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Abstract

Sensitivity to pain varies considerably between individuals and is known to be heritable. Increased sensitivity to
experimental pain is a risk factor for developing chronic pain, a common and debilitating but poorly understood symptom.
To understand mechanisms underlying pain sensitivity and to search for rare gene variants (MAF,5%) influencing pain
sensitivity, we explored the genetic variation in individuals’ responses to experimental pain. Quantitative sensory testing to
heat pain was performed in 2,500 volunteers from TwinsUK (TUK): exome sequencing to a depth of 706was carried out on
DNA from singletons at the high and low ends of the heat pain sensitivity distribution in two separate subsamples. Thus in
TUK1, 101 pain-sensitive and 102 pain-insensitive were examined, while in TUK2 there were 114 and 96 individuals
respectively. A combination of methods was used to test the association between rare variants and pain sensitivity, and the
function of the genes identified was explored using network analysis. Using causal reasoning analysis on the genes with
different patterns of SNVs by pain sensitivity status, we observed a significant enrichment of variants in genes of the
angiotensin pathway (Bonferroni corrected p = 3.861024). This pathway is already implicated in animal models and human
studies of pain, supporting the notion that it may provide fruitful new targets in pain management. The approach of
sequencing extreme exome variation in normal individuals has provided important insights into gene networks mediating
pain sensitivity in humans and will be applicable to other common complex traits.
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Introduction

Chronic pain has a prevalence of nearly 20% in Europe [1] and

similar estimates are reported for North America. The symptom is

poorly controlled by existing therapies and the resulting personal

and socio-economic burden is considerable. While many analgesic

drugs are available, the vast majority of analgesic prescriptions are

drawn from two classes of drug, opiates and nonsteroidal anti-

inflammatory-like drugs, and have either limited efficacy or

significant side effects. There is, therefore, a considerable need

to develop novel analgesic treatments. The use of human genetics

for identification of intrinsic factors that contribute to chronic pain

states is attractive for several reasons. Chronic pain conditions as

well as experimentally induced pain have been shown to have a

considerable genetic component [2]. Twin studies have shown

observed heritabilities of about 50% for different pain traits [3].

The manifestation of pain in response to experimental stimuli such

as skin heating, or to clinical pathologies such as joint degener-

ation, is known to vary markedly. It is clear that a range of factors,

including personality, expectation and mental state modulate the

expression of chronic pain and these features are themselves

genetically mediated. Modelling in twins, however, suggests that

there are two separate predisposing genetic factors [4] including

variants that modulate sensitivity to pain, as well as those

mediating anxiety and depression. A number of approaches to

pain sensitivity genetics have been adopted including the

examination of rare (monogenic) syndromes of pain insensitivity

(reviewed in [5]) and candidate genes identified from transcrip-

tional profiling in animal models [6]. Candidate gene studies in

humans with chronic pain have been unconvincing, and
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confirmed candidate gene associations are still lacking (reviewed in

[4] and [7]). The aim of the present study was to examine the

influence of genetic variation, particularly rare variants having

minor allele frequency ,5%, on pain sensitivity in normal human

volunteers. Two hypotheses were tested; that a single rare variant

having large effect influences pain sensitivity and that the burden

of variation would differ between sensitive and insensitive

individuals.

Attempts to standardise and quantify pain sensibility in humans

have led to the introduction of standardised thermal, mechanical

or chemical stimuli that activate the nociceptive (pain signalling)

system. Such quantitative sensory testing (QST) has been used to

show that an individual’s sensitivity to experimental pain predicts

risk of developing chronic pain after surgical interventions such as

hernia repair [8] and arthroscopy [9]. That pre-operative pain

sensitivity is a major risk factor for chronic post-operative pain

suggests that exploration of genetic variation underlying experi-

mental pain might be a useful approach. The pain stimulus, its site

of application and methods of rating have all been standardised -

unlike spontaneous pain in a disease state. A further benefit is that

the genetic influence on pain sensitivity is studied, rather than its

influences on disease and disease progression. In the present study,

we sought to determine whether rare variants associate with

extremes of pain sensitivity in healthy volunteers. Using heat as the

stimulus for QST in a large sample of healthy twin volunteers

(www.twinsuk.ac.uk) we observed the normal variation in pain

sensitivity using two objective tests, the heat pain threshold (HPT)

and the heat pain suprathreshold (HPST). From a study

population of .2500 individuals having QST, we compared

approximately 200 individuals categorised as having high and low

sensitivity to HPST (approximately 100 from each; TUK1 set)

then repeated the process in a further 200 individuals (TUK2 set).

Our initial analysis sought to identify genes harbouring single

nucleotide variants (SNVs) in either pain sensitive or insensitive

subjects, with a focus on non-synonymous exonic and nonsense

mutations. A large number of methods have been proposed for

such an analysis [40–44]. We employed a battery of such tests

including both old and new techniques, as well as tests examining

a range of hypotheses; a difference between pain groups (sensitive

vs. insensitive) in the proportion of subjects harbouring rare

variants; a difference in abundance of rare variants, weighted by

function; and a multivariate difference in variant patterns between

the two groups, allowing simultaneous excess in either pain group

for any single rare variant within a gene.

