 
preventive treatment and early treatment of COVID19 patients. VitD 
also inhibits the expression of proinflammatory cytokines, which are 
potentially important in infection and may counteract the cytokine 
storm (Fig. 8). However, VitD deficiency is a global health problem. 

Table 9 
Polysaccharides with potential activity to reduce cytokine storm.  

Polysaccharides Mechanism Refs. 

Polysaccharides of Kochia 
scoparia fruits 

Inhibit human neutrophil elastase  
Reduce elastase activity 
Reduce neutrophil infiltration  
Reduce IL-6 and TNF-α levels 

[102] 

Polysaccharides of 
Oudemansiella radicata 

Downregulation of MDA and LPO 
content. 
Reduce hs-CRP level in serum 
Reduce MPO activity.  
Increase of CAT and SOD values  
Reduce IL-1β, IL-6andTNF-ɑ, levels 

[100] 

Polysaccharides of 
Oudemansiella radicata 

Reduce IL-6, IL-1β, and TNF-α levels 
in BALF. 
Increase pulmonary activities of SOD, 
CAT andGSH-Px 
Reduce C3, CRP and GGT levels in 
serum 
Downregulate LPO and MDA contents  
Alleviate lung injury 

Gao et al., 
2018 

Polysaccharides of Lycium 
barbarum 

SuppressNF-κB activation 
Increase cell viability 
Reverse endothelial cells 
migrationdysfunction 
Reduce oxidative stress and apoptosis  
Attenuate lung inflammation and 
pulmonary edema 
Inhibit ROS production and caspase-3 
activation 

[69]  

Table 10 
Lipids with potential activity to reduce cytokine storm.  

Lipids Mechanism Refs. 

Acrocomia crispa fruit lipid 
extract 

Reduce histological score 
Reduce lung edema, lung weight/body 
weight ratio 

[105]  

Oleic acid Reduce lung damage 
Mitigate IL-6 and TNF-α, expression and 
MPO activity 
Suppress superoxide anion and elastase 

[104]  

Fig. 7. Potential mechanism of corticosteroid against cytokin storm.  

Table 11 
Steroids with potential activity to reduce cytokine storm.  

Steroids Mechanism Refs. 

Senegenin Inhibit NF-κB translocation 
Attenuate lung injury 
Reduce protein leak 
Reduce leukocytes infiltration 
Reduce lung wet-to-dry weight ratio   
Reduce MDA contents  
Reduce IL-1β and TNF-α levels 
Reduce MPO activity  
Increase GSH level and SOD activity 

[106] 

Ruscogenin Attenuate pulmonary endothelial apoptosis.  
Inhibit TLR4/MYD88/NF-κB activation in pulmonary 
endothelium.  
Suppress TLR4 lung damage  
Ameliorate apoptosis 

[107]  
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3.3. Vitamin C (VitC) 

VitC helps develop a stronger immune system response by increasing 
antiviral activity and reducing cytokin storms. Perhaps reducing the 
cytokin storm in Covid19 infection is the primary use of VitC (Fig. 9). 

SARS-CoV2 increase oxidative stress, which promotes cell failure and 
ultimately leads to organ failure.It helps to significantly increase 
oxidative stress through the formation of free radicals and cytokines. 
Uncontrolled inflammation, oxidative damage and destruction of the 
alveolar-capillary barrier are the main causes [109]. Severe oxidative 
stress causes lung damage and cytokin storm. 

Cytokin storm are the key factors responsible for significantly higher 
morbidity ([110]; Hecker et al., 2018). An increase in C-reactive protein, 
an indicator of inflammation and oxidative stress, was observed in pa-
tients with Covid19 [111]. The transcription factor Nuclear 
Factor-Erythroid-2-Linked Factor 2 is an important regulator of cyto-
protective protein expression, driven by antioxidant elements. Activa-
tion of the Nuclear Factor-Erythroid-2-Linked Factor 2 sign lung damage 
pathway is believed to play an important role in preventing cells and 
tissues from being exposed to oxidative stress. 

