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a b s t r a c t

Coronavirus Disease 2019 (COVID-19) had already spread worldwide, and healthcare services have
become limited in many countries. Efficient screening of hospitalized individuals is vital in the struggle
toward COVID-19 through chest radiography, which is one of the important assessment strategies.
This allows researchers to understand medical information in terms of chest X-ray (CXR) images and
evaluate relevant irregularities, which may result in a fully automated identification of the disease. Due
to the rapid growth of cases every day, a relatively small number of COVID-19 testing kits are readily
accessible in health care facilities. Thus it is imperative to define a fully automated detection method
as an instant alternate treatment possibility to limit the occurrence of COVID-19 among individuals.
In this paper, a two-step Deep learning (DL) architecture has been proposed for COVID-19 diagnosis
using CXR. The proposed DL architecture consists of two stages, ‘‘feature extraction and classification’’.
The ‘‘Multi-Objective Grasshopper Optimization Algorithm (MOGOA)’’ is presented to optimize the
DL network layers; hence, these networks have named as ‘‘Multi-COVID-Net’’. This model classifies
the Non-COVID-19, COVID-19, and pneumonia patient images automatically. The Multi-COVID-Net has
been tested by utilizing the publicly available datasets, and this model provides the best performance
results than other state-of-the-art methods.

© 2021 Elsevier B.V. All rights reserved.
1. Introduction

Coronavirus diseases (COVID-19) outbreak the health of the
opulation of the world due to the infection of patients with
evere acute respiratory syndrome corona virus2 (SARSCoV2) [1].
he virus causes respiratory infection with signs including cough,
ever, and breathing difficulty in many more extreme cases. Al-
hough the virus first began in Wuhan, China, in November 2019,
he virus is spreading far and wide so rapidly, with 0.739 million
eaths and more than 20 million individuals around 188 nations
n the world as of October 2020 [2]. It is one of the fastest
rogressive diseases ever seen. Since it is a new viral infection
nd shifts accumulation rapidly, there is no practice standards
or the evaluation or examination procedure and appropriate
reatment. Thus, COVID-19 may infect a very large group of
eople unless prevention practices are implemented. The Reverse
ranscription-polymerase Chain Reaction (RT-PCR) is the common
esting procedures of COVID-19 infected patients [3]. The time re-
uired to confirm COVID-19 infected patients is high using these

∗ Corresponding author.
E-mail address: murugan.rmn@ece.nits.ac.in (R. Murugan).
ttps://doi.org/10.1016/j.asoc.2021.108250
568-4946/© 2021 Elsevier B.V. All rights reserved.
tests, and it has given a number of false-positive results [4]. Hence
there is an urgent need for an automated COVID-19 diagnosis
system.

The medical imaging modalities such as chest Computed To-
mography (CT) and Chest X- Ray (CXR) images are used to di-
agnose the COVID-19. The CXR are utilized in many hospitals
because X-imaging modality is very simple and easily available.
In recent years Deep Learning (DL) produced better results in
radiological based medical imaging diagnosis. Among DL algo-
rithms, Convolutional Neural Network (CNN) is widely used in
many medical image classifications [5]. These are the motiva-
tional factors to propose this paper.

In medical image classification, the optimization algorithm
plays a vital role in minimizing the cost function and maximizing
efficiency [6]. In CNN training, hyperparameters selection decides
the speed and maximize the performance of the training pro-
cess [7]. Many COVID-19 diagnosis works are reported manual
hyperparameters selection, which leads to more training time [8–
10]. To address these issues, this paper proposes an optimized
hyperparameters selection of the CNN model using the ‘‘Multi-
Objective Grasshopper Optimization Algorithm (MOGOA)’’. Other

https://doi.org/10.1016/j.asoc.2021.108250
http://www.elsevier.com/locate/asoc
http://www.elsevier.com/locate/asoc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.asoc.2021.108250&domain=pdf
mailto:murugan.rmn@ece.nits.ac.in
https://doi.org/10.1016/j.asoc.2021.108250


T. Goel, R. Murugan, S. Mirjalili et al. Applied Soft Computing 115 (2022) 108250

o
t

t
t
r
O
‘
t
p
C
a

i
M
i
n
a
n
g
t
s

d
p
f
T
c
S

2

i
s
d
1

1
a
(
t
h
S
t
f
D
H
a

ptimization algorithms limitation is their dynamicity, uncer-
ainty, and work for only a single objective.

