
Bile acids are produced in the liver and excreted into the 
intestine, where their main function is to participate in the 
emulsification, absorption, and digestion of lipids. They have 
a secondary role as a steroid hormone modulating various 
metabolic process, such as hepatic glucose metabolism and 
liver cell survival [1].

Traditional Asian medicine recommended the use 
of vertebrate and invertebrate bile for patients with visual 
disorders [2]. For more than 10 years, numerous studies have 
confirmed that the hydrophilic bile acids, ursodeoxycholic 
acid (UDCA) and tauroursodeoxycholic acid (TUDCA), are 
protective in diseases affecting the central nervous system 
and the retina [3]. However, there is no clinical indication for 
the use of bile acids in neurodegenerative diseases. Although 
antiapoptotic, anti-inflammatory, and antioxidant effects 
have been shown for these molecules, little is known about 
primary signaling pathways and molecular mechanisms 
through which bile acids act as neuroprotectants, delaying 
translation to the clinical setting. We review evidence 
supporting a potentially therapeutic role for bile acids in 
retinal disorders, and the mechanisms and pathways involved 

in the cytoprotective effects of bile acids from the liver and 
the enterohepatic circulation to the central nervous system 
and the retina.

The bile acids: Chemical structure and physiology: Bile acids 
are the major constituents of human bile [1]. They have a 
24-carbon structure containing 5β-steroids, and their main 
role is the emulsification of lipids, a fundamental step for 
lipid absorption and digestion [4]. Primary bile acids, cholic 
acid (CA) and chenodeoxcholic acid (CDCA), are synthesized 
from cholesterol in the liver (Figure 1) via two main path-
ways, the classical and alternative pathways. The classical 
pathway is initiated by cholesterol 7α-hydroxylase (CYP7A1), 
which is regulated by the farnesoid X receptor (FXR). The 
alternative pathway can be initiated by different enzymes that 
are also expressed outside the liver [1].

Bile acids are transported from the hepatocytes through 
the bile canaliculi and stored in the gallbladder. Following 
food intake, the presence of fats and proteins in the stomach 
results in the release of bile acids from the gallbladder into 
the duodenum. In the intestine, gut microbiota produces the 
secondary bile acids by modification of the primary bile 
acids, via 7α-dehydroxylation, deconjugation, and oxidation 
or epimerization of the hydroxyl groups at C-3, C-7, and C-12 
(Figure 1). The secondary bile acids deoxycholic acid (DCA) 
and lithocholic acid (LCA) are formed by dehydroxylation 
of CA and CDCA, respectively, performed by dehydratases 
of the anaerobic flora from the human colon. Epimeriza-
tion of hydroxyl groups of CDCA by the hydroxysteroid 
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dehydrogenases of intestinal bacteria leads to the formation 
of UDCA.

Bile acids are secreted as conjugated molecules with 
glycin or taurine, forming the bile salts, such as TUDCA, the 
taurine conjugate of UDCA. Bile acids are then redirected to 
the liver via the portal vein (enterohepatic circulation, Figure 
1). Ninety-five percent of the unconjugated bile acids are 
reabsorbed into intestinal enterocytes by passive diffusion 
in the jejunum and colon, while conjugated bile acids are 
actively taken up in the ileum mainly via the apical sodium-
dependent bile acid transporter (ASBT) [5]. The remaining 
5% of the unconjugated bile acids are excreted via feces. Most 
bile acids absorbed by the enterocytes and released into the 
portal vein are redirected to the liver for recycling. The main 
bile acid transporters are summarized in Table 1. Less than 
10% of bile acid reaches the systemic circulation [6]. Bile 

acids has been detected in plasma at a concentration range 
of nanograms per milliliter, as well as in the cerebrospinal 
fluid [7]. However, bile acid concentrations have not been 
measured thus far in ocular fluids.