We found no single rare variant to have a statistically significant

association to heat sensitivity, after multiple testing correction. The

strongest signal was found for GZMM, a serine protease from

immune cell granules. However, our network analysis identified up

to 30 genes harbouring rare SNVs as belonging to the Angiotensin

II pathway, which has previously been linked to the pain

phenotype in a number of settings.

Results

Singleton females were drawn from same sex twin pairs

included in the sample so that gender- and relatedness bias were

removed; after quality control all subjects were of north European

descent. Complete data were available on 413 singleton subjects:

TUK1 comprised 203 and TUK2 210 individuals. Analysis was

performed in stages: TUK1, TUK2, combined TUK1 and TUK2

and pathway analysis. Details of the study participants are shown

in Table 1. Based on the sample size required for exome

sequencing and on the distributions obtained for HPT and HPST,

insensitivity to heat pain was defined as HPST$49.2uC, and

sensitivity as HPST#45.5uC. An individual designated insensi-

tive/sensitive on HPST was included only if their HPT measure

was higher/lower than the median HPT (46.6uC). The distribu-

tions of the TUK2 set were somewhat shifted, with median

HPT = 46.0uC. Insensitivity to pain in TUK2 was defined as

HPST. = 48.9uC while sensitivity was defined as

HPST, = 45.4uC, with subjects required to have HPT above/

below 46.0uC, respectively. Description of the exome sequencing

findings in TUK1 and TUK2 groups is shown in Table S1. Details

of the SNVs identified in the 2 datasets are shown in Table 2. The

TUK2 set identified more variants of all types (except partial

codons, which were extremely infrequent), which likely reflected

the different exome capture arrays used and was consistent with

greater coverage captured for the TUK2 set. However, the

HapMap samples (n = 3) duplicated in the TUK1 and TUK2

exome sequencing showed no significant difference between

number of SNVs called by the two platforms on commonly

captured regions (by paired t-test, p = 0.24). The relative

frequencies of the variants identified in the 2 datasets were

compared to those recorded in dbSNP (http://www.ncbi.nlm.nih.

Table 1. Characteristics of the individuals in the TUK1 and
TUK2 samples.

TUK1 TUK2

N total 203 210

Age, years 60.11 (9.01) 56.50 (10.72)

BMI, kg/m2 26.61 (5.07) 25.32 (4.15)

Sensitive individuals

N 101 114

HPT, C0 43.09(2.47) 42.44(2.32)

HPST, C0 44.27(1.10) 43.95(1.54)

Insensitive individuals

N 102 96

HPT, C0 48.17(0.72) 47.43(0.98)

HPST, C0 49.78(0.28) 49.37(0.41)

The mean (standard deviation) is shown for the TUK1 and TUK2 samples.
N represents sample size; BMI, body mass index; HPT, heat pain threshold; HPST,
heat pain suprathreshold.
doi:10.1371/journal.pgen.1003095.t001

Author Summary

Chronic widespread pain is a complex clinical problem.
Identification of underlying genetic factors would shed
light on the biology of pain and offer targets for novel
therapies. We aimed to identify rare genetic variants in the
normal population associated with pain sensation by
performing exome sequencing on individuals who were
more or less sensitive to heat pain. While we did not
identify any single variants having large effect, we did
observe major group differences between the sensitive
and insensitive individuals. Network analysis suggested a
role for the angiotensin pathway, which previous work in
animal models has suggested is important in pain
mediation. Our results cast light on the genetic factors
underlying normal pain sensation in humans and the
utility of exome analyses. It suggests that further explo-
ration of the angiotensin pathway may reveal novel targets
for the treatment of pain.

Single Nucleotide Variants in Pain Sensitivity
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gov/projects/SNP/) (Figure S1). Unsurprisingly, the majority of

novel SNVs identified were rare, with estimated minor allele

frequency (MAF),0.005.

Results of comparison between the 21 tests for analysing rare

variant association were represented using a heat map (correlation

matrix, Table S2). As expected, methods having similar underlying

assumptions provided highly correlated results and show ‘‘hot’’ on

the heat map. A pair of tests was selected from each category/

correlation block based on the correlation matrix and their QQ

plots (Figure 1) giving 6 gene-centric variant burden tests

employed in the final analysis. Using these 6 methods we identified

genes containing variants associated with pain sensitivity, shown in

Table 3 ranked by strength of evidence. Of the 20,038 exonic gene

regions tested, 17,129 (from 14,109 unique genes) gave consis-

tently non-missing p-values across the 6 selected variant burden

tests. The p-value considered significant under Bonferroni

correction that would apply for a single set of tests based on this

number of genes was p,3.0e-06: no variants passed this threshold

so none could be considered unequivocally associated with pain

sensitivity. The gene GZMM was the most highly associated with

heat pain sensitivity, p = 6.86e-05 in the combined TUK1 and

TUK2 analysis. Variants identified in GZMM are shown in

Figure 2. For SNV A95T there were 12 alleles (162+10) in the

heat insensitive vs 1 in heat sensitive (p = 0.005, by Fisher’s exact

test) in TUK1. While in TUK2 we found 17 alleles in the heat

insensitive vs 4 alleles in the heat sensitive (p = 0.0016). Individuals

insensitive to heat pain manifested rare variants more frequently

than the sensitive, across GZMM (Figure 2). Finally, the

distribution of variants differed between the pain insensitive and

sensitive groups, with the pain insensitive showing a relative

enrichment of rare variants (Figure S2).

