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Abstract

Current approach for the detection of cancer is based on identifying genetic mutations typi-

cal to tumor cells. This approach is effective only when cancer has already emerged, how-

ever, it might be in a stage too advanced for effective treatment. Cancer is caused by the

continuous accumulation of mutations; is it possible to measure the time-dependent infor-

mation of mutation accumulation and predict the emergence of cancer? We hypothesize

that the mutation history derived from the tandem repeat regions in blood-derived DNA car-

ries information about the accumulation of the cancer driver mutations in other tissues. To

validate our hypothesis, we computed the mutation histories from the tandem repeat regions

in blood-derived exomic DNA of 3874 TCGA patients with different cancer types and found

a statistically significant signal with specificity ranging from 66% to 93% differentiating Glio-

blastoma patients from other cancer patients. Our approach and findings offer a new direc-

tion for future cancer prediction and early cancer detection based on information derived

from blood-derived DNA.

Introduction

Cancer is the second leading cause of death in the world [1]. It has been widely accepted that

cancer is caused by the continuous accumulation of mutations over an individual’s lifetime

[2]. Most studies in the past have focused on detecting these cancer mutations by studying

tumor DNA against normal DNA [3, 4]. This approach has proven useful in identifying cancer

genes like TP53, BRCA, HER2, to name a few [3, 5]. Further, these works have also shown that

tumor genomes have significantly more genes with repeat instabilities, linking microsatellite

instability to colorectal [6] and other cancers [6–11]. Another notable approach that has gained

attention in cancer analysis is proposed in [12], where 21 different mutational signatures were

identified to characterize different cancer types. Recently, the molecular timing of different

driver mutations in the tumor was estimated by analyzing their presence in copied segments

spanning the tumor genome [13].

Cancer is a result of the continuous accumulation of mutations. We hypothesize that indi-

cations for the mutation activity and likelihood of cancer emergence can be extracted from
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blood-derived DNA before the formation of tumor cells. In this framework, there are still no

cancerous cells, so our approach is to estimate the mutation activity of patients by analyzing

blood derived DNA. However, DNA samples represent a snapshot of a current time and we

need to estimate the past mutation activity that led to the current samples. How do we extract

this hidden mutation history? The idea is to analyze the tandem repeat regions that, metaphor-

ically speaking, are nature’s mutation detecting codes [14].

Tandem repeats entail two kinds of events: tandem duplications and point mutations. Tan-

dem duplications involve the consecutive repetition of a substring (e.g.

TCATG! TCATCATG). Point mutations, which include substitutions, insertions, and dele-

tions, are single changes in the DNA (e.g. ACTG! ACAG). When these two processes occur

in the same location, point mutations can propagate through tandem duplications, leaving a

change in the repeated sequence (see Fig 1(a) and Methods). This allows us to construct the

most likely history of tandem duplications and point mutations.

An ideal experiment to test our approach would be to derive the mutation history of all tan-

dem repeat regions in blood-derived DNA before an individual gets cancer and predict their

chances of getting different cancer types using these inferred histories. However, this

Fig 1. Pipeline for using mutation history for cancer classification. (a) Two different mutation histories for the

tandem repeat region ACGTACGTACATAGAT with pattern length 4 and repeat region length 16. In History 1, only 2

point mutations were needed (marked with green and red respectively). In History 2, 3 point mutations were needed: 1

marked with green and 2 marked with red. In our approach, we would consider History 1 to be more likely as it

involves lesser number of point mutations. Therefore, for this tandem repeat region we have that m = 2 and d = 4. (b)

The workflow of our algorithm. In Part A a classifier is trained based on the mutation profiles generated from the

blood-derived DNA of cancerous individuals. This part in only performed once per training set. In Part B, the resulting

classifier is applied over a given genome to assess an individual’s inclination of developing different cancers.

https://doi.org/10.1371/journal.pone.0256831.g001
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experiment would require DNA samples of cancer patients when they were healthy which

turns out to be difficult to obtain. Therefore, we settled for an approximation of this experi-

ment. In this new experiment, we use blood-derived DNA of patients with different cancer

types from The Cancer Genome Atlas (TCGA). The blood-derived DNA here serves as a proxy
for the past DNA which the patient had before getting cancer. Now, we search for associations

between the mutation histories of tandem repeat regions of blood-derived DNA with the can-

cer of the individual. We conducted this experiment on 3874 samples obtained using Whole

Exome Sequencing (WXS) on TCGA [15] (see Table 1) and found that the mutation histories

of tandem repeat regions in blood-derived DNA of patients with Glioblastoma (GBM) is statis-

tically different from those of patients with other cancer types which we describe in detail next.