This paper proposes an ensemble network that includes Incep-
ionV3 and ResNet-50 architecture to diagnose COVID-19 from
he CXR images automatically. This ensemble network hyperpa-
ameters are optimized using the Multi-Objective Grasshopper
ptimization Algorithm (MOGOA); hence this system is named
‘Muti-COVID-Net’’. This system automatically extracts the fea-
ures and classifies them from the COVID-19, Non-COVID-19, and
neumonia CXR images. The superiority of the proposed Muti-
OVID-Net is to produce an efficient COVID-19 diagnosis system
nd built the Optimum performance through experimentation.
The novelty of the work is the proposed deep ensemble learn-

ng architecture whose hyperparameters are optimized using
OGOA optimization to accurately diagnose COVID-19 from CXR

mages. Advantage of using ensemble model is to reduce the
etwork’s variance for the fast random generation of weight
nd biases of the networks. Also, the proposed ensemble deep
eural networks provide better classification performance and
eneralize the results than single DNN. MOGOA optimization will
une the hyperparameters of the network to give best accuracy,
ensitivity and specificity.
The contributions of this work as follows:

I. To overcome the RT-PCR false-negative results, CXR images
are utilized to diagnose COVID-19.

II. This paper proposes an ensemble model, consisting of In-
ceptionV3 and ResNet50 pre-trained networks for COVID-
19 diagnosis.

III. Performance of ensemble deep learning network highly
depends on the selection of the hyperparameters. Improper
selection of hyperparameters of the ensemble network may
lead to more false-negative. Hence MOGOA has been used
in this paper to optimize the hyperparameters ensemble
network.

IV. Extensive performance and comparative analysis has been
made in this paper to test the performance of the Multi-
COVID-Net with the help of various performance metrics.

This paper’s remaining sections are arranged as follows: The
etailed literature survey has presented in Section 2. Section 3
resents the need, motivation, and theoretical, mathematical
undamentals of MOGOA and the proposed method’s workflow.
he experiments, including results, discussion, performance, and
omparative analysis, have been described in Section 4. Finally,
ection 5 presents the concluding remarks of this paper.

. Related works

In recent times DL algorithms have been used for medical
mage classification. Such algorithms have been also used for clas-
ifying COVID-19 in Chest X-ray images. This section presents a
etailed literature review of DL algorithms for diagnosing COVID-
9.
Hassantabar et al. [5] presented two algorithms for COVID-

9 diagnosis, including fractal-based feature extraction on DNN
nd CNN [5]. CNN achieved better accuracy (93.2%) then DNN
83.4%). However, this study has used only 682 images for both
raining and testing. Altan and Karsan [11] have proposed a
ybrid model that includes a 2D curvelet transform, Chaotic slap
warm Algorithm (CSSA), and DL. The curvelet transform applied
o obtain the feature matric from the X-ray images; then, the
eature matrix has optimized using CSSA, and EfficientNet-B0
L architecture used for the classification of COVID-19 images.
owever, this method used 159 images for their experiments. The
uthors of [12] proposed a Deep Transfer Learning (DTL) method
2

for automatic COVID-19 diagnosis. They used the advanced ver-
sion of Inception called Xception to train and test the networks.
This works showed promising results, but it has a lack of clinical
explanation.

Imran et al. [13] attempted to diagnose the COVID-19 from
cough sounds. The coughing sound was recorded by a smart-
phone application and test by their developed model. Promising
results were achieved but with the help of cough sound, iden-
tifying COVID-19 is quite difficult. Since cough is the general
symptoms for other than COVID-19. The DNN based architecture
called ‘‘CoroNet’’ was developed by Khan et al. [14] for classifying
four-class cases that include normal, COVID-19, Pneumonia, and
Pneumonia bacterial. They have used the Xception network for
training and testing the images. However, this work has not
considered viral pneumonia images.

