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Prediction of drug‑drug interaction 
events using graph neural networks 
based feature extraction
Mohammad Hussain Al‑Rabeah & Amir Lakizadeh*

The prevalence of multi_drug therapies has been increasing in recent years, particularly among 
the elderly who are suffering from several diseases. However, unexpected Drug_Drug interaction 
(DDI) can cause adverse reactions or critical toxicity, which puts patients in danger. As the need for 
multi_drug treatment increases, it’s becoming increasingly necessary to discover DDIs. Nevertheless, 
DDIs detection in an extensive number of drug pairs, both in‑vitro and in‑vivo, is costly and laborious. 
Therefore, DDI identification is one of the most concerns in drug‑related researches. In this paper, 
we propose GNN‑DDI, a deep learning‑based method for predicting DDI‑associated events in two 
stages. In the first stage, we collect the drugs information from different sources and then integrate 
them through the formation of an attributed heterogeneous network and generate a drug embedding 
vector based on different drug interaction types and drug attributes. In the second stage, we 
aggregate the representation vectors then predictions of the DDIs and their events are performed 
through a deep multi‑model framework. Various evaluation results show that the proposed method 
can outperform state‑of‑the methods in the prediction of drug‑drug interaction‑associated events. 
The experimental results indicate that producing the drug’s representations based on different 
drug interaction types and attributes is efficient and effective and can better show the intrinsic 
characteristics of a drug.

Recently, it became so popular to cure difficult diseases such as cancer using drug mixes or so-called Polyphar-
macy. It is a good approach, especially among the elderly who suffer from several diseases, using the synergistic 
effects of drug interactions. However, unplanned DDIs could risk a patient’s life because they may cause side 
effects or perhaps dangerous toxicity. As the need for multidrug therapy increases, the detection of DDI becomes 
much more  necessary1,2. However, the diagnosis of DDI on a large number of drug pairs, both in vitro and 
in vivo, is costly and time-consuming3. Therefore, detecting DDIs is one of the main concerns in pharmaceutical 
 research4. Detecting possible DDIs decreases the incidence of unexpected drug interactions and reduces drug 
production costs. It also can optimize the drug creation process. Therefore, the research of DDIs and adverse drug 
reactions (ADRs) is necessary for drug production and clinical applications, specifically for concomitant  drugs5.

The explosive growth of large-scale and high-precision biological data has led to the formation of a research 
field called computational pharmacology. This data creates the opportunity for systematic analysis of various 
data. Analyzing this data can be useful to improve drug development and reduce the risk. The interactions are 
very popular in biological processes as bonds within a chemical compound. Therefore, networks are usually 
used to represent biological data. The emergence of this biological network requires new computational tools 
for  analysis6. Thus, new studies have tried to address this shortcoming.

Recently, a large number of researchers in the graphical data structure field has led to a high level of promo-
tion of graphical data structure analysis techniques. Indeed, there is a lot of attention on deep learning and its 
applications in this field. However, many researchers have presented a method for computing the weighted aver-
age for node neighbor information based on neural network processing methods. These graphic data structure 
processing models, using neural networks, are known as Graph Neural Networks (GNNs)7. This method extended 
the current neural network for processing graphical data structures.

In general, there are four popular approaches in the DDI prediction field: Similarity-based methods, Matrix 
Factorization-based methods, network analysis-based methods and Deep Learning-based methods. Similar-
ity-based methods are based on the similarities between drugs and proteins, or drugs and diseases, and vice 
versa. They employ a classical classification model, such as SVMs, regular least squares, logistic regression, and 
random-forest to complete the prediction  task8. Gottlieb et al.9 calculated feature vectors based on seven types 
of drug-drug similarities to represent drug-drug pairs and then used a weighted logistic regression model to 
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predict DDI. Cheng et al.10 combined a variety of drug-drug similarities to represent drug-drug pairs and utilized 
five classifiers to construct the prediction models. Dang et al.11 adopt a machine learning model to predict DDI 
types for histamine antagonist drugs using two similarity matrices as inputs. Then employ various classification 
algorithms such as Naive Bayes, Decision Tree, Random Forest, Logistic Regression, and XGBoost for DDIs 
prediction. Song et al.12developed a machine learning model using support vector machines (SVMs) based on 
several similarity matrices and then employed them as the input vector of the SVM.