Bile acid signaling occurs through nuclear receptors and 
cell membrane receptors [8] (Table 1), including the FXR, the 
vitamin D receptor (VDR), the pregnane X receptor (PXR), 
the glucocorticoid receptor (GR) and the mineralocorticoid 
receptor (MR), the constitutive androstane receptor (CAR), 
Takeda G protein-coupled receptor 5 (TGR5), the α5 β1 inte-
grin, and the sphingosine-1-phosphate receptor 2 (s1PR2). 
The most studied bile acid receptors are FXR and TGR5. 
Both receptors are abundantly expressed in the enterohepatic 
circulation. Bile acids exert negative feedback regulation on 
their own synthesis mainly through the FXR [9]. Bile acids 

Figure 1. Schematic representation of synthesis and circulation of bile acids. Primary bile acids (BAs), cholic acid (CA), and chenodeoxy-
cholic acid (CDCA) are synthesized in the liver from cholesterol and stored in the gallbladder. Following food intake, bile acids are released 
into the small intestine. Secondary bile acids are produced by the gut microbiota from modifications of primary bile acids. Deoxycholic 
acid (DCA) is formed from CA. Lithocholic acid (LCA) and ursodeoxycholic acid (UDCA) are formed by CDCA. Taurine conjugation of 
UDCA forms tauroursodeoxycholic acid (TUDCA). About 95% of the bile acids are reabsorbed in the ileum, and 5% are lost in feces. The 
bile acids absorbed by the enterocytes are released into the portal vein and redirected to the liver for recycling (enterohepatic circulation). 
Only a small portion (10%) escapes the enterohepatic circulation and reaches the systemic circulation.
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are also involved in the regulation of various metabolic 
processes.

Through activation of the FXR and TGR5, bile acids 
regulate not only their own synthesis and enterohepatic circu-
lation but also triglyceride, cholesterol, glucose, and energy 
homeostasis [10]. The PXR functions as a xenobiotic sensor 
that could protect the liver from bile acid toxicity during 
cholestasis [8]. Activation of PXR increases expression of 
cytochrome P450s that hydroxylate bile acids to less toxic, 
more hydrophilic bile acids that are subsequently excreted 
into the bile [8]. VDR activation participates in bile acid 
synthesis, conjugation, transport, and metabolism. It also 
plays a role as an intestine bile acid sensor protecting the 
gut from bile acid toxicity [8]. α5β1 integrins are the main 
receptors implicated in the mechanism of action of UDCA 
during cholestasis. UDCA, which in vivo is converted to its 
taurine conjugate TUDCA, is a mainstay for the treatment 
of cholestatic liver disease. It has been shown that TUDCA 
can directly activate intrahepatocytic α5β1 integrins, which 
trigger signal transduction pathways (focal adhesion kinase 
(FAK), src, Erk1/2, and p38) toward choleresis [11]. Finally, 
activation of S1PR2 in hepatocytes regulates bile acid 
synthesis and increases glycogen synthesis [8].

Cytoprotective effect of UDCA and TUDCA in the liver: 
Hydrophobic bile acids within the hepatocyte induce cell 
death during cholestasis, while hydrophilic bile acids are 
cytoprotective. UDCA, a hydrophilic bile acid used for the 
treatment of cholesterol gallstone dissolution, is currently 
considered the first choice therapy for several forms of 
cholestatic syndromes [12]. The cytoprotective effects of this 
molecule result, in part, from its ability to reduce apoptosis 
[9]. The antiapoptotic effects of UDCA and TUDCA have 
been demonstrated in rat liver and human hepatocytes. 
UDCA negatively modulates the mitochondrial pathway by 
inhibiting Bax translocation, the formation of reactive oxygen 
species (ROS), cytochrome c release, and caspase-3 activa-
tion [9]. Moreover, TUDCA inhibits apoptosis associated 
with endoplasmic reticulum (ER) stress by modulating intra-
cellular calcium levels and inhibiting calpain and caspase-12 
activation [9]. Importantly, nuclear translocation of UDCA 
mediated by nuclear steroid receptors (NSRs) was shown 
to be essential for its antiapoptotic properties [13]. UDCA 
interacts with NSRs, the glucocorticoid receptor (GR), and 
the mineralocorticoid receptor (MR) to reach the nucleus. 
Once in the nucleus, UDCA modulates the E2F-1/p53/Bax 
pathway, thus preventing apoptosis [14].