Pathway analysis results
The 2nd lowest p-value among 6 gene-centric variant burden

tests was used as a cut-off to prioritise genes for pathway analysis

(see Methods, statistical analysis). After merging TUK1 and

TUK2 datasets, we identified 138 unique genes harbouring a rare

variant with a 2nd lowest p-value,0.01. First we examined the

functional annotations of these 138 genes using the online

functional annotation tool DAVID (http://david.abcc.ncifcrf.

gov/) [10]. Nine high level GO terms were nominally significantly

enriched in the gene list eg. ‘‘plasma membrane’’ and ‘‘intracel-

lular signalling cascade’’. None reached significance after multiple

testing correction or offered obvious insights into mechanisms of

altered pain sensitivity (results not shown). We applied causal

reasoning to our data [11], which uses a large curated database of

directed regulatory molecular interactions to identify the most

plausible upstream regulators of a gene set. Of the 138 genes 86

were present in our database of causal interactions, from which we

identified 4 nominally significant regulatory networks (Table 4).

One of the regulatory networks, angiotensin II (Figure 3), was

highly enriched for a pain signal with 12 out of 204 genes in the

network also in the set of 86 genes with a nominal genetic burden.

This yields an odds ratio of 7.6, an enrichment p = 3.461027 and

a correctness p = 1.261028. Since 1108 pathways were tested, this

adjusts to enrichment p = 3.861024 and correctness p = 1.461025

under multiple test correction.

We also investigated whether the genes identified were known

to interact physically with proteins playing a role in pain. For this

we used the BioGrid database of protein-protein interactions.

Notable connections included the binding of synaptotagmin-9

(SYT9), a membrane trafficking protein activated by calcium, to

TRPV1, the capsaicin receptor, which plays a key role in thermal

nociception [12]. The extracellular matrix glycoprotein laminin

B1 chain (LAMB1) interacts with the voltage dependent calcium

channel Cav2.1 (CACNA1A) [13]. The receptor activity modify-

ing protein 3 (RAMP3) binds to the calcitonin receptor

(CALCRL), for transport to the membrane. Here the calcitonin

receptor recognises the calcitonin gene related peptide (CGRP), a

hormone proposed to contribute to pain transmission and

inflammation [14]. Finally, the sodium-hydrogen exchanger

regulatory factor 1 (SLC9A3R1), binds the beta-2-adrenergic

receptor (ADRB2) [15], nitric oxide synthase 2 (NOS2) [16],

membrane metallo-endopeptidase (MME) [17] and the opioid

receptor kappa 1 (OPRK1) [18].

Discussion

Patients with chronic pain have increased sensitivity to noxious

stimuli such as heat and pressure compared to controls [19] as well

as to non-noxious stimuli such as sound [20]. These observations

support the notion that the processing of external stimuli is

heightened or exaggerated in chronic pain states. Thus, people

harbouring gene variants associated with greater sensitivity to heat

pain stimulus are thought to be at increased risk of developing

chronic widespread pain. The premise of this work was that

understanding better the genetic influence on normal pain

processing would shed light on the biological pathways underlying

the pathology of chronic pain. In this project we adopted novel

methods - biotechnological and statistical - to identify rare

sequence variation contributing to pain sensitivity in normal

individuals. The advent of high throughput genotyping technol-

ogies has helped to unravel the aetiology of many complex diseases

and quantitative traits. In particular, genome-wide association

(GWA) studies have uncovered many common variants associated

with quantitative phenotypes. However, GWA is underpowered to

detect association of rare variants, and the common variants

identified so far explain only a fraction of the trait heritability. As

whole-genome sequencing has become more cost-efficient it is now

feasible to examine the effect of rare variants. The hypothesis that

multiple rare variants explain a proportion of the missing

heritability is gaining more attention [21].

Rare variants with moderate to high penetrance have been

associated with a number of extreme phenotypes (summarised in

[22]). For quantitative phenotypes, sampling and comparing the

extremes of traits has become an accepted strategy for identifying

disease-causing rare variants in exome sequencing [23]. In this

novel exome project of pain perception in normal individuals, no

Table 2. Details of the SNVs identified in TUK1 and TUK2
samples.