Matrix Factorization is extensively used for data analysis. It factorizes the data matrix into a matrix with a 
smaller dimension. Then rebuild the adjacency matrix to determine DDIs. Yet, it maintains the complex struc-
ture and latent topological properties. Common Matrix Factorization has many forms, like (SVD) and graph 
factorization. Zhang et al.13 propose a matrix factorization method called (MRMF) which uses known DDIs and 
drug feature-based manifold to predict possible drug-drug interactions. Shi et al.14 develop a matrix factorization 
method named (BRSNMF) to divide drugs into communities and identify enhancive and degressive DDIs in 
the cold-start scenario. Rohani et al.15 collects several drug similarities and then utilized Integrated Similarity-
constrained matrix factorization to identify DDIs. However, modern studies concentrate on developing different 
high-order data proximity matrices to maintain graph structure. For example,  GraRep16 adopts the network 
high-order proximity and makes factorization by building k-step transition probability matrices.

Network-based methods employ network structure to construct relationships among biological and biomedi-
cal entities for predicting potential  interactions8. Random walk-based methods are a famous approach in this 
field. These methods employ random walks in the networks to construct a node sequence. Then the method 
learns node embeddings using the word2vec model. One of the earliest models is  DeepWalk17, which executes 
trimmed random walks on a network. Next,18 struc2vec is proposed for more acceptable modeling of the net-
work structure. Especially, struct2vec can describe multi-layer weighted graph constructs. Lee et al.19 build a 
heterogeneous biological network using a combination of several databases and interaction data. Then adopted 
a method to calculate the relation strength between two drugs and discover paths of drug-drug pairs. Huang 
et al.20 suggested a metric that calculates the relations strength of the network called ’S-score’ to find possible 
PD DDIs. Lee et al.21 produce a global graph by employing a random walk with a restart algorithm and using 
the global information for prediction.

Deep learning is a recently popular branch of artificial neural networks that learns a sequential representation 
layer of features during the learning process. This approach is used in many fields effectively such as computer 
vision, NLP, and  bioinformatics8. Many Types of neural networks were established in the graph embeddings 
area, such as  autoencoder22,  MLP23, and  GAN24. Embedding network-based data is modeling a set of entities 
(nodes) and their links (edges). DeepWalk is the first model of processing graphical data using a deep learn-
ing approach. Many algorithms proposed motived by DeepWalk like node2vec and Metapath2vec. Also, there 
is recent progress in deep learning-based drug repositioning such as  HINGRL25,  MGRL26  and27. Lately, a lot 
of studies in the field of graphical data structure have been extremely advanced for processing network data 
 structure28. Several researchers have developed a neural network method for computing a weighted average of 
information for each node’s neighbor. These methods that employ neural networks for computing graphical data 
structure are generally known as Graph Neural Networks (GNNs). The GNN concept was initially introduced 
in  20097 which expanded the current neural network for computing graphical structure data. Several GNN 
methods for graphical data structure were proposed, containing Graph Auto-encoders (GAEs)29,30, Graph Con-
volutional Neural Networks (GCNs)17,18, and Graph Recurrent Neural Networks (Graph RNNs)23,31. Moreover, 
deep learning-based methods have been commonly used in the biomedical  area32,33 and have earned very good 
results. Karim et al.5 built a knowledge graph from several databases and used knowledge graph embedding to 
generate a drugs feature vector. Then employs a CNN-LSTM model for DDI prediction. Feng et al.3 proposed 
a technique called DPDDI to predict DDIs by collecting the drug’s features from the DDI network with GCNs. 
Then uses the deep neural network model for prediction. Liu et al.34 present a framework named DDI-MDAE 
supported by multi-modal deep auto-encoders using shared latent representation to identify DDIs. Lin et al.35 
present an end-to-end framework, called KGNN. This framework can effectively extract the drugs and their 
potential neighbors.

Normally, current methods are developed to predict whether drugs interact or not. However, DDIs may show 
different biological effects or events. Predicting DDI-associated events is an important and difficult task, and has 
acquired some  attention36. Ryu et al.37 presented a deep learning approach based on drug chemical substruc-
tures to predict 86 crucial DDI types. Feng et al.38 proposed a novel end-to-end deep learning-based predictive 
method called MTDDI to predict DDIs as well as their types. Deng et al.4 presented a multimodal deep learning 
framework that employed multiple drug features to predict 65 categories of DDI events. Even though the above 
methods have created strong efforts in event prediction but there is a space for advancement.