The use of antioxidants in conjunction with conventional mainte-
nance therapy has been shown to play an important role in controlling 
cytokine storm. VitC and other antioxidants are excellent remedies for 

respiratory distress. They can be used clinically. It is important that high 
doses of VitC are safe and effective. In this article we consider the use of 
high doses of VitC as an effective way to treat patients with cancer and 
infections. VitC’s antiviral properties help reduce symptoms and death 
in children and adults (Khan et al., 2014; Hemilä et al., 2019). The 
antiviral activity of VitC is well known (Jungeblut et al., 1939). More-
over, the use of VitC as an important medical agent against various 
diseases is well established ([112]; 1953; 1974). 

Clinically effective vaccines and specific antiviral agents, if available, 
may be effective. Given the current situation, the use of VitC as an 
antiviral agent should also be considered. In particular, VitC can be used 
alone or in combination with other available drugs to achieve a positive 
synergistic effect. Here we consider the main mechanism of action of 
VitC, which helps strengthen the immune system, reduces cytokine 
storm and inhibits oxidative processes. 

3.4. Zinc (Zn) 

Zn is considered important for fighting SARS-CoV2 infection because 
of its multiple effects. It prevents replication of the SARS-CoV2 RNA 
genome and also inhibits the translation process [113]. It also increases 
interferon-α production by enhancing immunity to viruses [114]. Since 
doxycycline can transport divalent cations such as zinc into infected host 

Fig. 8. Possible proposed effect of VitD on cytokin storm.  
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cells, doxycycline exerts its therapeutic effect against SARS-CoV2 by 
increasing zinc transport, thereby preventing viral replication [115]. 

A recent study showed that Zn supplementation led to reduction in 
infection rates by reducing TNF production and increasing IFN-alpha 
[116]. 

Zn plays a vital role in receptor binding, cytokine response and IFNs 
release. Zn also inhibits the binding of IFN to the receptor and inhibits 
cytokine responses that prevent an IL6-mediated suprainflammatory 
and antiviral response (Yazar et al., 2016; [172]. Therefore, Zn may also 
be important in suppressing the exaggerated inflammatory response 

(Fig. 10). 
Given the increase in Zn deficiency in the elderly and some chronic 

diseases, Zn replacement as part of routine treatment for these patients 
may appear to be a suitable option both to maintain a normal immune 
response and to benefit from antiviral effects. Zn deficiency affects both 
the innate and acquired immune systems, which can be amplified by Zn 
substitution [177]. 

Fig. 9. Potential mechanism of VitC against cytokine storm.  

Fig. 10. Potential mechanism of Zn against COVID19.  
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4. Main results, final comments and conclusions 

Cytokine storm caused by the SARS-CoV2 virus is a serious disorder 
with high lung damage rates. In a short time, SARS-CoV2 spreads 
through infected people all over the world, thereby increasing the 
spread of SARS-CoV2. 

COVID19 has made major changes in the daily life of the world, 
destabilizing the global economy, and increasing lung damage rates. 
Although several studies, several advanced groups and worldwide 
research, have developed vaccines and drugs to treat SARS-CoV2, the 
disease continues to grow exponentially around the world. Therefore, 
new ways to prevent and stimulate an effective immune response need 
to be tested. 

Despite the many difficulties in developing bioactive products in 
COVID19 drugs, there are increasing efforts to develop antiviral agents 
from bioactive products in clinical studies. The search for new antiviral 
agents made from natural ingredients remains a challenging but exciting 
task. 

The conventional drugs can quickly treat the patient’s main symp-
toms, but can cause serious side effects, while bioactive products have 
the benefit of safety. It is known that bioactive products can modulate 
the production of cytokines and immune cells. Proper immune response 
helps protecting the body from harmful substances and maintain im-
mune system homeostasis. A systematic review and meta-analysis 
showed that integrated bioactive products had better effects and fewer 
side effects in patients with SARS-CoV2 than conventional drugs alone. 
Moreover, bioactive products have been reported to reduce side effects 
associated with conventional therapy in patients with SARS-CoV2. 
Therefore, further research is needed to determine the effectiveness 
and safety of bioactive products against COVID19. 