Functional Effects TUK1 TUK2

Mb sequenced (number) 32 44

number of exons (k) 180 300

nonsynonymous coding 60,353 82,293

partial codon 4 3

splice site 8,155 11,060

stop gained 1,100 1,728

stop lost 76 124

synonymous coding 44,878 56,993

The number of SNVs detected is shown according to their functional
consequences, for the TUK1 and TUK2 samples.
doi:10.1371/journal.pgen.1003095.t002

Single Nucleotide Variants in Pain Sensitivity
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Figure 1. Quantile–quantile plots for the six different variant burden analysis methods. Quantile–quantile plots are shown for: (a)
AMELIA, (b) CCRaVAT, (c) fixed filter test, minor allele frequency ,0.05, (d) Madsen-Browning with polyphen weights, (e) Han and Pan aSumtest, (f)
SSU, sum-of-squares test (Han and Pan).
doi:10.1371/journal.pgen.1003095.g001

Single Nucleotide Variants in Pain Sensitivity
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genetic variants of large effect were identified. Considering that

the statistical power after applying stringent multiple test

correction was limited, we can’t exclude moderate or small

contributions by individual SNVs to the experimental pain

phenotype. Indeed, we have noted a differential distribution of

rare variants between the pain sensitive and insensitive subjects

(Figure S2), which suggests enrichment of multiple SNVs of small

effect at the extremes of the normal distribution. This study also

provides proof of principle of the utility of the exome sequencing

method.

Such an approach has been used successfully in the, albeit more

limited, setting of sequencing ion channel genes in epilepsy [24].

The authors highlighted the need for cell and network analysis to

optimise information obtained from such a study. A variety of

statistical methods have been developed for analysis of association

of rare variants with complex traits, but there remains a paucity of

data regarding the genetic architecture underlying complex traits

such as pain perception. For this reason we elected to use a variety

of tests based on different underlying assumptions so that no rare

variant associated with pain perception would be missed.

GZMM was the only gene classified as having ‘‘very high’’

evidence of association to thermal nociception (Table 3 and

Figure 2: see Methods: statistical analysis for classification

definitions). It encodes granzyme M, one of the serine proteases

produced and stored in the granules of immune cells such as

lymphocytes and natural killer cells [25]. While we could not find

reports of association with pain in the literature, granzymes are

known to play an important role in apoptosis [26] and in the

initiation of inflammation: elevated levels have been detected in

rheumatoid synovial fluid [27] and granzyme B expression

increased in lesional atopic dermatitis skin [28]. In the ‘‘high’’

evidence category, the enzyme encoded by the seventh gene,

DDAH1, plays a role in nitric oxide generation by regulating

cellular methylarginine concentrations, which in turn inhibit nitric

oxide synthase. Although both anti-nociceptive and pro-nocicep-

tive roles of NO have been reported, overproduction of NO -

together with free radicals - contribute to central sensitisation and

the pathogenesis of abnormal pain states via association with

NMDA receptor mediated signalling events. In support of this,

circulating NO has been shown to be elevated in chronic

Figure 2. SNVs identified in gene GZMM. Schematic showing number of subjects in TUK1 (top row) and TUK2 (bottom row) having
nonsynonymous SNVs within the GZMM gene, with novel variants in black and those described in dbSNP in green. Subject counts in blue are for pain
insensitive subjects and in red, pain sensitive. Squares represent homozygous and ovals heterozygous mutations. Exons are shown as dark cylinders,
UTRs pale grey rectangles and introns dotted line.
doi:10.1371/journal.pgen.1003095.g002

Table 3. Genes associated with heat pain sensitivity using six methods of gene-centric variant burden analysis.

Gene List Source Evidence category Chr Gene annotation
Primary list 2nd
lowest p-value

Merged 2nd
lowest p-value

GZMM Primary TUK1&2 Very high 19 granzyme M (lymphocyte met-ase 1) 0.00010 6.86610205

CCNJL Primary TUK1&2 High 5 cyclin J-like 0.00010 0.00025

ZNF767* Primary TUK1&2 High 7 zinc finger family member 767 0.00036 0.00070

LAMA4 Primary TUK1&2 High 6 laminin, alpha 4 [Homo sapiens] 0.00041 0.00117

OR5F1 Primary TUK1&2 High 11 olfactory receptor, family 5, subfamily F,
member

0.00074 0.00033

TBK1 Primary TUK1&2 High 12 TANK-binding kinase 1 0.00083 0.00030

DDAH1 Primary TUK1&2 High 1 dimethylarginine dimethylaminohydrolase 1 0.00165 0.00028

PDHA2 Merged dataset Medium 4 pyruvate dehydrogenase (lipoamide) alpha 2 - 0.00060

FBXW7 Merged dataset Medium 4 F-box and WD repeat domain containing 7 - 0.00063

DLD Merged dataset Medium 7 dihydrolipoamide dehydrogenase - 0.00078

RHEB Merged dataset Medium 7 Ras homolog enriched in brain - 0.00097

CCDC111 Primary TUK1&2 Medium 4 coiled-coil domain containing 111 0.00075 0.00056

TAGAP Primary TUK1&2 Medium 6 T-cell activation RhoGTPase activating protein 0.00075 0.00070

MYPN Primary TUK1&2 Medium 10 myopalladin 0.00149 0.00095

Category of significance (‘‘very high’’ ‘‘High’’,‘‘Medium’’) as defined below:
*represents known pseudogene; Chr chromosome.
‘‘High’’ p,0.00044 (based on p-value which reaches genome-wide significance if replicated, based on gene counts); ‘‘Very High’’ means ‘‘High’’ plus the merged data is
more significant than by combining TUK1 and TUK2 p-values (implying synergy of direction); ‘‘Medium’’ is p,0.001.
doi:10.1371/journal.pgen.1003095.t003

Single Nucleotide Variants in Pain Sensitivity

PLOS Genetics | www.plosgenetics.org 5 December 2012 | Volume 8 | Issue 12 | e1003095



widespread pain patients [29]. The links between pain and other

genes listed in Table 3 (such as CCNJL and TBK1) are tenuous at

present.