The DDI network can provide vital information about drugs interactions. Furthermore, using an attributed 
heterogeneous DDIs network that presents the drug’s interaction types along with the drug features can better 
demonstrate the intrinsic characteristics of a drug. However, it is challenging to integrate various features effec-
tively because the drug features might be correlated and contain redundant information. Directly combining 
various feature vectors is a common strategy, but we need a more effective framework for aggregating the features.

Here, we proposed a method for predicting DDI and their type (event) based on attributed heterogeneous 
graph embedding and a deep learning approach. The method consists of two stages. In the first stage, the data 
is collected and used to make four feature matrices (Chemical structure, Target, Enzyme, and Pathway) and 
one drug-drug matrix. Then the drug-drug matrix is used to build a heterogeneous network of drugs as nodes. 
The feature matrices after preprocessing are used in the network as node attributes. In this approach, we use 
the attributed heterogeneous network representation technique to integrate different drug properties in each 
type of drugs interactions and creates drug embedding vectors. The second step begins with the preparation of 
the embedding vector for each drug obtained from the previous step. Using one of the concatenation methods 
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the feature victor of the drug pairs is obtained. Finally, a fully connected neural network uses these embedding 
vectors as input to predict the drug interaction types.

The proposed method is summarized in the following steps:
Step 1: Integrating data sources and extracting embedding vectors (final feature vectors):

• Gathering drug data and calculating similarity matrices for each drug feature.
• Building an attributed heterogeneous graph as an Integration graph.
• Calculating drug embedding matrices by embedding an attributed heterogeneous graph using a new GNN 

model.

Step 2: Predicting Drug–Drug Interactions (DDI) types:

• Reducing the dimensions of the matrix obtained from the previous step in the embedding process by merging 
the drug embedding vectors for each interaction type.

• Creating matrices of drug pairs by Integrating the embedding vectors of each drug pairs.
• Finally, the above vectors are given as input to a deep learning network to predict the type of drugs interac-

tion.

Experiments and results
Evaluation metrics. There are two main tasks in DDI prediction, first is identifying the interactions among 
the drugs. The second is to determine what kind of interaction is between drugs. In this article, we employ k-fold 
cross-validation to evaluate the DDI prediction task. We randomly split the known drug-drug interactions into 
K subsets of equal size. Here we use fivefold (5-CV). In each fold, we use one subset as the testing set and keep 
the rest for training.

Here, we utilize different evaluation metrics to measure the prediction model performances. Our task is the 
multi-class classification work. We use accuracy (ACC), Area Under the Precision-Recall-Curve (AUPR), area 
under the ROC curve (AUC), F1 score and Precision and Recall as the evaluation metrics. We use micro metrics 
for AUPR and AUC and macro metrics for the others. The micro-scale studies the classes individually, but the 
macro-scale interacts with the sum or the whole, so the calculation is general. The difference between macro and 
micro scales is that the macro scale weighs all classes equally, while the micro-scale weighs each sample equally. 
If the number of samples is equal for each class, the micro and macro scales will have the same score. Here in 
this multi-class problem, micro-Precision, micro-Recall and micro-F1 are equal to accuracy.

Parameter setting. In this section, we discuss the effect of using different values for hyperparameters that 
influences the performance of the proposed model. The model consists of two stages. Therefore, we discuss 
embedding dimensions in the first stage and vector integration methods in the second stage.

Effect of embedding dimension size. Here, we evaluate the model performance using different sizes for embed-
ding dimensions of the drugs. Figure 1 shows the performance of using different values for embedding dimen-
sions. We found that the model with a vector size of 32 led to the best accuracy, which is probably due to the 
better representation of drugs. The embedding dimension with size 16 also shows good performance and is less 
time-consuming. Nevertheless, it achieves lower accuracy.

The effect of different integrating schema in terms of the model’s accuracy. In this section, we discuss the effect 
of using different integration schemas of drug vectors. Integrating various features effectively is a difficult task 
because the drug features might be correlated and redundant. However, directly merging diverse feature vec-
tors is a familiar strategy, but we need a more effective framework for aggregating the features. We test several 
aggregation schemas and choose the best one for the task. According to Table 1. the integration schema (a) shows 
better performance and achieves the best accuracy. This schema combines each drug embedding vector in all 
event types (interaction types) using (np.concatenate) as explained in the Eq. (1).

