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Transcranial direct current stimulation (tDCS) can noninvasively induce brain plasticity, and it is potentially useful to treat patients
affected by neurological conditions. However, little is known about tDCS effects on resting-state brain networks, which are largely
involved in brain physiological functions and in diseases. In this randomized, sham-controlled, double-blind study on healthy
subjects, we have assessed the effect of bilateral tDCS applied over the sensorimotor cortices on brain and network activity using
a whole-head magnetoencephalography system. Bilateral tDCS, with the cathode (−) centered over C4 and the anode (+)
centered over C3, reshapes brain networks in a nonfocal fashion. Compared to sham stimulation, tDCS reduces left frontal
alpha, beta, and gamma power and increases global connectivity, especially in delta, alpha, beta, and gamma frequencies. The
increase of connectivity is consistent across bands and widespread. These results shed new light on the effects of tDCS and may
be of help in personalizing treatments in neurological disorders.

1. Introduction

Transcranial direct current stimulation (tDCS) is a noninva-
sive neurostimulation technique capable of modulating brain
excitability and inducing plastic phenomena outlasting the
duration of the stimulation itself [1–3].

tDCS consists in the application of a weak homogeneous
direct current over the scalp using two electrodes of different
polarity (anode and cathode) connected to a stimulator,
decreasing the cortical excitability under the cathode and
increasing it under the anode [4]. Because of its ease of use,
limited side effects, and low cost [5], tDCS has become very
popular in the recent years and has been applied in a number
of different frameworks, ranging from cognitive and social
neuroscience [6] to clinical research [7]. tDCS application is
now explored as a promising tool for the treatment of drug-
resistant epilepsy [8] and, together with physical therapy, to

boost brain plasticity and possibly to improve the outcome
of disabled stroke patients [9–11].

As it happens for other noninvasive brain stimulation
techniques, the mechanism by which tDCS is supposed to
work is mainly related to the long-lasting changes of brain
excitability [2, 12, 13]. However, change of excitability is
disclosing only one aspect of tDCS effects, which surely
involve modulation of neurotransmission [14], of brain
activity [15], and of metabolism [16–18].

Despite the efficacy of both noninvasive and invasive
brain stimulations in treating multiple neurological and psy-
chiatric conditions being strictly dependent on their effects
on resting-state brain networks [19], very little is known so
far on tDCS effects on brain activity and connectivity.

In this study, we focused on the effects of tDCS on
resting-state brain networks as assessed by magnetoencepha-
lography (MEG). MEG is a noninvasive technique measuring
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cortical magnetic activity with high temporal and spatial
resolution [20–24]. Compared to other techniques such as
EEG, MEG also owns the unique advantage of detecting
signals without the application of electrodes on the scalp,
thus allowing to place and to activate/deactivate tDCS with-
out significant interference with the acquisition process.

We designed a sham-controlled, double-blind study
where healthy subjects were scanned immediately before
and after a 20-minute session of bihemispheric tDCS to
investigate the effects of tDCS on the architecture of brain
networks. Since both cathode and anode are active in produc-
ing cortical effects, the bihemispheric montage tested in this
study exploits mechanisms of interhemispheric interaction
to enhance the biological effects of tDCS [8, 9].

2. Materials and Methods

2.1. Participants and Experimental Design. We recruited 15
healthy subjects (mean age=28.8± 3 (2 SE); 12 F) to partici-
pate in a randomized, sham-controlled, double-blind tDCS
study (Figure 1). Each participant underwent two sessions
of bihemispheric tDCS stimulation (sham and real). The
two sessions were at least 20 h far apart. Before and after each
tDCS session, we measured resting-state MEG data for about
5 minutes. All the subjects were right-handed as assessed by
the Oldfield’s Edinburgh inventory (91.13± 6.8) [25] and
were free from medications. The fluctuations of vigilance
were controlled by means of the Stanford Sleepiness Scale
(SSS), which was administered before and after every MEG
scan [26]. The experimental procedures were carried out at
the MEG unit of the IRCCS San Camillo hospital in Venice,
with the subjects lying down on a bed in a supine position
in a quiet environment. Subjects were asked to keep their
regular wake/sleep cycle before participation. All the proce-
dures were performed in agreement with the 1964 Helsinki
Declaration and its later amendments. This study was
approved by the local ethics committee, and all participants
provided a written informed consent.