Neuroprotective effects of UDCA and TUDCA in neurode-
generative disorders: Numerous studies have reported neuro-
protective effects of UDCA and TUDCA in various models 

of neurodegenerative diseases, including, Alzheimer disease 
(AD) [15-19], Parkinson disease (PD) [20-22], and Hunting-
ton’s disease (HD) [23]. In APP/PS1 mice, a murine model of 
AD, TUDCA prevented amyloid precursor protein processing 
and amyloid-β deposition [18], and significantly attenu-
ated Aβ deposition in the brain after the onset of amyloid 
pathology [15]. In the rotenone model of PD, UDCA exerted 
antiapoptotic and anti-inflammatory effects [20]. It improved 
mitochondrial dysfunction and reduced nuclear factor-κB 
(NF-κB) expression and tumor necrosis factor (TNF) alpha 
levels [20]. Furthermore, UDCA prevented proapoptotic 
alterations in Bax and Bcl-2, and reduced the activities of 
caspase 8, 9, and 3. Similarly, TUDCA was neuroprotective 
in a mouse model of PD through the modulation of JNK 
activity, which plays a central role in dopaminergic neuronal 
death, the production of ROS, and the activation of the Akt 
prosurvival pathway, involving Bad phosphorylation and 
NF-κB activation [21]. TUDCA also reduced mitochondrial 
dysfunction that is characteristic of PD [22]. In a transgenic 
mouse model of HD, TUDCA improved the locomotor and 
sensorimotor abilities, together with a reduction in striatal 
cell apoptosis and intracellular huntingtin inclusion [23].

There are only three clinical studies evaluating the safety 
and efficacy of bile acids in neurodegenerative disorders, all 
of them reported in patients with amyotrophic lateral sclerosis 
(ALS) [24-26]; see Table 2. In a cohort of 18 patients with 
ALS, oral UDCA showed excellent tolerability and safety, 
and was accumulated in the cerebrospinal fluid in a dose-
dependent manner [24]. In a crossover study, oral UDCA 
showed a beneficial effect on the rate of functional decline 
in patients with ALS [25]. More recently, in a double-blind 
placebo controlled study, oral TUDCA treatment slowed 
down the progression of ALS disease [26]. Conversely, endog-
enous bile acid levels appear to be suppressed in patients with 
neurodegenerative diseases. In patients with AD, plasma 
concentrations of cholic acid were lower compared with 
age-matched control subjects. Similarly, the taurocholic acid 
(TCA) level was significantly lower in the brain of patients 
with AD pathology [19].

Although main receptors and bile acid transporters (Table 
1) have been found in the brain [6,27], little is known about 
the primary signaling pathways mediating their neuroprotec-
tive effects [28]. Bile acids could act directly in the brain 
through binding to the central FXR and TGR5, or indirectly 
by intermediate agents released after interaction of bile acids 
with receptors in the gut, such as fibroblast growth factor 19 
and glucagon-like peptide 1, both capable of signaling to the 
central nervous system [6].
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In the brain, it was shown that TUDCA binding to TGR5 
microglia induced anti-inflammatory mediators by increasing 
intracellular cAMP levels [29]. Additionally, through MR 
binding in primary neurons, TUDCA counteracted amyloid 
beta-peptide-induced neuronal apoptosis [30]. Moreover, it 
has been reported that bile acids can modulate neurotrans-
mitter activity [28]. For instance, UDCA was found to 
inhibit GABAergic currents and to serve as an antagonist 
for gamma-aminobutyric acid type A (GABAA) receptors 
expressed in human embryonic kidney (HEK)293 cells [31].

Neuroprotective effects of UDCA and TUDCA in retinal 
disorders: UDCA and TUDCA have shown neuroprotective 
effects in several models of retinal disease: photoreceptor 
degeneration, retinal ganglion cell (RGC) degeneration, 
diabetic retinopathy, and laser-induced choroidal neovas-
cularization, at variable doses and routes of administration 
(Table 3). The known mechanisms of action of biliary acids 
in retinal disease models at the level of the RPE, photorecep-
tors, RGCs, and the blood–retinal barrier (BRB) are summa-
rized in Figure 2. Antiapoptotic effects of biliary acids in 
retinal disease models have been described by suppression 
of caspase-dependent and independent pathways (apoptosis-
inducing factor (AIF) release) or reduction of ER stress. 
Anti-inflammatory and antioxidant effects have also been 
reported, as well as preservation of the BRB.