Figure 1.  The effect of different values for embedding dimension in terms of model’s accuracy.
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where the embedding vector v in certain edge type t  for certain drug i is vi,t and the one-dimensional feature 
vector for drug i is Fi . Then multiplies two vectors of drugs pair ( Fi and Fj ) using (np.multiply) as shown in the 
Eq. (2). Where the feature vectors of the drugs pair are Fi,j . This schema led to the best accuracy. However, the 
integration schema (b) performs well but it consumes a lot of storage space and time and achieves less accuracy 
than (a). The integration method (b) uses the same way of combining each drug embedding vector in all event 
types using (np.concatenate). But then it uses (np.concatenate) again to merge the vectors of drugs pair as 
shown in the Eq. (3). The integration method (d) achieves the second-best accuracy after (a) but it is also time-
consuming. Finally, Table 1. and Fig. 2 shows the effect of using different integrating approaches in term of the 
model’s accuracy. Figure 3 shows an overview of integration methods.

The effect of using different drug features. We examined the proposed method in several cases based 
on using different drug features as input to make a more accurate evaluation. First, we implemented the pro-
posed method on each feature matrix (similarity  matrices) separately. Then, we implemented the proposed 
method on a combination of feature matrices. Table 2 shows the results for using the feature matrices in different 
ways, as well as the results for all feature matrices combinations. We refer to the embedding of drugs interactions 
network with GD, and to the Enzyme, Target, Chemical structures and Pathways with E, T, S, and P respectively.

The combination of different feature matrices has led to better results. The model performance using GNN 
models shows the efficiency in extracting and summarizing the drug’s features from the network structure. 
Furthermore, using the embedding of drug interactions network alongside the features matrices show better 
performance for the model and the best result in AUC and AUPR values. The model using the enzyme matrix 
shows the lowest accuracy. While the Chemical Structure matrix has the highest accuracy in the individual 

(1)Fi =
[

vi,1, . . . , vi,t
]

(2)Fi,j = Fi ⊙ Fj

(3)Fi,j =
[

Fi , Fj
]

Table 1.  The effect of different integrating schema in term of model’s accuracy.

Integration method Integration Description Accuracy

(a)
This method combines each drug embedding vector in all event types using (np.concatenate) as 
explained in the Eq. (1). Then multiplies two vectors of drugs pair using (np.multiply) as shown in the 
Eq. (2)

0.9206

(b) This method combines each drug embedding vector in all event types using (np.concatenate). Then it 
merges the vectors of drugs pair using (np.concatenate) as shown in the Eq. (3) 0.9072

(c)
This method combines each drug embedding vector in all event types using (np.concatenate). Then the 
multiplication of the vectors of the drug pairs was performed using the multiplication method used in 
the  article39

0.7386

(d)
This method combines each drug embedding vector in all event types using (np.concatenate). Then 
multiplies two vectors of drugs pair using (keras.layers.Multiply) during training as explained in the 
Eq. (2)

0.9159

(e)

Each two-dimensional embedding matrix of the drugs pair is given as an input to a neural network to 
make predictions. This neural network takes two two-dimensional matrices as input and produces one 
output. The model processes each matrix through several layers of conv1D and LSTM. Then the model 
uses the layer (keras.layers.Multiply) to multiply the output of the two LSTM layers. Then it passes the 
result through a series of (keras.layers. Dense) layers to make the prediction

0.8282

Figure 2.  The effect of using different integrating schema in term of model’s accuracy.
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Figure 3.  An overview of integration methods.

Table 2.  Effect of using different data sources in terms of evaluation measures. Significant values are in bold.