A deep CNN-based network called ‘‘ConXNet’’ was proposed
by Mahmud et al. [15] This network has analyzed the ‘‘depth
wise convolution’’ for extracting the feature from X-ray images.
This study also designed a different form of ‘‘ConXNet’’ model to
test different X-ray images’ resolutions. However, the processing
time and computational complexity were high. Minaee et al. [16]
developed two-class classification method such as Non-COVID-
19 and COVID-19 using deep TL used four different CNN models,
including Sequeezenet, DenseNet-121, ResNet18, and ResNet50
pre-trained architectures. The SqueezNet achieved good results of
sensitivity and specificity among other networks. Nour et al. [17]
proposed a novel CNN model and trained from scratch instead
of using TL. They designed five-layer architecture to extract the
features from CXR images then the features were fed into ML
algorithms then the features were optimized by the Bayesian
algorithm.

The CNN-based ‘‘DarkCovidNet’’ was proposed by Ozturk et al.
[18] from the CNN algorithm. They developed two classifica-
tion architectures: binary and multi-class. The binary includes
Non-COVID-19 and Non-COVID-19, and the multi-class, including
COVID-19, Non-COVID-19, and pneumonia. The authors demon-
strated that the binary architecture achieved better results than
multi-class architecture. However, this method suffers from the
lack of clinical intervention. The authors in [19] employed the
deep TL for fast and accurate diagnosis of COVID-19. This study
has been used to differentiate the COVID-19 and COVID-19 im-
ages and this method has been produced an accuracy of 95.61%.
Vaid et al. [20] proposed CNN architectures to improve the best
accuracy of COVID-19 confirmed cases from CXR imaging. This
has a lack of implementation issues.

Narin et al. [21] utilized three CNN, which includes Incep-
tionV2, InceptionV3, and ResNet50, with 100 CXR images out of
which 50 are normal and 50 are COVID-19. ResNet50 provided
an accuracy as high as 98%. This work’s limitation is the limited
number of data, which are only 100 X-ray images collected from
the Github repository. Deep feature extraction was based on
eleven pre-trained models by Sethy et al. [4]. In this work, the
accuracy obtained in ResNet50 is high compared to other pre-
trained models. The limitation of this work is a lack of data
availability and high computational cost.

Hemdan et al. [22] proposed an ensemble architecture called
‘‘COVIDX-Net’’, which incorporates the pre-trained models, such
as the modified VGG19 and the Google MobileNet. Each DNN
model can analyze the relatively stable levels of intensity of the
CXR image to categorize the patient’s condition as either COVID-
19 or Non-COVID-19. Apostolopoulos et al. [23] trained the CNN
models to get more accuracy. The CNN architecture has been
produced 93.48 accuracy for classifying COVID-19 and normal
CXR images. The major limitations of this work are lack of data
availability and high computational cost.
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Table 1
State-of-the-art DL model for COVID-19 diagnosis system through CXR images.
Author Accuracy (%) Sensitivity (%) Specificity (%) Precision (%) F-score (%)

Hassantbar et al. [5] 93.2 96.1 – – –
Altan et al. [11] 95324 93.61 96.05 92.22 92.91
Das et al. [12] 97.4 97 97.2 – 96.9
Imran et al. [13] 88.76 91.71 95.27 86.60 89.08
Khan et al. [14] 89.5 97 100 – –
Mahmud et al [15] 97.4 – – – –
Minalee et al. [16] – 98 – – –
Nour et al. [17] 98.97 89.37 99.75 96.72 –
Oztunk et al. [18] 87.02 – – – –
Panwar et al. [19] 95.61 – – – –
Vaid et al. [20] 96.3 – – – –
Nain et al. [21] 98 – – – –
Sethy et al. [4] 95.38 – – – –
Hemdan et al. [22] 90 – – – –
Wang et al. [10] 83.5 – – – –
Alazab et al. [3] 94.80 – – – –
Proposed 98.21 99.63 97.59 95.39 97.46
Wang [10] introduced ‘‘COVID-Net’’, a Deep CNN model for
OVID-19 screening from CXR images. This model also evalu-
ted how ‘‘COVID-Net’’ experimentally verified using the data
nnotation strategy in an effort not only to achieve a useful
nderstanding of the key factors related to COVID-19 cases, which
an help clinicians to enhance evaluation. The need for CXR im-
ges was strongly advised by Alazab et al. [3] to screen COVID-19
ince X-rays machines are readily available in nearby healthcare
enters reasonably quickly and at a minimal price. They proposed
he VGG19 CNN model and obtained promising results than other
ethods.
The summary of these related works is presented in Table 1.