Photoreceptor degeneration—Photoreceptors are 
specialized neurons critical for vision. They are responsible 
for visual phototransduction, the first step in converting light 
energy into a neurosensory signal. Photoreceptor degenera-
tion is present in several retinal diseases of different etiolo-
gies, including retinitis pigmentosa, Leber congenital amau-
rosis, and retinal detachment.

TUDCA suppressed caspase-dependent apoptosis 
mechanisms (terminal deoxynucleotidyl transferase dUTP 
nick end labeling (TUNEL) and caspase 3 immunoreactivity; 
Figure 2) and preserved function and morphology of photo-
receptors in several models of retinal degeneration in which 
apoptosis is the final common pathway of photoreceptor 
cell death [32-35], such as the light-induced retinal damage 
model [2,36], and three models of retinitis pigmentosa: the 
rd10 mouse [2,36-38], the P23H rat [39], and the Pde6b (rd1) 
mouse. When ER function is disrupted, unfolded proteins 
accumulate within the organelle, which is called ER stress. 
The unfolded protein response (UPR) may lead to apoptosis 
in the case of prolonged or severe ER stress [40]. In Lrat 
−/−, a murine model of Leber congenital amaurosis, S-opsin 
aggregation induces ER stress and subsequent cone degenera-
tion [40]. In this model, TUDCA reduced not only caspase 
3-mediated apoptosis but also ER stress markers (decrease in 

UPR CHOP and degradation of cone membrane associated 
proteins; Figure 2), thus preserving cone density [41,42]. In 
a mouse model of Bardet-Biedl syndrome type 1 (retinitis 
pigmentosa and obesity), TUDCA not only preserved retinal 
function and outer nuclear layer thickness but also prevented 
obesity [38].

In addition to apoptotic mechanisms, oxidative stress 
could play a role in photoreceptor cell death in various 
models of retinal degeneration, including light-induced 
retinal damage models and retinal detachment models [36,43]. 
TUDCA not only preserved photoreceptors from apoptosis 
but also reduced retinal oxidative stress markers, such as 
superoxide radical levels in a model of retinal light damage 
[36], and carbonyl-protein content in a rat model of retinal 
detachment [43] (Figure 2).

The beneficial effects of TUDCA also resulted from 
its anti-inflammatory activity as shown in P23H rats, in 
which the bile acid reduced the number and activation of 
microglia cells (Iba 1 and MHC-II, Figure 2) [44]. Interest-
ingly, TUDCA enhanced phagocytosis of photoreceptors 
outer segments by RPE via the activation of Mer tyrosine 
kinase (MerTK) receptor activation (Figure 2), which has an 
important role in physiologic renewal of photoreceptor outer 
segments [45].

RGC degeneration—RGCs transmit visual information 
from the retina to the midbrain for processing and interpre-
tation. Among diseases affecting RGCs, investigations have 
focused on glaucoma and Leber hereditary optic neuropathy.

Excessive stimulation of NMDA receptors could lead to 
RGC death by inducing a series of events, such as perturba-
tion of Na+/K+ homeostasis, Ca2+ overload, mitochondrial 
dysfunction, and oxidative stress [46]. In a model of RGC 
excitotoxicity induced by the intravitreal administration of 
N-methyl-D-aspartate (NMDA) in rats, the systemic adminis-
tration of TUDCA increased RGC survival and function [47].

In a rat optic nerve crush model, RGC death occurs by 
caspase dependent-apoptosis [48], and topical administration 
of TUDCA increased the density of RGCs compared to PBS-
treated animals [49]. In cat wholemount retinas, TUDCA 
restored partially the retinal neurocircuitry deterioration and 
subsequent abnormal visual response of RGCs [50]. Critically, 
a metabolomic study performed on fibroblasts collected from 
patients with Leber hereditary optic neuropathy (LHON) 
revealed that elevation of markers of LHON-associated ER 
stress was reversed with TUDCA treatment (Figure 2) [51].