2.2. tDCS. tDCS was delivered with a battery-powered stimu-
lator connected to a pair of saline-soaked sponge electrodes
having a surface of 35 cm2. Real/sham stimulation was
applied over the sensorimotor regions bilaterally, with the
cathode (−) centered over C4 and the anode (+) centered
over C3, where C3 and C4 are scalp positions according to
the 10/20 international EEG system. This montage has
been previously employed for clinical applications [8, 9]. Real
stimulation lasted 20 minutes with 20 seconds of fade-in and
fade-out, an intensity of 2mA, and the current density was
0.057mA/cm2. For the sham stimulation, we employed the
same setting except for the current, which was only applied
for 20 seconds at the beginning and at the end of the stimu-
lation with the aim of giving a slight tingling sensation that
many subjects report for tDCS real stimulation.

2.3. MEG Data Acquisition and Preprocessing. MEG mea-
sures were acquired with a CTF MEG system (MISL,
Vancouver, Canada) with 275 MEG gradiometers. Eye
blinks, eye movements, and electrocardiogram (EKG) were

recorded using bipolar electrodes, and the head position
within the helmet was continuously monitored thanks to
three localization coils placed on anatomical landmarks
(the nasion and the left and right ear canals). The sampling
rate was set to 1200Hz. The acquisition lasted 5 minutes.
Subjects were scanned with their eyes closed and were given
the following instructions: “Clear your mind and stay
relaxed.” Before and after each MEG acquisition, the
technician administered the Stanford Sleepiness Scale [26].
MEG data analysis was performed with Brainstorm tool-
box [27], which is documented and freely available for
download online under the GNU general public license
(http://neuroimage.usc.edu/brainstorm). The preprocessing
pipeline consisted of (1) third-order spatial gradient noise
cancellation, (2) downsampling to 600Hz, (3) signal space-
separation (SSP), (4) epoching, (5) DC removal, and (6)
bad sensor removal [22]. Artifacts related to heartbeat
and eye movements were removed in step 3 of the pipe-
line using the SSP procedure [28, 29]. Resting-state signals
were divided in step 4 into 20-second-lasting epochs. Each
epoch was visually inspected, and those affected by artifacts
were rejected.

2.4. Source Imaging. For each participant, we acquired an
individual whole-head 3-dimensional sagittal T1-weighted-
3D-TFE scan with a 1.5 T Achieva Philips scanner (Philips
Medical Systems, best, Netherlands), with the following
scan parameters: repetition time (TR)=8.3 milliseconds,
echo time (TE) =4.1 milliseconds, flip angle = 8°, acquired
matrix resolution (MR)=288× 288, and slice thickness
(ST) = 0.87mm. The cortical mesh of the “mid” cortical
layer equidistant from white/grey matter interface and pial
surface was segmented using FreeSurfer software [30], tas-
selled into 15,000 vertices, and then downsampled to 8000
vertices, whereas the reconstruction of the skull surface
and the coregistration between patients’ MRI and MEG
data was performed with the Brainstorm toolbox [27]. The
individual head model for source imaging was implemented
with the OpenMEEG boundary element method (BEM)
[31]. We only considered one cortical layer with a
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Figure 1: Experimental design.

2 Neural Plasticity

http://neuroimage.usc.edu/brainstorm


conductivity of 0.33 S/m. The inverse problem was solved by
using a whitened and depth-weighted linear L2-minimum
norm estimate algorithm, with the estimated dipole orienta-
tions constrained to be normal to the cortex. A common
imaging kernel was computed and then applied to obtain sin-
gle epoch cortical reconstructions. Noise covariance for
source reconstruction was obtained from an empty room
recording of 2 minutes.

2.5. Brain Network Analysis: Resting-State Activity and
Connectivity. To assess the changes in brain networks,
we focused on two aspects: resting-state activity and
connectivity.

Firstly, to have a general measure of resting-state activity,
we focused on the spectral power of specific bands. Specifi-
cally, we calculated power spectrum density (PSD) at the
source level. After inverting the signal onto the cortical
surface, we computed the PSD for each cortical vertex in all
the relevant frequency bands (delta: 2–4Hz; theta: 5–7Hz;
alpha: 8–12Hz; beta: 15–29Hz; and gamma: 30–60Hz).