he transfer learning techniques are implemented [3–8] by many
esearchers and data scientists based on predefined CNN architec-
ures such as ResNet50, InceptionV3, Inception-ResNetV2, VGG-
9, Mobile-Net, Xception to obtain better performance. However,
uch CNN models require more time for training and testing.
he gap is that the methods proposed did not discuss parame-
er tuning, which has the potential to substantially impact the
ccuracy. The COVID-19 patient database used is small in the
iterature reviewed. The number of images, both training, and
esting, may be increased to get better performance metrics.
owever, as these metrics extensively depends on the number
f samples representing each category of images. More COVID-
9 patient data and more computational resources are required,
hen the only generic model may be developed.

. Methodology

The proposed model performed the automatic classification
f CXR images into Non-COVID-19, COVID-19, and pneumonia
atients. The proposed architecture is based on the ensemble of
eep learning networks to reduce the variance because of the
etworks random generation of weight and biases.
The ensemble of deep neural networks (DNN) also provides

etter performance and generalization results than a single DNN.
he performance of DNN networks greatly depends on the
election of hyperparameters. Therefore, both DNN networks’
yperparameters are optimized using MOGOA, optimizing net-
ork hyperparameters for maximum accuracy, sensitivity, and
pecificity. Two DNN networks used for COVID-19 diagnosis are
nceptionv3 and ResNet50. First, both networks’ hyperparameters
re optimized for COVID-19, normal, and pneumonia dataset, and
hen features are extracted from both networks. These features
re combined and fed to ‘‘support vector machine (SVM)’’ clas-
ifier for classification into the appropriate label. Fig. 1 shows
he flow diagram of the proposed model for the diagnosis of
OVID-19.
3

3.1. Ensemble learning

Deep learning networks are nonlinear that use a large amount
of training data and tune the weights and parameters using
a stochastic learning and analytical approaches. Because of the
stochastic training method, every iteration will give different
sets of weights and biases, which results in different prediction
results. This is referred to as variances, the fluctuations in the
performance results due to change in the parameters of DNN.
Ensemble learning is used to resolve the high variance, which
trains the many neural networks (NN) parallel to solve the classi-
fication task. Ensemble learning is first proposed by Hansen and
Salamon [24] to train a finite number of NN for the same problem.
Ensemble learning not only improves the variance of the network
but also improves the generalization capability of NN.

In the proposed methodology, Inceptionv3 and ResNet50 DNN
are used for ensemble networks. Both networks are trained par-
allel on the CXR image datasets for COVID-19, Non-COVID-19,
and pneumonia. After training, features of both networks are
combined and classified using the SVM classifier.

3.2. Multi Objective Grasshopper Optimization Algorithm (MOGOA)

3.2.1. Need of optimization
To tune the weights and biases of ensemble DNN, hyperpa-

rameters values such as batch size, learning rate, momentum,
number of epochs, and regularization coefficient should be cho-
sen very carefully. These values influence the gradient descent
training, so it is important to optimize them. Improper selection
of the hyperparameters may lead to poor results, while changing
the hyperparameters and checking the results will take much
time for ensemble DNN. Therefore, there is a need to optimize
hyperparameters, which automatically find optimal values and
keeps updating them according to the training data. The opti-
mization goal is to train the DNN for the best accuracy, sensitivity,
and specificity.

