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ABSTRACT
Neutrophil extracellular trap (NET) formation represents a unique effector function of neutrophils
(PMN). The mechanism of NET release in response to bacteria is largely unknown. We studied the
process by which Pseudomonas aeruginosa, an opportunistic pathogen, interacts with primary
PMNs, and found that flagellar swimming motility of the bacterium is essential for inducing NET
extrusion. Cystic fibrosis (CF) lung disease is associated with P. aeruginosa infection and PMN-
dominated inflammation. Although NETs are abundant in CF airways, the main factors triggering
NET release in CF remain unclear. Our study implicates that motile P. aeruginosa is a strong NET-
inducer in CF. In early stages of CF lung disease flagellated, motile isolates of P. aeruginosa are
characteristic and their interactions with PMNs could lead to NET formation. In chronic CF, P.
aeruginosa down-regulates its flagellum expression to avoid recognition by the immune system and
forms biofilms. Flagellated bacteria, however, are released from biofilms and could interact with
PMNs to form NETs. Although flagellated forms likely represent only a small fraction of the total P.
aeruginosa load in chronic CF, NET release induced by them could have a significant impact on
inflammation and lung function since flagellated forms trigger the most robust response of the
immune system including PMNs.

Overall, we speculate that NET formation driven by motile P. aeruginosa could be a novel,
significant contributor to pathogenesis at both, early and late stages of CF lung disease.
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CF airways contain large numbers of PMNs. CF spu-
tum PMN counts, levels of extracellular DNA, myelo-
peroxidase and human neutrophil elastase all
correlate with CF lung disease severity.1-6 PMNs are
the clinically most important leukocyte in chronic CF
airways and PMN-mediated inflammation contributes
to lung disease. Extracellular DNA is derived from
the host,7 mainly PMNs.5,7,8 Although PMNs were
thought to die by necrosis in CF airways, recently
other mechanisms have been proposed. NET forma-
tion provides an attractive alternative explanation
since PMNs simultaneously release lung-damaging
extracellular DNA and primary granule components
by forming NETs, and NETs are abundant in the air-
ways of adult CF patients. We and others reported
robust NET release from human PMNs induced by
laboratory strains and CF clinical isolates of P. aerugi-
nosa.9-14 Since NETs could mediate the release of
lung-damaging PMN cargo but could also be impor-
tant in fighting pathogens, their exact, potentially
complex, role in CF airway disease remains to be elu-
cidated (Fig. 1).

Flagellar motility drives P. aeruginosa-induced NET
release

In our current study, we found that early exponential
growth phase cultures of P. aeruginosa elicited the most
robust NET release and presence of a functional flagellum
was essential for this process.14 Immotile bacterial mutants
without flagellum or with nonfunctional flagellum are
weak NET-inducers.14 Forced contact of immotile P. aeru-
ginosa with PMNs restored their ability to trigger maximal
NET extrusion.14 P. aeruginosa flagellin alone was unable
to induce NET release.14 In a genetic complementation
study we found that both, motAB and motCD loci of P.
aeruginosa flagellar motor genes are needed for maximal
NET induction in human PMNs.14 Thus, we identified
flagellar swimming motility as a novel microbial factor
crucial to PMN activation and NET formation.

Flagellated P. aeruginosa in CF

Although it is undocumented whether NETs are present
at early stages of CF lung disease, bacterial motility-
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fueled NET formation likely occurs at this initial phase
because early CF clinical isolates of P. aeruginosa typi-
cally express flagellum15,16 and PMNs are also present17

(Fig. 1). The interaction of PMNs with early forms of
P. aeruginosa must be critical to determine later progres-
sion of CF lung disease. Important questions to be
answered are why NETs released at this early stage would
be incapable of clearing P. aeruginosa infection and
instead drive bacterial adaption toward an aflagellated,
biofilm-forming phenotype.

Over the course of CF lung disease, P. aeruginosa
down-regulates its flagellum expression.15,16,18-20 In
chronic CF airways, P. aeruginosa mainly exist in
3-dimensional, “suspension biofilms” also called non-
attached aggregates (Fig. 1).21-23 These suspension bio-
films surrounded by PMNs represent the characteristic
clinical picture in chronic CF airways.21-24 Biofilms are
dynamic structures, and motile, flagellated bacteria likely
break free from biofilms in chronic CF, possibly interact-
ing with PMNs (Fig. 1). This is supported by recent data
showing that P. aeruginosa flagellin is detected in sputa
of chronic CF patients.25 PMNs phagocytosing plank-
tonic P. aeruginosa have also been observed in chronic
CF.26,27 Nonmucoid revertant cells of P. aeruginosa have
also been documented in chronic CF airways.15,18

A minor population of flagellated P. aeruginosa in

chronic CF airways could also have been marginalized so
far because this topic has not been intensely investigated
yet, and this population is hard to study and could have
been overlooked in the presence of much more abundant
biofilm-bound bacteria accumulating well-characterized
mutations (mucA, lasR).28,29 Conclusions with respect to
the population structure of P. aeruginosa in CF have
largely been generalized based on results obtained on
single bacterial isolates, although high levels of pheno-
typic diversity among P. aeruginosa isolates within indi-
vidual CF patients have already been noted.30 A small
population of flagellated P. aeruginosa could be found in
CF airways while most P. aeruginosa are present in form
of alginate-producing, elastase-negative bacteria. MucA
mutations drive the mucoid, biofilm-forming phenotype,
lasR mutations contribute to PMN recruitment28 while
outbreaks of flagellated bacteria from biofilms could be
mainly responsible for PMN activation and NET
release.14 PMNs quickly and easily recognize motile,
flagellated forms of P. aeruginosa and launch their robust
effector mechanisms including NET release in response
to them.14 On the other hand, bacterial biofilms likely
provide a much weaker stimulus for PMN activation.
Therefore, the way motile P. aeruginosa interacts with
PMNs, the cell type representing most of cells found in
chronic CF airways, is likely an important factor in influ-
encing the progression of CF lung disease despite the
fact that planktonic forms of P. aeruginosa are outnum-
bered by those found in biofilms (Fig. 1).

Overall, we speculate that P. aeruginosa motility-driven
PMN activation has clinical relevance not only at initial
but also later stages of CF airway disease.14
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