Dataset Accuracy AUPR AUC F1 score Precision Recall

S 0.8623 0.9136 0.9975 0.7324 0.7831 0.7006

T 0.8338 0.8979 0.9969 0.7084 0.7579 0.6788

P 0.8182 0.8876 0.9972 0.6875 0.7611 0.6495

E 0.6687 0.7384 0.9913 0.4105 0.4943 0.3714

S + T 0.8806 0.9192 0.9981 0.7625 0.8231 0.7283

S + P 0.8786 0.9188 0.9981 0.7611 0.8326 0.7223

S + E 0.8655 0.8939 0.9970 0.7263 0.8324 0.6821

T + P 0.8344 0.9004 0.9976 0.7012 0.7781 0.6660

T + E 0.8506 0.8860 0.9970 0.6974 0.7770 0.6564

P + E 0.8423 0.8809 0.9968 0.6664 0.7344 0.6279

S + T + P 0.8625 0.9202 0.9982 0.7330 0.7941 0.6950

S + T + E 0.8852 0.9208 0.9979 0.7585 0.8471 0.7182

S + P + E 0.8778 0.9153 0.9978 0.7321 0.8134 0.6905

T + P + E 0.8488 0.8956 0.9974 0.6967 0.7608 0.6591

S + T + P + E 0.8725 0.9178 0.9979 0.7361 0.8348 0.6938

GD 0.8894 0.9517 0.9987 0.7859 0.8803 0.7500

GD + E 0.8169 0.8912 0.9971 0.7668 0.8106 0.7544

GD + P 0.8443 0.9152 0.9978 0.8045 0.8811 0.7671

GD + S 0.8279 0.9017 0.9974 0.7053 0.8378 0.6453

GD + T 0.8605 0.9276 0.9980 0.7681 0.8589 0.7317

GD + E + P 0.8735 0.9403 0.9987 0.8116 0.8998 0.7672

GD + E + S 0.8692 0.9297 0.9983 0.8062 0.9084 0.7592

GD + E + T 0.8662 0.9340 0.9985 0.8071 0.8967 0.7754

GD + P + S 0.8833 0.9426 0.9987 0.7936 0.8994 0.7480

GD + P + T 0.8921 0.9498 0.9988 0.8341 0.9179 0.7963

GD + S + T 0.8863 0.9420 0.9986 0.7980 0.9146 0.7514

GD + E + P + S 0.9035 0.9584 0.9991 0.8359 0.9432 0.7833

GD + E + P + T 0.8982 0.9529 0.9990 0.8453 0.9049 0.8204

GD + E + S + T 0.9035 0.9582 0.9991 0.8428 0.9389 0.7958

GD + P + S + T 0.9067 0.9578 0.9991 0.8331 0.9307 0.7874

GD + E + P + S + T 0.9206 0.9717 0.9993 0.8579 0.9204 0.8260
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evaluation of each matrix, which appears to be a more informative and good effect on explaining the interaction. 
In general, using drug network embedding alone shows significant improvement in accuracy. It is probably due 
to the presence of topological information in this network structure that led to better modeling of the drug’s 
interaction. However, using the feature matrices as node attribute improves the model performance because of 
the information that these features add to the model. Figure 4 shows the integration of different feature matrices 
improved the accuracy. Also, using drugs network embedding along with the feature matrices as node attributes 
achieved the best result.

Comparison with the other methods. We compared the proposed model with several state-of-the-art 
event prediction methods: DDIMDL, CNN-DDI, DANN-DDI and MDNN. We also consider many popular 
classification methods, i.e. random forest (RF), K-Nearest Neighbor (KNN) and Logistic Regression (LR). We 
compare the proposed model with these models to explain the advantages of utilizing the attributed heteroge-
neous network embedding method using drug features and the DDI edge list. Further, to show the impact of 
efficient aggregation schema. The DDIMDL model uses four similarity matrices of drug features as input. This 
model adopts four sub-network to learn cross-modality representations of drug-drug pairs. The DANN-DDI 
model after constructing multiple drug feature networks adopts an attention neural network to aggregate the 
learned drug representations and predict drug-drug interactions. We implement DANN-DDI according to the 
descriptions  in39. CNN-DDI model first gathers the feature vectors from interaction matrices and calculates 
drug similarity. Then, it uses the features representation as input for the convolution neural network model to 
identify DDIs. We perform the CNN-DDI model based on the descriptions  in40. The MDNN model develops a 
two-pathway framework. The framework includes a drug knowledge graph (DKG) based pathway and a heter-
ogenous feature (HF) based pathway to produce drug multimodal representations. Next, the model employs a 
multimodal fusion neural layer to predict DDI events. We implement MDNN according to the descriptions  in41.

We use Table 3 to list all the prediction model’s results. Figure 5 shows the performance of different models. 
The results show that the proposed model outperforms all of the comparison models in all metrics. The proposed 
model can overcome the imbalance challenge in the dataset and achieve the best AUPR score for the DDI event 
prediction task. Due to the imbalance in the dataset, the other models easily overfit. This shows the advantage 
of using the attributed heterogeneous network embedding method because the model extracts the drug rep-
resentation in all different interaction types which can better describe the intrinsic characteristics of a drug. 
Furthermore, the proposed model tests several aggregation schemas and applies the best one for aggregating 

Figure 4.  Effect of using different feature matrices in terms of evaluation measures.