To explore further the interplay between the SNV-containing

genes identified we applied causal reasoning, an algorithm using

directed molecular relationships between biological entities to

identify up-stream regulators of a set of input genes [30]. We

identified 4 regulatory networks that were nominally significant,

one of which (angiotensin II) remained significant after correction

for multiple testing (correctness p = 1.461025, enrichment

p = 3.861024). Angiotensin II is a peptide hormone involved in

the control of blood pressure. This network connected 12 of our

identified genes into a causal network (Figure 3). Angiotensin II

has been already been implicated in central pain: it has been

shown to facilitate pain-related behaviours in experimental

animals [31] including responses to thermal stimuli similar to

those employed in the current studies. The mechanism appears to

be via the modulation of descending brainstem pathways. Blocking

the receptors for angiotensin II (so called AT1 receptors) reverses

some pain-related behaviours in models of chronic pain,

suggesting a role for endogenous angiotensin II. For example,

AT-1 receptor antagonist telmisartan has been shown to abrogate

pain in the sciatic nerve constriction model in rats [32]. The data

from several small clinical studies in humans have been conflicting

[33,34] but a recent phase II clinical trial of a AT2 receptor

antagonist (AT2 receptors are expressed by primary afferent

nociceptors) found a significant improvement in the pain of a

group of patients with post-herpetic neuralgia (http://www.

spinifexpharma.com.au/DRUG-DISCOVERY.html).

Our causal reasoning analysis allowed for only one interaction

upstream of the genes in our dataset to be included. However,

allowing two interactions increased the number of genes from this

study that may be causally linked to angiotensin II to 30 genes.

Angiotensin II can also be causally linked to known pain relevant

processes. For example, PTGS2, the gene encoding cyclooxygenase

2 (COX-2, the target of the non-steroidal anti-inflammatory drugs)

is regulated by angiotensin II [35]. COX-2 produces prostaglandin

E2 (PGE2), which is released in damaged or inflamed tissues and

binds to nociceptive nerve terminals via PGE2 receptors (so called

EP receptors), leading to cAMP production. This leads to post-

translational modification of several target proteins within nerve

terminals that regulate nociceptor excitability, including voltage-

gated sodium channels [36]. The current study using novel exome

sequencing methods supports the notion that the angiotensin II

pathway is important in pain regulation in man and suggests that

genetic variation in the pathway may influence sensitivity to heat

pain, at least in the Northern European population.

A third form of analysis examined the target genes in a network

of all human protein-protein interactions from the BioGRID

database. We asked if any of the proteins encoded by the genes

identified in this study were known to interact directly with

proteins having a role in pain. We found known physical

interactions with several pain-relevant proteins including ion

channels (TRPV1 and Cav2.1), the CGRP receptor and the kappa

Figure 3. The Angiotensin II regulatory network was identified by causal reasoning from 138 genes associated with pain sensitivity.
Causal reasoning uses directed molecular interactions to work upstream from the genes in this study (green) to identify regulators such as
angiotensin II (blue) that have a causally correct regulatory role for a significant number of input genes. Correctness is determined by giving each
input gene a direction of effect. Here, we presumed a loss of function (e.g. down regulation in activity) to all of our genes. Angiotensin II has direct
causal connections to 12 of the genes from our 138, which can be increased to 30 if one intermediary node is allowed in the network (Figure S1).
Distribution of novel rare variants identified according to minor allele frequency in a) TUK1 and b) TUK2 datasets.
doi:10.1371/journal.pgen.1003095.g003

Table 4. Pathways identified by causal reasoning.

Pathway
Correctness p (Bonferroni
corrected p)

Enrichment p
(Bonferroni corrected p)

No. connections (no.
possible connections) Type of pathway

Angiotensin II 2 1.261028 (1.461025) 3.461027(3.861024) 12 (204) Peptide

Estrogen 2 0.001 (.1) 0.002 (.1) 3 (26) Biological process

Adipocyte differentiation 2 0.004 (.1) 0.005 (.1) 4 (76) Biological process

Triamcinolone acetonide + 0.04 (.1) 0.01 (.1) 3 (94) Chemical

Causal reasoning [11] uses a large curated database of directed regulatory molecular interactions to identify the most plausible upstream regulators of a gene set with a
proposed directionality (eg. down-regulated). We considered the 138 genes identified to contain loss of function mutations. One regulatory pathway (angiotensin II) is
significant after correction for multiple testing when considering directionality (Correctness p) as well as when ignoring directionality of regulation (Enrichment p).
The sign (2/+) after the regulator’s name indicates the loss (2) or gain (+) of activity required to explain the loss of function mutations.
Enrichment p-value indicates the significance of the number of connections apparent in our data compared to the total number of connections.
Correctness p-value also accounts for the regulatory direction (+/2) and indicates the significance of the hypothesis as a regulator.
doi:10.1371/journal.pgen.1003095.t004

Single Nucleotide Variants in Pain Sensitivity
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opioid receptor. It is clear therefore that although we did not

identify any genes immediately associated with nociception,

several play key roles in processes linked to the reception and

transduction of pain signals by their physical and biochemical

interactions with important pain mediating complexes.