We also focused on measuring resting-state connectivity
across the brain, estimating the changes in coupling between
two seeds beneath the tDCS electrodes and the rest of the cor-
tex. We computed the phase locking value (PLV) [32], which
is a very popular measure of brain synchronization
commonly used to estimate nondirectional functional
connectivity [33]. The connectivity analysis was performed
considering two cortical seeds, underneath the cathode and
the anode. They corresponded to the left and right primary
sensorimotor hand regions. These regions were manually
drawn by an expert neurologist (GP) onto the individual
cortical surface using anatomical landmarks [34]. Each seed
was extended about 10 cm2. The signal within each seed
was averaged, and the connectivity between such an average
and every other cortical vertex was computed before and
after tDCS. The same procedure was performed for the fol-
lowing frequency bands (delta: 2–4Hz; theta: 5–7Hz, alpha:
8–12Hz; beta: 15–29Hz, gamma: 30–60Hz). To allow group
analysis, PSD and PLV maps were projected onto standard
MNI template [35] and spatially smoothed with full width
at half maximum at 3mm [36], which is the default value
in Brainstorm for MEG and is compatible with the image
resolution and distribution provided by the minimum
norm estimate.

2.6. Statistical Analysis. Statistical analysis was performed
using the IBM SPSS Statistics (ver. 24) and Matlab (Math-
works). After checking data distribution using the Kolmogo-
rov and Smirnov test, Stanford Sleepiness Scale scores were
modeled using a repeated measure ANOVA, with factor time
(4 levels) and stimulation (2 levels) (Figure 1). For activity
and connectivity analysis, after checking that the baseline
(pre-tDCS) measures were not different between stimula-
tions, the post-tDCS measures were expressed as percentage
of the pre-tDCS according to the following formula (post-
tDCS−pre-tDCS)/pre-tDCS∗ 100. Post-tDCS variations of
activity and connectivity were directly compared between
the real and sham stimulations by means of t-statistics. This
procedure was applied for each vertex of the cortical surface,
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Figure 2: Resting-state activity (PSD) cortical t-value distribution.
Histograms with red bars and the superimposed density plot with
the thin line were calculated from the observed t-value
distribution for the frequency bands under investigation. The tick
black line shows a theoretical null-hypothesis distribution, with
zero mean and zero median and the same variability of the
empirical distribution. x-axes: t-value; y-axes: frequency of cortical
vertices exhibiting a specific t-value expressed as proportion on
the entire sample (intensity).
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and it allowed to generate t-maps of real minus sham differ-
ences. In order to test whether tDCS was inducing a global
increase or decrease of activity/connectivity, we applied a Wil-
coxon test comparing the actual t-value distribution with a the-
oretical distribution with 0 mean and same variability as the
one empirically found. In other words, we tested whether the
distribution was significantly different from the one expected
under the null hypothesis of no global tDCS effect. Then, we
visually explored the spatial distribution of the effects. As fur-
ther exploratory analysis of the topographic effects, we
extracted average measures of PSD and PLV from regions of
interest (ROIs) derived from a parcellation of the cortical sur-
face implemented in Brainstorm [37] and we compared the real
versus sham stimulations by means of t-tests. These results are
reported in the Supplementary Materials (available here).

3. Results

All participants completed the experimental sessions, and
none of them reported any problem or discomfort during
the tDCS procedure or during the MEG recordings.

Moreover, none of the participants reported to have
clearly identified the real or sham session.

As for the sleepiness evaluation, the repeated measure
ANOVA showed no significant factor stimulation nor time
by stimulation interaction (p > 0 200 consistently). We did
find a significant factor time [F (3,42) = 6.596, p = 0 001].
This effect was related to a sleepiness increase between the
beginning and the end of the MEG resting-state scan. The
size of the effect was small (about 1 point) and the average
values at all time-points were always below 2.5, suggesting
that subjects were awake during the entire study.

3.1. Resting-State Brain Activity (PSD). The results of the
analysis on brain activity (i.e., PSD) are also reported in
Figures 2 and 3. The analysis showed that all t-maps had
a distribution significantly different from the theoretical null
distribution [delta U=36.111∗106; theta U=19.312∗ 106;
alpha U=86.411∗ 106; beta U=44.582∗ 106; gamma U=
38.501∗ 106, p < 0 001 consistently]. The empirical t-value
distributions were mostly shifted to negative values for the
delta, theta, beta, and gamma frequency bands, and only
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Figure 3: t-maps of resting-state activity (PSD). The figure shows the topographic distribution of t-values calculated for the power spectrum
density (PSD). Shades of red colors indicate positive values, shades of blue colors indicate negative values, and shades of white indicate values
toward zero. The t-maps show a global reduction of PSD in all frequency bands, mostly localized in the left frontal regions.
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slightly positively shifted for the alpha band (Figure 2). The
effect was stronger for delta, theta and alpha band and, even
if it was statistically significant, less evident for beta and
gamma bands, whose curves of empiric distribution were
very close to those theoretically generated.