Materials and methods

WXS data

We used exome data from “blood derived normal” samples in the TCGA [15] database, details

about which are provided in the S1–S11 Files. The BAM file for each sample was aligned

against hg38. All the autosomes from each sample were recovered using samtools [16].

Algorithms

Our algorithms are partitioned to Part A and Part B (see Fig 1(b)). Part A is only performed

once, where Part B is performed whenever cancer prediction is required. In Part A, a dataset of

blood-derived DNA is first processed by the Benson [17] and Tang et al. [18] algorithms to

deduce the mutation profiles. Then, these vectors are aligned by a dynamic programming algo-

rithm to resolve missing regions. Finally, the aligned vectors are fed into a training algorithm

to produce a classifier. In Part B, this classifier is applied over any individual’s genome, to

assess the overall probability to contract any of the cancer in question.

Tandem repeat detection and mutation history estimation

Tandem duplications are consecutively repeated patterns caused by replication slippage events

[19, 20], in which a pattern is duplicated next to the original. For example, the following shows

two tandem duplications of length 4, where the duplicated part is highlighted in italics. The

Table 1. Blood-derived WXS DNA samples. Number of samples for each cancer type. In total, the number of blood

derived WXS DNA samples are 3874. The sample metadata information is provided in the S1–S11 Files.

Samples

Cancer Blood Derived Normal

SKCM 344

PAAD 153

STAD 396

BLCA 393

PRAD 440

LGG 513

LUAD 411

THCA 432

LUSC 316

HNSC 190

GBM 255

https://doi.org/10.1371/journal.pone.0256831.t001
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underlined segment is the microsatellite or repeat region.

ATGACGTGAGT) ATGACGTGAGTGAGT) ATGACGTGAGTGAGTGAGT: ð1Þ

The pattern of a region is the short strand which repeats itself. The copy number d of a

repeat region indicates the number of times that the pattern is repeated. For example, the pat-

tern of the underlined repeat region in the right hand side of (1) is GTGA, and its copy number

is 3.

Microsatellites are usually accompanied by various types of errors: substitutions (replace-

ment of one nucleotide by another), deletions (omission of a nucleotide), and insertions (addi-

tion of a nucleotide). The total number of substitutions, deletions, and insertions in a repeat

region is called the error number m. For example, the following shows the contamination of

(1) by 1 substitution, 1 deletion, and 1 insertion (highlighted in italics).

ATGACGTGAGTGAGTGAGT ) ATGACGTTAGTGAGTGAGT

) ATGACGTTAGGAGTGAGT

) ATGACGTTAGGAGTGAGGT:

ð2Þ

Clearly, the copy number of (2) is 3 and its error number is 3, and hence its mutation index

is (m, d) = (3, 3). In the first step of Part A we use the Benson Tandem Repeat Finder to detect

repeats with consensus pattern size at most 10 and copy number at most 100. These size limita-

tions mean we only consider regions smaller than 1000 nucleotides. The single block version

of the duplication history estimation algorithm given in Tang et al. [18] was then applied to

each tandem repeat region to obtain the respective mutation index = (m, d). The aggregation

of these (m, d) values gives a vector twice the size of the number of repeat regions, which we

call an individual’s mutation profile. Since, TCGA data is WXS, we only calculated a unique

mutation profile of an individual’s exome.

Alignment

Following the completion of the Benson and Tang et al. algorithms, it was sometimes the case

that certain repeat regions appeared in some patients and did not appear in others. In addition,

minor differences were observed in the patterns of identical repeat regions in different individ-

uals. As a result, a technical difficulty arose in handling the input to the learning algorithm.