Table 3.  Results of comparison of the proposed method with the previous methods. Significant values are in 
bold.

Method Accuracy AUPR AUC F1 score Precision Recall

GNN_DDI 0.9206 0.9717 0.9992 0.8579 0.9204 0.8259

MDNN 0.9175 0.9668 0.9984 0.8301 0.8622 0.8202

CNN-DDI 0.8871 0.9251 0.998 0.7496 0.8556 0.722

DANN_DDI 0.8874 0.9088 0.9943 0.7781 0.8485 0.7421

DDIMDL 0.8852 0.9208 0.9976 0.7585 0.8471 0.7182

DeepDDI 0.8371 0.8899 0.9961 0.6848 0.7275 0.6611

DNN 0.8797 0.9134 0.9963 0.7223 0.8047 0.7027

RF 0.7775 0.8349 0.9956 0.5936 0.7893 0.5161

KNN 0.7214 0.7716 0.9813 0.4831 0.7174 0.4081

LR 0.792 0.84 0.996 0.5948 0.7437 0.5236
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the features. Then, the model uses the joint sub-networks framework to combine the feature vectors of the drugs 
and predict the DDI events. The proposed model improved the prediction process based on AUC, AUPR and 
F1_score metrics and achieved 0.9992, 0.9717 and 0.8579, respectively. The model results during five folds show 
minimum accuracy of 0.9196 and average accuracy of 0.9211 and maximum accuracy of 0.9220. The results of 
the model in five folds are shown in Table 4.

Figure 6 shows the efficiency of the proposed method in predicting different interactions type between drugs 
independently. Here we use the word event to address the interaction type between drugs. The model achieved 
good AUC and F1 scores in predicting most drug events. Except the event 39, which is wrongly classified as 
event 1. It may be because both events are related to drug metabolism. Also, the model for drug events from 51 
to 65 achieved low metric scores in AUC and F1 scores, and it is due to the lack of samples. It has already been 
pointed out that the data is unbalanced, which is a big challenge and a regular problem in biological data. But 
the proposed method was able to deal with this imbalance in data.

Figure 5.  Comparison results of the proposed method with the other methods.

Table 4.  The results of the proposed model in five folds (5 CV).

Metric min max ave

Accuracy 0.9196 0.9220 0.9211

AUPR 0.9705 0.9717 0.9713

AUC 0.9991 0.9992 0.9992

F1_Score 0.8507 0.8606 0.8556

Precision 0.9113 0.9211 0.9180

Recall 0.8203 0.8349 0.8254

Figure 6.  Results of the proposed method for detecting different events.
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Conclusion
In this study, we construct a drug-drug heterogeneous network and several similarity matrices, such as drug-
target, drug–chemical structure, etc. We use this network and the matrices in form of an attributed heterogeneous 
network to extract the drug feature vector using a GNN embedding method. The proposed model uses the drug 
network structure with the nodes attribute to generate drug embedding. Then, the proposed model integrates 
the drug feature vectors and finally adopts a fully connected sub-networks framework to predict the Drug-Drug 
Interaction type. We explain the dataset and evaluation metrics and discuss the results and evaluations of the 
proposed model. We apply five-fold cross-validation to the proposed model for evaluation. The model achieved 
0.9220 as max accuracy and 0.9211 as average accuracy. The proposed model outperforms the existing DDI event 
prediction method. Also, we implement the model on each similarity matrix separately. Then we implement 
it on a combination of similarity matrices and report the results of predicting drug events. Further, we discuss 
the influence of using different hyperparameters in the model performance. We discuss utilizing various drug 
embedding dimensions and methods of integrating drug embedding vectors.

In conclusion, employing the attributed heterogeneous network embedding method can provide better drug 
representation in different drug interaction types and lead to better model performance. Also, using an effec-
tive aggregation schema and implementing a fully connected sub-networks framework can provide a powerful 
method to integrate various drug features. Furthermore, the experimental results indicate that this model out-
performs the existing approaches. We can use the PU Learning strategy for future work to enhance the network 
positive samples by classifying the unlabeled data. Also, we can use a new approach to consider new drugs in 
the DDI event prediction process.