The evaluation of the topographic distribution indicated
a stronger effect, consistent across multiple frequency bands,
in the left frontal regions, homolateral to the anode (+)
(Figure 3). The ROI-based analysis confirmed such finding.
The reader is referred to the supplementary materials
for the ROI-based analysis of the spatial distribution of
the effects.

3.2. Resting-State Brain Connectivity (PLV). The results of the
analysis on brain connectivity (i.e., PLV) are also reported in
Figures 4 and 5. The analysis showed that all t-maps had a
distribution significantly different from the theoretical null
distribution for both the left seed (under the anode) and right
seed (under the cathode) [delta: left U=93.770∗105, right
U=109.13∗ 106; theta: left U=38.04∗ 106, right U=
85.342∗ 106; alpha: left U=87.201∗ 106, right U=111.94
∗ 106; beta: left U=83.063∗ 106, right U=10.489∗ 106;

gamma: left U=90.813∗ 106, right U=10.414∗ 106,
p < 0 001 consistently]. Figure 4 shows that the observed
t-value distributions were shifted toward a positive effect,
which indicates overall higher connectivity values after real
stimulation as compared to sham. In particular, the distribu-
tion was positively shifted for both seeds in delta, alpha, beta,
and gamma bands and in the theta frequency band for the
right seed (see also the supplementary materials for results
on ROIs). Only in the case of theta and left seed occurs a neg-
ative shift as compared to the theoretical null distribution.
The evaluation of the topography of t-value distributions
indicated widespread effects, involving regions remote from
the anode and cathode (Figure 5).

4. Discussion

In this study, we have combined noninvasive brain stimula-
tion and high-resolution magnetoencephalography (MEG)
and provided evidence that bilateral tDCS reshapes resting-
state brain networks.

During the last 20 years, noninvasive brain stimulation
techniques have been exploited for the investigation and
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Figure 4: Resting-state connectivity (PLV) cortical t-value distribution. The figure shows the distribution of the t-values for the phase locking
value maps calculated at the source level. The histogram with red bars and density plot with the thin line were calculated from the observed t-
value distribution. The tick black line shows the theoretical null-hypothesis distribution, with zero mean and the same variability of the
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of cortical vertices exhibiting a specific t-value expressed as proportion on the entire sample (intensity).
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treatment of a number of neurological disorders because of
their ability of inducing LTP- and LTD-like plasticity
phenomena.

Plasticity induction has been usually measured as
changes of brain excitability [10, 38]. However, previous
studies have demonstrated that both noninvasive brain
stimulation and cortical plasticity are also associated with
changes of brain rhythms and synchronization [39–41].
Conversely, robust and consistent evidence suggests that also
neurological conditions translate into changes of brain activ-
ity and synchronization [41]. For instance, an impairment of
cortical synchronization is often found at the first stages of
neuropsychiatric conditions, up to the healthy subjects who
own an increased risk [42–44]. More importantly, clinical
recovery seems to be associated with changes of cortical
rhythms and synchronization [45–47].

Our study was performed with a translational perspec-
tive and aimed at investigating the effects of bilateral tDCS
on the healthy brain to better tailor treatment of neurolog-
ical patients.

Both measures of brain activity and connectivity showed
a significant tDCS-related modulation after real tDCS as
compared to sham. Brain activity, as assessed by Power
spectral density, is an indirect measure of cortical

synchronization/desynchronization. Previous investigations
of the tDCS effects on PSD have been largely performed with
EEG and have provided conflicting results, in terms of the
frequency bands and brain regions affected by the stimula-
tion [48–55]. Our MEG study provides higher accuracy in
the detection and modeling of cortical activity and supported
a consistent and reduction of alpha, beta, and gamma power
of the left frontal regions, ipsilateral to the anode and contra-
lateral to the cathode. Changes in power can be related to an
enhancement of the brain activation [56, 57] and are often
found in neurological disorders, such as stroke [58] and
epilepsy [41]. For these and other neurological disorders,
tDCS application, rather being tailored on the base of the
effect produced on brain excitability alone [8, 9], might
benefit from taking into consideration the effects on brain
activity and connectivity.