This study highlights the potential of using a combination of

sophisticated analytical methods to identify associations underlying

rare variants in quantitative traits. While the predicted effect sizes

are relatively small and require large samples, we have made

progress in understanding the genetic architecture underlying heat

pain sensitivity. Despite recent advances in both DNA sequencing

technology and the statistical methods to analyse such complex

datasets, the identification and follow-up of associations of

individual gene variants remains a challenge. Our results lend

weight to the notion that angiotensin II plays in important role in

signal transduction in pain and this pathway merits further

biological investigation.

Materials and Methods

Ethics committee approval was obtained from Guy’s and St

Thomas’ Hospital research ethics committee. All subjects were

volunteer singleton members of female monozygotic (MZ) and

dizygotic (DZ) twins from the TwinsUK register of King’s College

London [37]. Thus we did not perform a classical twin study and

did not need to adjust for relatedness. QST was performed

according to standard methods (see Supporting information) in

which measures of heat pain threshold (HPT) and heat pain

suprathreshold (HPST) were made.

Selection for exome sequencing
HPST score was selected as the primary metric because

reproducibility was greater (intra-class correlation coefficients,

HPST = 0.59 (0.51, 0.68); HPT = 0.34 (0.23, 0.46)). HPST was

also found to have greater heritability (HPST h2 = 0.44; HPT

h2 = 0.29). The two phenotypes were correlated (r = 0.64). To

select subjects who were relatively pain sensitive/insensitive for

exome sequencing, the following protocol was adopted: a subject

was included only if their HPT score was in the same half of the

distribution as the HPST and, in the case of MZ twin pairs, the co-

twin also resided in the same HPST tail. For DZ twins, the entire

pair was excluded if they fell into opposite tails; if both were in the

same tail, the more extreme twin was selected. In no case were two

members from a twin pair selected. In addition, three samples

provided by HapMap were analysed twice – in TUK1 and TUK2

– to enable comparison of the methods. Additional detail is

provided in Text S1.

Exome sequencing
DNA extracted from whole blood was sent to BGI for exome

sequencing [38]. The qualified genomic DNA sample was

randomly fragmented by Covaris technology with resultant library

fragments 250–300 bp. Adapters were ligated to both ends of the

fragments. Extracted DNA was amplified by ligation-mediated

PCR (LM-PCR), purified and hybridized to the NimbleGen

human exome arrays for enrichment; non-hybridized fragments

were then washed out. The target enrichment of the TUK1

samples were performed using hybridization to the NimbleGen

2.1 M array, while the shotgun libraries of the TUK2 samples

were enriched using NimbleGen EZ v2 library. The captured LM-

PCR products were subjected to quantitative PCR to estimate the

magnitude of enrichment. Each captured library was then loaded

on Illumina platforms and high-throughput sequencing was

performed on each library. The BGI used Illumina GAIIx for

sequencing of the TUK1 samples and a Hiseq2000 platform for

TUK2 samples. Raw image files were processed by Illumina base-

calling software v1.6 (and v1.7), and the sequences of each

individual were generated as 75 bp (and 90 bp) paired-end reads

for TUK1 (and TUK2) sets respectively. The fastq files were

generated from the raw data after removing the adapters and low

quality reads.

Exome mapping
Both datasets were mapped to the NCBI Human Reference

(GRCh37; hg19) using BWA v0.5.5 (v0.5.9). We considered the

default parameter –q 15 for read clipping, and a maximum insert

size of 600 bp for proper pairing of the short reads. The alignment

files for each lane were sorted and indexed by SAMtools [39]

before constructing the library-level bam files. We also tried to

improve the accuracy of the base quality scores by running a

recalibration stage using Genome Analysis Toolkit (GATK)

v1.0.5777 [40]. On average 5% of each library was contaminated

with duplicate fragments, which were removed before variant

calling. An extra step of local re-alignment was applied only to the

TUK2 data to improve the sensitivity and specificity of

mismatches near indel sites.

For quality control (QC) of the TUK1 data, we studied the

histogram of depth distribution, the distribution of inferred insert

sizes in the bam files, the GC content distribution for reads

mapped to forward and reverse strands, the depth of coverage as a

function of percentile of unique sequences ordered by GC content,

and the fraction of each chromosome covered by the exomes. The

distribution of per-base sequencing depth for each sample was

evaluated as was the cumulative depth distributions in target

regions, and sequencing depth and coverage of the target region

per chromosome. The TUK2 dataset had a slightly higher depth

of coverage over the capture target region (CTR), with average

716 depth (compared to 696 for TUK1), whereas average

coverage of the CTR was 97.5% for TUK2 (compared to 96.5%

in TUK1). In the TUK1 panel we discarded and re-sequenced a

few lanes, which showed very low target coverage; hence requiring

all the exomes to cover more than 70% of the CTR by at least

206 in both datasets. We observed that although the mean depth

was comparable, the fraction of CTR covered at a given depth was

generally lower in TUK2 set, e.g. CTR coverage at $206 was

80.3% for TUK2 compared to 89.1% for TUK1. This alludes to

the greater coverage uniformity of the 2.1 M array compared with

that of the solution-based EZ sequence capture.