Diabetic retinopathy—All retinal cell types are affected 
by diabetic retinopathy (DR): endothelial cells and pericytes 
of retinal vessels, RPE cells, glial cells, and retinal neurons, 
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including photoreceptors and RGCs. The exact cause of DR 
is unknown, but postulated mechanisms are hyperglycemia, 
advanced glycation end products (AGE), activation of cyto-
kines, inflammation, and oxidative stress [52,53] that lead to 
microangiopathy, BRB breakdown, and cell death [54].

TUDCA decreased cell death in rat retinal neural cells 
exposed to elevated glucose concentration [55]. This was 
accompanied by decreased annexin V and TUNEL labeling, 
mitonuclear translocation of AIF, as well as by decreased 
oxidative stress (protein carbonyl and reactive oxygen species 
production; Figure 2) [55]. Additionally, Oshitari et al. [56] 
showed that the numbers of p-c-Jun- and p-JNK-immunopos-
itive RGCs were higher, and the numbers of regenerating 
neurites were lower, in diabetic rat retinas and in retinas 
exposed to high glucose, which was partially improved with 
TUDCA (Figure 2). ER stress and inflammation occurring in 
diabetic retinopathy could also be suppressed by UDCA, thus 
preventing pericyte loss [57]. UPR markers and inflamma-
tory cytokines, such as MPC-1 and TNF-α, were attenuated 
following UDCA treatment in streptozotocin (STZ)-induced 
diabetic mice, as well as in human retinal pericytes exposed 

to AGE or modified low-density lipoprotein (mLDL; Figure 
2) [57]. Additionally, UDCA attenuates BRB breakdown 
during DR by reversing the reduced expression of claudin-1 
and claudin 19 in STZ-treated diabetic mice (Figure 2) [58]. 
UDCA decreased retinal inf lammation by reducing the 
nuclear translocation of p65 subunit of NF-κB in retinas 
from STZ-induced diabetic mice and the retinal expression of 
TNF-α, interleukin-1β (IL-1β), IL-6, intercellular cell adhe-
sion molecule-1 (ICAM-1), inducible nitric oxide synthase 
(iNOS), and vascular endothelial growth factor (VEGF) in 
STZ-induced diabetic mice (Figure 2) [58].

More recently, it has been shown that intermittent fasting 
prevented diabetic retinopathy in db/db mice by restructuring 
the microbiota toward species producing TUDCA [59]. It was 
concluded that this confers retinal protection by TGR5 activa-
tion and subsequent suppression of TNF-α expression (Figure 
2) [59].

Laser-induced choroidal neovascularization—
Choroidal neovascularization (CNV) is a complication that 
leads to visual loss in several retinal diseases, including age-
related macular degeneration, inflammatory retinal diseases, 

Figure 2. Mechanisms involved in urso- and tauroursodeoxycholic acid neuroprotective effects in retinal disease. Antiapoptotic (orange), 
anti-inflammatory (blue), and antioxidant effects of biliary acids described in retinal disease models, at the level of retinal ganglion cells 
(RGCs), photoreceptors (PRs), RPE, and the blood–retinal barrier (BRB; vascular endothelial cells, pericytes, and microglia). ER: endo-
plasmic reticulum; AIF: apoptosis- inducing factor; NF-kB: nuclear factor-kappa B; TNF: tumor necrosis factor; IL: interleukin, ICAM: 
intercellular cell adhesion molecule; iNOS: inducible nitric oxide synthase; VEGF: vascular endothelial growth factor.
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or myopia. Woo et al. [60] showed that TUDCA and UDCA, 
intraperitoneally administered, significantly suppressed 
laser-induced CNV formation in rats. This effect might be 
associated with anti-inflammatory action of the bile acids. 
However, the VEGF level in the retina was significantly lower 
only in the TUDCA-treated group compared to the control 
group, suggesting a different mechanism of action for UDCA.

UDCA and TUDCA signaling pathways in the 
retina—Receptors and transporters for bile acids have been 
identified in the retina (Table 1): TGR5 in primary retinal 
ganglion cells [59], S1PR2 in the inner nuclear layer of the rat 
retina, particularly in bipolar cells [61], and in mouse retinal 
endothelial cells [62], and α5β1 integrin in the vessels of the 
adult retina [63] and in astrocytes [64]. VDR is also expressed 
in the retina [65,66], and PXR has been found in RPE cells 
[67]. GR and MR have been described in the cells of the inner 
nuclear layer of the retina, particularly in Müller glial cells, 
and in amacrine cells [68,69] and in the RPE [67].