Consider the following two patients, in which the repeat regions are underlined.

Patient 1 : AAAAAAACGATCGAGTTCAGTATTGCCGCGAGCG )

Benson
Tang et al:

ðA : ð0; 7Þ; CG : ð1; 4ÞÞ

Patient 2 : AAAAAAAACGACGTACGTACGTATTGCCGCGCG )

Benson
Tang et al:

ðA : ð0; 8Þ; CGTA : ð0; 3Þ; CG : ð0; 3ÞÞ

The success of machine learning depend on the detection of patterns in specific positions of

feature vector, so entries which correspond to the same repeat region must also be placed in

the same position for all inputs. This is clearly not the case in the above example, in which the

second entries of the vectors correspond to different repeat regions.

This issue is resolved by using a dynamic programming alignment algorithm. In this algo-

rithm, a similarity score is computed recursively for each possible alignment, and the align-

ment which leads to the best possible score is chosen. Each possible alignment is defined as the

sum of normalized edit-distances that is, the minimal number of insertions, deletions, and
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substitutions that are required to transform one pattern to the other, divided by the average

length of the sequences between the patterns of all respective pairs. Further, the distance

between any pattern and a “missing pattern”, denoted by ‘–’ below, is defined as 0.4. Namely,

two patterns whose respective normalized edit distance is less than 0.4 were considered to be

equal for the sake of the alignment. For example, the vectors above are aligned in the following

way.

ðA : ð0; 7Þ; CG : ð1; 4ÞÞ )
Alignment

ðA : ð0; 7Þ; � ;CG : ð1; 4ÞÞ

ðA : ð0; 8Þ; CGTA : ð0; 3Þ; CG : ð1; 3ÞÞ )
Alignment

ðA : ð0; 8Þ; CGTA : ð0; 3Þ ;CG : ð1; 3ÞÞ

ð3Þ

The score for the alignment (3) is de(A, A) + de(−, CGTA) + de(CG, CG) = 0 + 0.4 + 0 = 0.4,

where de denotes edit distance. For comparison, the alternative alignment

ðA : ð0; 7Þ; CG : ð1; 4ÞÞ )
Alignment

ðA : ð0; 7Þ; CG : ð1; 4Þ ; � Þ

ðA : ð0; 8Þ; CGTA : ð0; 3Þ; CG : ð1; 3ÞÞ )
Alignment

ðA : ð0; 8Þ; CGTA : ð0; 3Þ ;CG : ð1; 3ÞÞ

ð4Þ

has score of de(A, A) + de(CG, CGTA) + de(−, CG) = 0 + 2/3 + 0.4� 1.06, and hence (3) is pre-

ferred over (4).

The mutation profile of each individual was aligned against the mutation profile of the ref-

erence genome (hg38) by using the method that is mentioned above. The repeat regions that

were missing in the reference genome were omitted from these aligned mutation profiles. Fur-

ther, given the aligned mutation profiles, every ‘–’ is replaced by (0, 0). This gave aligned muta-

tion profiles of the same size that can now be used as features for the learning part described

next.

Machine learning

The aligned mutation profiles were used as features for the learning algorithm. Machine

learning classifiers for distinguishing cancers were obtained using two approaches:

Pairwise classifiers. We trained a binary classifier for every pair of types of cancer, gener-

ating 11

2

� �
¼ 55 pairwise classifiers. The accuracy in either of those classifiers is used as a mea-

sure for the “uniqueness” of the mutation profiles that cause a certain type of cancer, and can

additionally be seen as a distance measure between different types of cancer. In our machine

learning pipeline, there are two steps. In the first step, we perform feature extraction using

4-fold cross validation with xgboost [21] algorithm at default parameters with max-depth = 2.

We use the top 30 features extracted in the first step to use them as features in the second step

to build the pairwise classifier. We use xgboost (max depth = 1) with 4-fold validation to build

each of these pairwise classifiers with top 30 identified features.