Variant calling
For TUK1, we ran SAMtools v0.1.8 ‘pileup’ while limiting

maximum depth for indels to 500. Then we filtered the SNVs

(with ‘varFilter’) with SNV and indel Phred-scale quality scores less

than 20, and minimum and maximum depth at 8 and 300

respectively. The GATK v1.0.5777 was run for TUK1 using

default values and a minimum confidence threshold 30 and

minimum read mapping quality at 10. We subsequently filtered

the GATK SNVs by keeping only those with alternative allele

quality score $ 20 and depth within [8,300] interval. For TUK2,

we ran SAMtools v0.1.16 ‘mpileup’ together with ‘bcftools’ using

default parameters, but requiring the SNV quality score and depth

interval to satisfy the same criteria of the TUK1 set (i.e.

QUAL$20 and 300$DP$8). The GATK calling for TUK2

data followed the same procedure as for TUK1. We further

filtered all the variants outside the capture target region.

Overlapping results SAMtools and GATK were extracted. The

discordance (about 5%) was largely attributed to unique calls,

however we observed a small fraction (less than 1%) of SNVs
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called by both algorithms were assigned mismatching genotypes

(homozygous non-reference vs heterozygous). We ran the GATK

on the coordinates of the overlap to determine the non-variant

genotypes hence adjusting the missing rates. The single-sample

variant files were then merged (using ‘merge-vcf’) into two large

variant call files (VCF) each containing the entire sample variants.

Table S1 compares the SNV statistics for TUK1 and TUK2

samples.

Genotype QC
We evaluated the genotype concordance between the exome

and pre-existing GWAS datasets. We observed greater agreement

between GWAS and TUK2 (average 99.8%) than GWAS and

TUK1 (99.3% concordance) (Table S1). Three samples were

identified as highly discordant with GWAS (52%, 54% and 51%

rates). A multi-dimensional clustering analysis of these three

exomes together with the entire GWAS dataset for 5,654 twins,

confirmed that they were true outliers so were excluded from

statistical analysis. Duplicate samples in TUK1 allowed estimation

of genotype error rate. Out of ,35 M bases on the 2.1 M array

which had been genotyped, 295 and 374 sites were discordant

between duplicates. This sets a type 1 error rate for genotyping of

approximately 1.0e-05, or 0.001%.

Statistical analysis
The wide variety of methods to analyse rare variants generally

fall into three broad categories: ‘‘collapsing’’ methods, which test

for differences in rare variant accumulation; ‘‘carrier-based’’ tests,

which test for differences in the number of subjects carrying a

certain class of variant (usually at least partially based on frequency

thresholds); and ‘‘multivariate’’ tests, which test for differences in

variant patterns, and is further subdivided into kernel-based and

regression-based methods. Using several tests from each category

we ran 21 different gene-centric variant burden tests on the TUK1

set and the results correlated (and displayed as a ‘‘heat’’ map,

Table S2). A pair of tests was selected from each category/

correlation block based on the correlation matrix and the QQ

plots (Figure 1). The six statistical methods selected for this project

were:-

N AMELIA: Allele Matching Empirical Locus-specific Integrat-

ed Association test. Multivariate test considering both common

and rare variants, and is based on genotypic similarity rather

than rare allele accumulation [41]

N aSum: Data adaptive sum test. A regression based collapsing

approach, which takes account of the direction of effect of the

alleles. This type of method is expected to tolerate misclassi-

fication eg. if alleles with different functions are collapsed

together [42]

N SSU (Sum of Squares Test): a test analogous to traditional

multivariate analysis on a binary trait [42]

N simple threshold test: a case/control by subject on carriers with

one or more variants having MAF,0.05. It is similar to the

CAST method [43]

N CCRaVAT (using Pearson test): collapsing method examining

the accumulation of rare alleles using analysis of contingency

tables. Like ARIEL, it is sensitive to linkage disequilibrium,

however it evaluates the presence or absence of individual rare

alleles in cases or controls (rather than the proportion rare

variants) [44]

N Madsen and Browning using polyphen weights (MB pphen):

method combines variants by weighting based on allele

frequency and, optionally, polyphen predictions (selected here)

[45]

A primary list of genes harbouring rare variants was drawn up

based on combining the p-values from TUK1 and TUK2 sets

using Fisher’s method. To identify signals from genes with

concordant variant patterns across TUK1 and TUK2 datasets,

the top genes from the merged raw TUK1 and TUK2 datasets

were also considered as relevant signals. This combination did not

comprise the primary list because the TUK1 and TUK2

sequencing were performed on different capture platforms: some

regions did not overlap between the two. Further details are

provided in Supporting information.