Among known transporters of bile acids, organic 
anion-transporting polypeptide (OATP) transporter has 
been described at the BRB [70,71], the neuroretina [72], and 
the RPE [73]. OATP1A2 is expressed in photoreceptor and 
amacrine cells, and OATP1B2 is found in the inner nuclear 
and plexiform layers [72]. Additionally, the multidrug 
resistance protein (MPR) 4 transporter has been detected 
in retinal vascular endothelial cells [74]. Conversely, other 
transporters of bile acid, such as ASBT, sodium taurocholate 
cotransporting polypeptide (NTCP), and bile salt export 
pump (BSEP), have not been described in the retina. The 
first described bile acid receptor, the FXR, has also not 
been reported in the retina, although a proteomic analysis of 
subretinal fluid revealed overexpression of the FXR pathway 
[75] in central serous chorioretinopathy compared with retinal 
detachment.

Although the machinery of bile acids has been partially 
found in the retina, specific interaction of UDCA and 
TUDCA with these receptors or transporters has been rarely 
explored. A recent report by Beli et al. suggested TGR5 acti-
vation by TUDCA in retinal ganglion cells. In addition, it has 
been shown that TUDCA could activate the MerTK receptor 
in RPE cells [45], and could directly interact with rhodopsin 
[76]. Interestingly, taurine, the constitutive amino acid of 
TUDCA molecule, is the most abundant amino acid in the 
retina [77]. Photoreceptors are particularly rich in taurine, and 
all retinal cells take up taurine from the extracellular milieu. 
High- and low-affinity Na+- and Cl−-dependent taurine 
transporters have been described in the retina. The principal 
transport protein is the high-affinity TauT transporter [78]. 
Additionally, it is known that treatment with taurine can 

prevent retinal neurodegeneration [79]. A taurine-specific 
receptor has not been yet identified, but it has been suggested 
that taurine neuroprotection could be mediated by GABA 
receptor stimulation [79]. Whether taurine and TUDCA share 
mechanisms of action remains to be elucidated. Finally, no 
UDCA receptor interaction has been described. It is known 
that UDCA does not bind to the FXR [9,80], and because 
UDCA is a non-conjugated bile acid, a different molecular 
mechanism of action might be expected.

Clinical trials of bile acids for neurodegeneration—
Although there is increasing evidence supporting a potential 
therapeutic role for bile acids in neurodegenerative disorders, 
their benefit in a clinical setting remains poorly explored. 
Only three clinical studies evaluating the safety and efficacy 
of oral bile acids have been reported, in patients with ALS 
[24-26] (Table 2). To date, there is no clinical study reporting 
the evaluation of bile acids in retinal disorders. Registered 
clinical trials of bile acids for neurodegeneration are summa-
rized in Table 4, none of which has results available to date.

DISCUSSION

Consistent evidence has shown the protective role of TUDCA 
and UDCA in retinal disorders. Importantly, TUDCA treat-
ment in photoreceptor and RGC degeneration models not 
only inhibited apoptosis but also promoted cell survival and 
function [37,47]. TUDCA was shown to protect from caspase-
dependent [2,43] and independent (AIF) apoptosis [55] and 
from ER stress-mediated apoptosis [41,42]. Additionally, anti-
inflammatory and antioxidant effects have been reported for 
TUDCA in photoreceptor degeneration models [36,43,55]. 
How bile acids interact with retinal cells remains imperfectly 
understood although a direct interaction of TUDCA with 
TRG5 has been described in RGCs [59].

The cytoprotective effect of UDCA has been less exten-
sively explored, mostly in models of diabetic retinopathy, 
where UDCA preserved the BRB and exerted antiapoptotic 
(ER stress mediated), anti-inflammatory, and antioxidant 
mechanisms [57,58]. Comparative efficacy of TUDCA and 
UDCA has been explored only in a laser-induced CNV 
model, showing similar effects but probably by different 
mechanisms [60].