Multiclassifier. We again perform both the steps here, i.e. feature extraction and classifier

building. In both the steps, we use xgboost with ‘multi:softprob’ setting. For the feature extrac-

tion step, we use max depth = 2 in xgboost. After identifying the top 30 features in the first

step, we use xgboost again with max depth = 1 and the top 30 features to build the multiclassi-

fier. Again 4-fold cross validation was performed in both steps to avoid overfitting.

Ethics statement. The ethics approval to the TCGA data was granted by Caltech Institu-

tional Review Board.
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Results

Tandem repeat regions with different mutation histories in the blood

derived DNA of Glioblastoma patients

We reconstruct mutation histories for all the short tandem repeat regions (pattern length�10)

in exomic DNA derived from blood cells using the algorithm stated in [22]. We calculate these

histories from blood-derived DNA for 3874 patients in TCGA covering the following cancer

types—GBM (Glioblastoma multiforme), PAAD (Pancreatic Adenocarcinoma), BLCA (Blad-

der Urothelial Carcinoma), STAD (Stomach adenocarcinoma), SKCM (Skin Cutaneous Mela-

noma), HNSC (Head and Neck squamous cell carcinoma), LGG (Brain Lower Grade Glioma),

PRAD (Prostate adenocarcinoma), LUAD (Lung adenocarcinoma), LUSC (Lung squamous

cell carcinoma) and THCA (Thyroid carcinoma) (see Table 1 for number of samples used for

each cancer type). In Fig 2, we show that the distribution of these histories (more precisely the

number of point mutations m and the number of tandem duplications d) are distinguishable

for GBM patients in a number of short tandem repeat regions over the whole exome. For

example in the tandem repeats in chr7 (82953700:82953740) (Fig 2(b)) and chr9

(137192553:137192600) (Fig 2(c)), we show using violin-plot that the distribution of the

number of tandem duplications (d) is different for GBM patients when compared with other

cancers. In the tandem repeat at chr7 (2513217:2513275) (Fig 2(a)) and chr12

(125025307:125025331) (Fig 2(d)), the distribution of the number of point mutations (m) is

distinguishable for GBM patients. More such regions are shown in S1–S7 Figs. We built a gra-

dient boosting based classifier [21, 23] for quantifying the differences observed in the mutation

histories of different tandem repeat regions shown in Fig 2 (see Methods).

Statistically distinctive signals for Glioblastoma in the DNA derived from

blood

Fig 3 presents the performance of the classifier obtained using 4-fold cross validation (see

Methods). We first built pairwise classifiers using the histories of short tandem repeat regions

in blood-derived DNA as features between all the pairs of cancers considered (GBM, PAAD,

BLCA, STAD, SKCM, HNSC, LGG, PRAD, LUAD, LUSC and THCA). The ROC curves in

Fig 3(a)–3(j) show an AUC of 0.85 ± 0.03, 0.69 ± 0.05, 0.84 ± 0.03, 0.75 ± 0.03, 0.87 ±
0.03,0.81 ± 0.02,0.79 ± 0.03, 0.87 ± 0.03, 0.81 ± 0.04, 0.82 ± 0.03 when GBM is compared

against BLCA, HNSC, LUAD, LUSC, PAAD, PRAD, STAD, SKCM, THCA and LGG respec-

tively using the gradient boosting based classifier. Further, we found that the mean validation

accuracy for these pairwise classifiers varies from 69% for HNSC to 88% for PAAD signifying

that the blood-derived DNA of GBM patients has a signature embedded in short tandem

repeat regions which can be used to distinguish it from BLCA, HNSC, LUAD, LUSC, PAAD,

PRAD, STAD, SKCM, THCA and LGG cancer types. The sensitivity/specificity plot further

solidifies similar findings showing a mean sensitivity range from 72% for HNSC to 82% for

PAAD and a mean specificity range from 66% for HNSC to 93% for PAAD (see S8 Fig).