In addition to the issue of combining TUK1 and TUK2 was the

challenge of combining and sorting the results of the 6 gene-centric

variant burden tests which were relatively new and not well

understood. Because the 6 tests comprised 3 pairs of similar test

methods (Table S2) we considered that a result was not robust if it

was significant for only 1 test category. Significance in more than 1

category added confidence that a result was less likely to be a false

signal. To prioritize genes that were either significant in more than

one category or consistently significant for both tests within a pair,

we prioritized genes based on the 2nd lowest p-value from the 6

selected tests. This approach also ensured that the top gene list

could not be dominated by anomalies from a single test.

Significant results using the 2nd lowest p-value were obtained in

two ways: from combining the TUK1 and TUK2 p-values via

Fisher’s formula, and by merging the datasets (Table 3). A gene

was classified as ‘‘High’’ evidence if its 2nd lowest p-value achieved

p,0.00044 (the p-value such that replication would achieve a

genome-wide significant meta-analytic p-value), and ‘‘Very High’’

if this occurred with the combined dataset being more significant

than the combination of the p-values across the two halves.

‘‘Medium’’ priority was given any gene which achieved p,0.001

for its 2nd lowest p-value in either the merged dataset or the

combination of the p-values across the two halves.

Pathway analysis
After removing genes showing an opposite direction of effect

and after merging the datasets, we identified 138 unique genes

having a 2nd lowest p-value,0.01. These were considered for

more detailed analysis. We looked first for enriched Gene

Ontology categories within these genes using DAVID [10] with

an EASE p-value,0.05. Then we undertook causal reasoning [11]

which uses a large curated database of directed regulatory

molecular interactions to identify the most plausible upstream

regulators of a gene set. Consequently it allows the recapitulation

of regulatory networks/pathways associated with genes of interest.

The method offers two measures of statistical significance. The

enrichment p-value corresponds to a standard gene set enrichment

test on the set of downstream genes, whereas the correctness p-

value takes the direction of regulation into account. For the latter,

each associated gene was considered as a down-regulated

transcript in the causal reasoning network ie. assumed loss-of-

function mutations. As a background set for the significance

calculations we considered the intersection of the set of all genes

covered in either the TUK1 or TUK2 study and all transcripts in

our causal reasoning database. This set consists of 9275 genes. A

regulatory hypothesis was considered nominally significant with a

p-value,0.05 and significant at a 0.05 level after application of the

Bonferroni correction for multiple testing. As we are considering

1108 potential upstream regulators in the underlying database, a

Bonferroni corrected p of 0.05 corresponds to a nominal p-value of

4.561025. Finally, we searched for direct physical interactions
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between proteins identified in this study and proteins known to

have a role in pain using protein interaction data from the BioGrid

database [46].

Supporting Information

Figure S1 Relative proportions of novel and recognised variants

in the two samples. Recognised variants were defined by their

presence in dbSNP. Data are shown by allele frequency (y axis) for

(a) TUK1 dataset and (b) TUK2 dataset.

(TIF)

Figure S2 Relative frequencies of novel rare variants detected,

by pain sensitivity. The frequency distribution of nonsynonymous

rare variants (MAF- minor allele frequency ,5%) for the most

significantly associated 32 genes identified, by pain sensitivity: pain

insensitive (red bars) and pain sensitive (green bars). Pain

insensitive individuals harboured more rare variants than the

pain sensitive: pain sensitive variant counts were 0.51 (95% CI:

0.272–0.962) that of the insensitive. As such a finding could result

from a few one-sided genes we also adjusted for variant excess

differing by gene. There remained a small excess of variants in

pain insensitive individuals across all genes, p = 0.033. Seventeen

genes had at least 10% difference in rare variant counts

(MAF,0.05) between the sensitive and insensitive subjects. Of

these 17 genes, 14 had excess insensitive subjects, while only 3 had

the excess sensitive subjects (p = 0.0127 for 2-sided t-test).

(TIF)

Table S1 Details of exome sequencing. Descriptive statistics for

variants identified in exome sequencing of TUK1 and TUK2

sample sets. The values were generated from filtered variants for

all samples which passed QC.

(DOCX)

Table S2 Relationship between the 21 rare variants analysis

methods used in the TUK1. Heat Map or correlation matrix of

the 2log10 p values (pval) for each pair of 21 methods run in

TUK1. Higher correlations are colored red, lower correlations are

colored blue. The 6 tests selected for use in the study are marked

by italics and underlined. The full set of 21 analytical methods are

as follows: KBAT represents kernel based association test;

AMELIA, Allele Matching Empirical Locus-specific Integrated

Association; ARIEL, Accumulation of Rare variants Integrated

and Extended Locus-specific test; CCRaVAT, Case-Control Rare

Variant Analysis Tool; FishExc, Fisher’s exact test; pval maf 0.01,

p value of fixed threshold test with minor allele frequency ,0.01;

MB, Madsen and Browning weighted approach; VT, variable

threshold; pphen, Polyphen; SSU, sum of squared test; aSum

permuted, Han and Pan’s aSum test permuted; aSum, Han and

Pan’s aSum test.

(DOCX)

Text S1 Further details are provided regarding the subjects and

their selection, the quantitative sensory testing, and rare variant

analysis.

(DOCX)
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