PSD results also confirm two additional relevant aspects
in a translational perspective: (a) tDCS effects on cortical
activity (PSD) depend upon the position of the anode and
cathode [48] and (b) stronger effects are not necessarily con-
fined under the region of stimulation but can involve remote
regions. Our results on tDCS remote effects are in agreement
with previous evidence from other approaches. Remote
effects of brain stimulation have been indeed demonstrated
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Figure 5: t-maps of resting-state connectivity (PLV). The figure shows the topographic distribution of t-values calculated for the phase
locking value. Shades of red colors indicate positive values, shades of blue colors indicate negative values, and shades of white indicate
values toward zero. An inspection of these maps shows a widespread increment of PLV values in all frequency bands.
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for several measures of brain function, such as brain activ-
ity [15], cortical excitability [59, 60], hemodynamic activity
and connectivity as measured by BOLD signal [61], and
behavioral measures [62].

The connectivity analysis was performed on the entire cor-
tex, taking into account the two seeds located in the sensori-
motor regions, under the cathode and anode. For both seeds
and for all the frequency bands under investigations, we found
a significant increase of the synchronization of tDCS-related
cortical activity. Such effect was widespread and particularly
evident in delta, alpha, beta, and gamma bands. PLV results
displayed in Figure 5 (and also the ROI-based analysis
reported in the supplementary material) suggest a more wide-
spread, homogeneous, short- and long-range increase of con-
nectivity, especially when considering the seed under the
anode (+, increasing cortical excitability), and support the idea
that the effects of the stimulation depend upon the interaction
with networks rather than brain areas [19].

Very recently, and in agreement with our results, other
groups have reported a global increase of EEG synchroniza-
tion after tDCS [63] and diffuse changes of connectivity in
post-tDCS fMRI [64]. Vecchio and collaborators have sug-
gested that tDCS effects on cortical coherence are polarity
dependent, mainly involve alpha band, and are characterized
by a connectivity increase [65]. Beyond the differences of
experimental design, similar findings are supported by the
investigation of Mancini and colleagues [66].

The findings of this study arise from a very specific
setting, characterized by bilateral stimulation performed on
healthy subjects. In a translational perspective, it will be
necessary to investigate how tDCS-related activity and con-
nectivity changes are influenced by several individual factors,
such as genetic pattern [67, 68], gender [69], spontaneous
fluctuations of cortical activity and excitability [70] and,
especially in patients, the effect of brain lesions [11], cortical
degeneration [71], and the influence of medications [72]. It
will also be crucial to address the time dynamics of the effects
on brain networks, in order to tune appropriately the dura-
tion, frequency, and dose of tDCS.

5. Conclusions

tDCS is a noninvasive brain stimulation approach which is
becoming very popular and currently exploited to treat neu-
rological disorders. We have demonstrated that bilateral
tDCS (left anode and right cathode) reduces left alpha, beta,
and gamma power and increases global connectivity in delta,
alpha, beta, and gamma frequencies, in a diffuse fashion. We
have also demonstrated that, beyond the well-known effects
on brain excitability, tDCS reshapes resting-state brain net-
works. This information can be of help to understand the
plasticity phenomena induced by noninvasive brain stimula-
tion and can be exploited to tailor the therapeutic interven-
tion in patients affected by neurological conditions.
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Supplementary Materials

The supplementary materials contain additional analyses
conducted at ROI level, to test the regional effect of tDCS
on PSD and on PLV measures. Eleven bilateral ROIs cover-
ing the whole cortex surface were selected from the automatic
parcellation of Destrieux Atlas [1], as implemented in the
Brainstorm Toolbox [2]. For each ROI a paired t-test was
performed, comparing the effect of real tDCS with the
effect of sham tDCS. The effect was calculated as percent-
age increase in the poststimulation as compared to the pre
[(post−pre/pre) ∗ 100]. Importantly, the information pro-
vided in these tables is different from the information of
the global analysis included in the manuscript. While the
analysis in the manuscript tests whether there is a global
effect of tDCS on the measures, these tables show if there
are specific effects in the average value of the measure
calculated for each specific ROI. Each table reports (1)
the name of the ROI, the “L” or “R” at the end of the
name which indicate if the ROI was in the left or right
hemisphere; (2) the degrees of freedom of the test; (3)
the t-value; (4) the effect size, calculated as Cohen’s d; (5)
the p value; (6) the significance of the p value with asterisks
“∗ ” denoting values below 0.05; (7) the direction of the
significant difference, with “>” indicating “Real > Sham”
and “<” indicating “Real < Sham”; (8) the mean values of
the effect in the real condition (SD enclosed in parenthesis);
(9) the mean values for the effect in the sham condition
(SD enclosed in parenthesis). (Supplementary Materials)
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