Discussion

Using our analysis, we show that we can capture the signature of Glioblastoma using mutation

histories of tandem repeat regions in blood-derived DNA. We also notice that access to the

tumor genome is not required to make this inference. There has been recent interest in design-

ing blood tests for multi-cancer detection in the early stages using cell-free DNA [24]. Our

findings offer a new approach for Glioblastoma risk assessment and early detection based on
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information derived from the analysis of blood-derived DNA. Further, due to sequencing and

TCGA data limitations, our analysis only uses short tandem repeats in the WXS genomic

sequences. We believe that if we use (i) WGS data and (ii) account for mutation histories of

longer tandem repeats and interspersed repeats, our method might identify signals for other

cancer types.

Fig 2. Distinctive tandem repeat region mutation histories. Violin plots representing the distribution of m or d in

tandem repeat regions in the DNA derived from blood cells for patients with different cancer types. These tandem

repeat regions show distinctive distributions of m or d values in GBM patients compared to others leading to a

differentiating signature (mutation histories) which is extracted from the DNA of blood-derived cell for GBM patients.

An interactive version of these plots is provided at the following links (a), (b), (c), (d).

https://doi.org/10.1371/journal.pone.0256831.g002
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Note that, we haven’t used blood-derived DNA samples of healthy individuals in the analy-

sis. We didn’t include them for two reasons: (a) TCGA dataset is high-quality with 30–40X

coverage for WXS samples. We weren’t able to find a large dataset of WXS blood-derived

DNA of healthy individuals of that quality, (b) By our hypothesis, the blood-derived DNA of

healthy individuals may have signals indicative of different cancer types, which could make

these samples noisy for our analysis as they may show similar behavior to one or another can-

cer type(s) used in our study.

Searching for information-containing features within 3 billion nucleotides is a formida-

ble task. This has traditionally been simplified by comparing genomes to extract variants,

which compresses the genome into a smaller set of features to analyze. These differences,

known as SNPs and CNVs, are central to both Mendelian [25] and Genome Wide Associa-

tion Studies [3, 4, 26]. However, this form of genome compression loses crucial information

regarding how the genome is changing by only considering differences in the genome’s cur-
rent state. Every individual’s genome is controlled by hereditary, environmental and sto-

chastic factors [27]. These factors also vary amongst individuals and can give rise to

different risks of disease, but we cannot easily identify these differences from the single-gen-

eration SNP and CNV analysis as used in GWAS. Mendelian studies may provide insight

into inter-generational processes, but do so at the cost of requiring inter-generational data,

which severely limits the scope of a feature search. Even with additional data, Mendelian

studies still lack the ability to detect differences in mutation processes that occur throughout

one’s lifetime.

The use of mutation histories of tandem repeat regions provides a new computational
microscope to view the genomes. Mutation histories of tandem repeat regions is an intrinsic
information measure for the genome as the histories are calculated without any comparison

with the other genomes. Further, its intrinsic nature allows us to reduce the data-demand as

comparisons across different genomes are not needed to extract information. Instead, the

tandem repeat regions in a single genome provide a glance into its history, capturing infor-

mation about the individual’s mutation dynamics. This ability to reconstruct a genome’s his-

tory from repeat regions is lost when studies only view differences between individuals. The

use of histories expands our access to time-dependent traits which may be essential to

understand cancer.

Fig 3. GBM signature in the DNA of blood-derived cells. ROC curves for pairwise classifiers built for comparing the

mutation profiles of blood-derived DNA of GBM patients against (a) BLCA (b) HNSC (c) LUAD (d) LUSC (e) PAAD

(f) PRAD (g) STAD (h) SKCM (i) THCA (j) LGG patients.

https://doi.org/10.1371/journal.pone.0256831.g003
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Supporting information

S1 Fig. Distinctive tandem repeat region mutation histories in GBM patients. Violin plots

representing the distribution of m or d in tandem repeat areas in the DNA derived from blood

cell for patients with different cancer types. These tandem repeat areas show distinctive distri-

bution of m or d values.

(TIF)

S2 Fig. Distinctive tandem repeat region mutation histories in GBM patients. Violin plots

representing the distribution of m or d in tandem repeat areas in the DNA derived from blood

cell for patients with different cancer types. These tandem repeat areas show distinctive distri-

bution of m or d values.