Although UDCA and TUDCA have been found in 
cerebrospinal fluid after oral administration [24], no clinical 
studies have evaluated the ocular biodistribution of bile 
acids. Moreover, little is known about the role of endogenous 
circulating bile acids in the retina. Secondary bile acids are 
present in the systemic circulation after being absorbed by the 
intestine and released in the portal vein [5]. The mechanisms 
that regulate bile acids levels in the systemic circulation have 
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Table 4. Registered trials of the bile acids for neurodegenerations

Status Study title
ClinicalTrials.gov 
Identifier Condition Study design Intervention

Completed

Ursodeoxycholic Acid for 
Rhegmatogenous Retinal 
Detachment NCT02841306

Rheg-
matogenous 
Retinal 
Detachment

Phase 1 clinical 
trial 
Non-randomized 
Parallel Assign-
ment 
Open labeled

UDCA 
26 participants

Recruiting
Trial of Ursodeoxycholic 
Acid (UDCA) for Parkinson 
Disease: The “UP” Study

NCT03840005 Parkinson 
Disease

Phase 2 clinical 
trial Placebo 
Controlled, 
Randomized 
Double Blind

UDCA 
30 participants

Not yet 
recruiting

Brain Bioenergetics in 
Parkinson Disease and 
Response to Repeated Oral 
UDCA Treatment

NCT02967250 Parkinson 
Disease

Phase 1 clinical 
trial 
Non-randomized 
Open labeled 
Single Group 
Assignment

UDCA 
20 participants

Unknown status Ursodiol in Huntington's 
Disease NCT00514774 Huntington 

Disease

Phase 1 clinical 
trial Randomized 
Parallel Assign-
ment Double 
Blind

UDCA 
21 participants

Recruiting

Safety and Efficacy of TUDCA 
as add-on Treatment in Patients 
Affected by Amyotrophic 
Lateral Sclerosis

NCT03800524

Amyo-
trophic 
Lateral 
Sclerosis

Phase 3 clinical 
trial Placebo 
Controlled, 
Randomized 
Double Blind

TUDCA 
440 participants

Recruiting
A Trial of Bile Acid Supple-
mentation in Patients With 
Multiple Sclerosis

NCT03423121
Progressive 
Multiple 
Sclerosis

Phase 1–2 clinical 
trial Placebo 
Controlled, 
Randomized 
Double Blind

TUDCA 
60 participants

Recruiting

Study to Assess the Safety and 
Biologic Activity of AMX0035 
for the Treatment of Alzheimer 
Disease

NCT03533257 Alzheimer 
Disease

Phase 2 clinical 
trial Placebo 
Controlled, 
Randomized 
Double Blind

AMX0035 
(TUDCA and 
Phenylbutyrate) 
100 participants

Active, 
non- recruiting

AMX0035 in Patients With 
Amyotrophic Lateral Sclerosis NCT03127514

Amyo-
trophic 
Lateral 
Sclerosis

Phase 2 clinical 
trial Placebo 
Controlled, 
Randomized 
Double Blind

AMX0035 
(TUDCA and 
Phenylbutyrate) 
132 participants

Enrolling by 
invitation

Open Label Extension Study 
of AMX0035 in Patients With 
Amyotrophic Lateral Sclerosis

NCT03488524

Amyo-
trophic 
Lateral 
Sclerosis

Phase 2 clinical 
trial 
Single Group 
Assignment Non-
randomized 
Open label

AMX0035 
(TUDCA and 
Phenylbutyrate) 
132 participants
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not been fully explored, and the role of the microbiota seems 
central, as it is responsible for the transformation of primary 
bile acids to secondary neuroprotectant ones [5]. The levels of 
circulating secondary bile acids could result from increased 
production by the microbiota or from and increased intestine 
permeability, known to be also influenced by the microbiota 
[81]. In the cerebrospinal fluid, the levels of TUDCA are 
proportional to the circulating levels [6], but in the retina 
and the ocular media, the levels of bile acids have not been 
evaluated.

As studies increasingly link neurodegenerative disease 
to the state of the microbiota [82-85], we hypothesize that the 
effects of alterations to the microbiome on circulating bile 
acids may induce or exacerbate neurodegenerative processes, 
and specifically, retinal degeneration. Thus, therapeutic use 
of bile acids in retinal disease should be further investigated.
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