Materials and methods
In this work, we propose a framework of two stages that combines several drug features to predict DDI-associated 
events, using attributed heterogeneous networks representation and aggregation schema with multiple deep 
neural networks. Firstly, it generates drug embedding from attributed heterogeneous networks using a GNN 
model. Next, it aggregates the feature vectors and uses multiple deep neural networks for DDI event prediction.

Data collection. The data used in this research is derived from the study of Deng et al.4. Researchers in this 
study obtained and cleaned the required data from reputable databases such as  DrugBank42 and  KEGG43. This 
dataset includes four types of property or feature matrices for drugs: Chemical structure, Target, Enzyme, and 
Pathway. We obtained the pathway matrix from DrugBank and KEGG databases. But the rest of the matrices 
were collected from the DrugBank database. Each column in the features matrices represents the drugs. The 
rows represent specific drug properties (For example, the number of Enzyme types). The values of one and zero 
for each entity indicate the presence/absence of a specific property, respectively (for example, a certain enzyme 
for a particular drug).

The dataset provides a drug-drug edge list that includes 65 types of drug-drug relationships. The drug rela-
tionship refers to drug interactions. This database displayed drug interaction events as a quadruple structure: 
(drug A, drug B, mechanism, action). "Mechanism" means the effect of drugs in terms of metabolism, therapeutic 
effect, etc. "Action" indicates an increase or decrease in the effects. We employ the first two sections as an edge 
list of drug interactions and the second two sections as an interaction type or so-called event. The distribution 
of these events is not even, so the data is unbalanced. Figure 7 shows the distribution of the samples between 
events in the dataset. Therefore, the model under-fits simply in training, which is one of the main difficulties in 
this dataset. We use the edge list of DDI and one of the feature matrices to construct an Attributed Heterogene-
ous Graph. In this graph, the nodes refer to drugs and the links between them indicate 65 types of interactions. 
Table 5 shows a summary of these matrices.

The first step of the proposed method. In the first stage of this approach, after preparing the attributed 
heterogeneous graph of drugs and feature matrices, we start the embedding process for each drug in each event 
type. At the end of this process, we will have an embedding matrix. In this matrix, each vector represents the 
embedding of that drug in a particular event type. Figure 8 shows a view of the first step of the method. Next, we 
discussed the details of each step in this phase.

Collect data and construct similarity matrices. Firstly, we collect five adjacency matrices from the information 
sources. A drug-drug matrix shows the interaction between two drugs and their event type. The feature matrices 
(drug-enzyme, drug-target, Drug–Chemical structure and drug-pathway) indicate the relationship between the 

Figure 7.  The difference in the number of samples between events.
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drug and a particular feature. Then, after obtaining the matrices, we start constructing similarity matrices from 
the adjacency matrices of the properties.

We use the Jacquard similarity function to calculate the similarity matrix for each adjacency matrix. The 
Jacquard function is expressed in the following equation:

Considering two-feature vectors A and B, where each one contains n elements with values 0 or 1.

• M11 means the number of entities that is 1 in both vectors A and B.
• M01 means the number of entities that is 0 in vector A and 1 in B.
• M10 means the number of entities that is 1 in A and 0 in B.

The Jaccard function for each pair of drugs receives the binary vector of the features of the drugs. Then 
calculate their similarity using the above formula. For example, to calculate the similarity of two drugs, di and 
dj , based on the feature of the target proteins. The row i and the row j of the feature matrix are given as input to 
the Jaccard function.

(4)J(A,B) =
M11

M01 +M10 +M11

Table 5.  Types of properties in the dataset.

Type of data

Drugs 572

Drug-Drug links 37,269

Target 1162

Enzyme 202

Chemical structure 881

Drug Pathway 957

Figure 8.  A view of the first step of the proposed method.
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Constructing a heterogeneous network for integrating the data resources. In this stage, we construct an attrib-
uted heterogeneous network from the drug_drug edge list. The drug_drug edge list shows interactions between 
the drugs in the list and specifies the type of relationship. This network has many different edge types. In this 
network, the nodes refer to drugs and the attributes of the nodes refer to the drug’s features. For example, if we 
consider the drug_pathway similarity matrix as a node attribute, then each vector in this matrix is considered as 
a node attribute for the corresponding drug. To generate drug representation, we use the attributed heterogene-
ous network with one of the similarity matrixes as a node attribute in each step. As a result, we will have four 
networks. The representation vectors are made using network structure and node feature vectors in the embed-
ding process. The embedding process will generate four embeddings’ matrices for each drug for all interaction 
types. Each matrix has three dimensions indicating the nodes number, the embedding size and the number of 
edge types.