(TIF)

S3 Fig. Distinctive tandem repeat region mutation histories in GBM patients. Violin plots

representing the distribution of m or d in tandem repeat areas in the DNA derived from blood

cell for patients with different cancer types. These tandem repeat areas show distinctive distri-

bution of m or d values.

(TIF)

S4 Fig. Distinctive tandem repeat region mutation histories in GBM patients. Violin plots

representing the distribution of m or d in tandem repeat areas in the DNA derived from blood

cell for patients with different cancer types. These tandem repeat areas show distinctive distri-

bution of m or d values.

(TIF)

S5 Fig. Distinctive tandem repeat region mutation histories in GBM patients. Violin plots

representing the distribution of m or d in tandem repeat areas in the DNA derived from blood

cell for patients with different cancer types. These tandem repeat areas show distinctive distri-

bution of m or d values.

(TIF)

S6 Fig. Distinctive tandem repeat region mutation histories in GBM patients. Violin plots

representing the distribution of m or d in tandem repeat areas in the DNA derived from blood

cell for patients with different cancer types. These tandem repeat areas show distinctive distri-

bution of m or d values.

(TIF)

S7 Fig. Distinctive tandem repeat region mutation histories in GBM patients. Violin plots

representing the distribution of m or d in tandem repeat areas in the DNA derived from blood

cell for patients with different cancer types. These tandem repeat areas show distinctive distri-

bution of m or d values.

(TIF)

S8 Fig. Accuracy, Sensitivity and Specificity for Pairwise and Multi Classifiers among different

cancer types: Seriation diagram for the pairwise classifiers showing the presence of distinguish-

ing signal between GBM and other cancer types (darker cells) using (a) Mean Validation accu-

racy and (b) Sensitivity and Specificity. Mean validation accuracy ranges from 69% to 88%

when GBM is compared against different cancers in (a). Mean sensitivity ranges from 72% to

82% when GBM is compared against other cancers in (b). Mean specificity ranges from 66% to

93% when GBM is compared against different cancers in (b). A multiclassifier built to compare

mutation profiles of GBM patients with other cancer types, here we show that the mutliclassifier
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is successful in classifying GBM patients using the Multiclassification probability profile in (c).

(TIF)

S1 File. TCGA-BLCA. Sample metadata information for TCGA-BLCA samples used in CSV

format.

(CSV)

S2 File. TCGA-GBM. Sample metadata information for TCGA-GBM samples used in CSV

format.

(CSV)

S3 File. TCGA-HNSC. Sample metadata information for TCGA-HNSC samples used in CSV

format.

(CSV)

S4 File. TCGA-LGG. Sample metadata information for TCGA-LGG samples used in CSV for-

mat.

(CSV)

S5 File. TCGA-LUAD. Sample metadata information for TCGA-LUAD samples used in CSV

format.

(CSV)

S6 File. TCGA-LUSC. Sample metadata information for TCGA-LUSC samples used in CSV

format.

(CSV)

S7 File. TCGA-PAAD. Sample metadata information for TCGA-PAAD samples used in CSV

format.

(CSV)

S8 File. TCGA-PRAD. Sample metadata information for TCGA-PRAD samples used in CSV

format.

(CSV)

S9 File. TCGA-SKCM. Sample metadata information for TCGA-SKCM samples used in CSV

format.

(CSV)

S10 File. TCGA-STAD. Sample metadata information for TCGA-STAD samples used in CSV

format.

(CSV)

S11 File. TCGA-THCA. Sample metadata information for TCGA-THCA samples used in

CSV format.

(CSV)
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Cancer Genome Atlas (TCGA) [15]. These files have controlled access and cannot be availed
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publicly. However, request to access TCGA controlled data can be made via dbGap [28]

(accession code: phs000178.v1.p1). The metadata information for the analyzed samples is

given in S1–S11 Files. The code and necessary documentation for the pipeline used is available

at https://github.com/sidjain516/GBM-Classification.
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