Natural substances can play a decisive role in this. Based on several 
studies, we have come to the conclusion that bioactive products can be 
used as a platform for the manufacture of vaccines that act as coad-
juvant, as they can easily bind to various cellular receptors. 

In conclusion, we conclude that while using isolated bioactive in-
gredients is ideal due to their bioavailability, we emphasize that 
consuming a diet rich in biologically active natural products is also 
beneficial. Although its biological effects may not match those of iso-
lated bioactive ingredients, it can still help people increase immunity 
and reducing cytokine storm when infected with SARS-CoV2. 

Based on convincing evidence, it can be concluded that Natural 
products and its secondary metabolites have significant pharmacolog-
ical bioactivity against cytokine storm in SARS-CoV2 patients. Its potent 
anti-inflammatory activity, including inhibition of macrophage infil-
tration and interactions with neutrophil endothelial cells, adhesion 
molecules, and cytokines, may be the main cause of inhibition in pa-
tients with SARS-CoV2. Natural product’s potential as an immuno-
modulator, antioxidant to enhance its ability to inhibit ACE2 receptors, 
together with its antimicrobial activity can further help reduce symp-
toms and disease exacerbations, development of complications and 
death. 

Overall, the antiviral, anti-inflammatory, and immunomodulatory 
properties of different secondary metabolites, together with its various 
pharmacological and molecular mechanisms, make it a promising 
therapeutic candidate against cytokine storm in COVID19. Moreover, 
bioactive product has safety status, molecular mechanisms, possible 
drug properties, and pharmacological effects, justify the use of Natural 
products as a nutrient against SARS-CoV2. 

The information provided is based on the current state of research on 
the prevention, and elimination of lung damage, the mechanism of ac-
tion of the presented natural products and their direct relationship to the 
cytokine storm. As shown in this review, plant extracts, and their 
bioactive ingredients are promising candidates for further research on 
their safety and effectiveness in preventing cytokin storm symptoms in 
SARS-CoV2 patients. 

Despite the many difficulties in developing bioactive products in 

COVID19 drugs, there are increasing efforts to develop antiviral agents 
from bioactive products in clinical studies. The search for new antiviral 
agents made from natural ingredients remains a challenging. 

The conventional drugs can quickly treat the patient’s main symp-
toms, but can cause serious side effects, while bioactive products have 
the benefit of safety. It is known that bioactive products can modulate 
the production of cytokines and immune cells. Proper immune responses 
help protecting the body from harmful substances and maintain immune 
system homeostasis. A systematic review and meta-analysis showed that 
integrated bioactive products had better effects and fewer side effects in 
patients with SARS-CoV2 than conventional drugs alone. Moreover, 
bioactive products have been reported to reduce side effects associated 
with conventional therapy in patients with SARS-CoV2. Therefore, 
further research is needed to determine the effectiveness and safety of 
bioactive products against COVID19. 
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administration of d-limonene controls inflammation in rat colitis and displays 
anti-inflammatory properties as diet supplementation in humans, Life Sci. 92 (24- 
26) (2013) 1151–1156. 

[132] M.C. de Souza, A.J. Vieira, F.P. Beserra, C.H. Pellizzon, R.H. Nóbrega, A.L. Rozza, 
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[142] S. Guven, E. DİNLEYİCİ, Effects of zinc or synbiotic on the duration of diarrhea in 
children with acute infectious diarrhea, Turk. J. Gastroenterol. 27 (6) (2016). 

[143] E.E. Hawley, J.P. Frazer, L.L. Button, D.J. Stephens, The effect of the 
administration of sodium bicarbonate and of ammonium chloride on the amount 
of ascorbic acid found in the urine: two figures, J. Nutr. 12 (2) (1936) 215–222. 

[144] L. Hecker, Mechanisms and consequences of oxidative stress in lung disease: 
therapeutic implications for an aging populace, Am. J. Physiol. Lung Cell Mol. 
Physiol. 314 (4) (2018) L642–L653. 
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