Extracting drugs embedding vectors. In the concept of the neural network, extracting a low-dimensional vector 
for input entities based on their initial features is called embedding. There are several ways to generate graph 
embedding. In the proposed approach, we introduce a GNN-based model for learning Attributed Heterogene-
ous networks to extract the low-dimensional representation of nodes in the network.

In this approach, we adopt an algorithm based on the recent  research44 to learn the embedding of the attrib-
uted heterogeneous network. The proposed algorithm can derive the latent topological properties of the network 
structure along with the node’s attributes. It generates the embedding of every node vi on each edge type r in two 
parts: base embedding and edge embedding. The model uses the node’s attributes and network structure in the 
transformation function to generate base embedding and edge embedding.

The model takes the heterogeneous network and the node’s attributes as input. Then the process starts by 
generating training samples in each edge type using the Random Walk diffusion method. The model creates node 
sequences using Random Walk and then performs Skip-gram over node sequences to learn embeddings. The 
model updates to achieve the overall embedding for each node in each edge type. Figure 9 shows an overview 
of this stage.

Suppose that we have n drugs and r edge type; the drugs embedding using Enzyme similarity matrix as node 
attributes is {{Eei }r}n . The other matrices are {{Eti }r}n, {{E

p
i }

r}n, {{Esi }
r}n using Target, Pathway and Chemical struc-

ture similarity matrices as node attributes respectively. Generally, the embedding process generates four embed-
ding matrices made from the drug-drug interactions network and four similarity matrices of drug features. Each 
matrix has three dimensions indicating the nodes number, the embedding size and the number of edge types.

The second step of the proposed method. After creating the embedding matrices for drugs, we use 
a concatenation (aggregation) method to reduce the embedding matrices’ dimensions into a one-dimensional 
feature vector. In a multi fully connected deep learning model, this feature vector is used as an input to predict 
the DDI types. Figure 10 shows an overview of this process.

Dimensions reduction of the embedding matrix. After generating the network embedding matrix, each drug 
is represented by a two-dimensional matrix. This matrix contains the node (Drug) embedding vectors in each 
edge type (Interaction type). We use a concatenation method for each drug matrix to merge the drug embedding 
vectors together. The generated one-dimensional vector represents the embedding vector of the drug i in all edge 
types. Then, we obtain a feature vector for each drug pair in the DDI list by multiplying the feature vectors of 
drug i and drug j of the drug pair.

If the embedding matrix of drug i is Mi and the vector v in certain edge type t  is vi,t then the one-dimensional 
feature vector Fi for drug i is Fi =

[

vi,1, . . . , vi,t
]

 , and the feature vectors of the drugs pair k is Fk = Fi ⊙ Fj , where 
⊙ is the element-wise product.

DDI prediction by a fully connected deep learning network. After producing the four matrices of 
feature(embedding) vectors in the first step, the fully connected deep learning network is used to perform the 

Figure 9.  An overview of the embedding model.
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prediction task. As shown in Fig. 10, the designed model for the second step consists of four sub-networks. 
Motivated by the bottleneck-like neural network  idea45, each sub-network uses one of four matrices of the drug’s 
feature vector as input. The result of these sub-networks is aggregated to achieve the final result. We use several 
hidden layers in the networks and batch normalization  layers46 between them. Then a softmax layer is employed 
for prediction in these sub-networks. Finally, to enhance generalization ability and avoid over-fitting, we add 
dropout layers to the  networks47. We adopt (ReLU)48 as an activation function in the networks. Here, the outputs 
of the sub-networks are merged by calculating the average and producing the final prediction.

We choose the cross-entropy loss function and utilize the Adam optimizer with the default parameters for the 
optimization algorithm. To control over-fitting while speeding up the training process, we use the early-stopping 
 approach49. With this approach, if no improvement is observed in 10 epochs, the training automatically stops.

Data availability
The datasets and codes using in this study are available in https:// github. com/ Moham mad- Hussa in95/ GNN_ DDI.
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