3.2.2. Motivation of using MOGOA
In the field of optimization, nature-inspired algorithms be-

come very popular for solving different challenging problems.
The most popular nature-inspired optimization is the Genetic
Algorithm (GA) inspired by Darwin’s theory of evolution [25]. GA
creates a set of random solution and then search for the best
solution using mutation and crossover. The main drawback of
GA optimization is its binary nature and difficulty of problem
formulation for this algorithm. The next group of nature inspired
optimization includes ‘‘Particle swarm optimization (PSO) [26]’’,
‘‘Whale Optimization algorithm (WOA) [27]’’, etc.
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Fig. 1. Workflow of Multi-COVID-Net architecture.
The optimization process using such optimization algorithms
s divided into two phases: exploration and exploitation. Explo-
ation refers to the algorithm’s capability to have more diverse
alues, while exploitation refers to searching in small spaces.
he ‘‘Grasshopper optimization algorithm (GOA) [28]’’ mimics
he behavior of the swarm of grasshoppers (GH). GOA is able
o balance between exploration and exploitation. GH first move
ocally to search for prey and then move freely to explore in
iverse space. However, in the previously mentioned optimiza-
ion algorithms, exploration is done previous to exploitation.
hey first find the regions in the large feature space (explo-
ation) and then search locally (exploitation) to find the objective
unction’s approximate solution. GOA has been extended to a
ulti-objective version called Multi-Objective GOA (MOGOA). It
as been demonstrated that MOGOA can be very efficiently and
uperior of a wide range of problems compared to other existing
lgorithms. This motivated our attempts to employ MOGOA for
ptimizing the selection of hyperparameters of ensemble deep
earning networks.

.2.3. Mathematical background of MOGOA
GOA is motivated by the nature-inspired swarming nature

f GH [29]. The GH position in the GOA algorithm denoted the
ossible solution and represented using Eq. (1).

i = Si + Gi + Wi (1)

Where, Si denotes the social interaction, Gi denotes the gravity
orce and Wi denotes the wind advection of the ith GH in the
warm. For optimization problem, mathematical model proposed
or GOA [29] is given in Eq. (2).

d
i = c

⎛⎜⎝ N∑
j=1
j̸=i

c
ubd − lbd

2
s
(⏐⏐xdj − xdi

⏐⏐) xj − xi
dij

⎞⎟⎠ +


Td (2)

here, ubd denotes the upper bound and lbd denotes the lower
ound of dth dimension. Td represents the target and c is a coef-
icient of decreasing order to shrink the area of comfort, repulsion
nd attraction. In Eq. (2), c is the very important parameter that
hould be updated for each iteration to make the balance between
xploration and exploitation.
4

In the proposed work, accuracy, sensitivity, and specificity
of the COVID-19 diagnosis capability of ensemble DNN are the
objective to optimize the hyperparameters of DNN. Eq. (3) shows
the formulation of the proposed multi-objective problem.

Minimize : fm (x) , m = 1, 2, 3
Subject to : gi (x) ≥ 0; i = 1, 2, . . . , k

hj (x) = 0; j = 1, 2, . . . , l

xlbi ≤ xi ≤ xubi , i = 1, 2, . . . , n (3)

Where, m is the total number of objectives, n is the number of
variables to be optimized, k is the number of inequality con-
straints and l is the number of equality constraint. gi indicates
the ith inequality constraint, hj is the jth equality constraint and
[xlbi , x

ub
i ] indicate the boundaries of ith variable.

MOGOA generate more than one solution to the optimiza-
tion problem. Therefore, multiple solutions are compared using
a Pareto Optimality (PO) operator. In MOGOA, first, the best PO
solution is stored in an archive. Next, the selection of the target
is the main challenge in multi-objective optimization. In MOGOA,
the target is selected from the set of PO operators. For selecting a
target, the number of neighborhood solutions of each PO operator
stored in the archive is counted, used as the quantitative measure.
The probability of selecting the target based on the number of
neighborhood solutions is Eq. (4).

pi =
1
Ni

(4)

Ni denotes the number of solutions for the ith PO operator. Then
Roulette wheel is used to select the target using Eq. (4). To
update the archive regularly, if external solution is dominated
then solution in the archive is replaced by an external solution.
The Pseudo code of the proposed MOGOA based Multi-COVID-Net
is given in Algorithm (1).

In the following section, the experimental results are pre-
sented, discussed, and analyzed.

4. Experiments

This section presents the experiments conducted to prove the
efficiency of the proposed Multi-COVID-Net based on different
classifications and optimization algorithms.
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Table 2
Details of dataset.
Dataset Images category No. of images

Chest imaging [30] COVID-19 134
SIRM COVID-19 database [31] COVID-19 64
COVID-chest X- ray [32] COVID-19 646
Fig. 1 COVID-19 Chest X-ray [33] COVID-19 55
Provincial peoples hospital [34] COVID-19 1
Kaggle [35] Normal 900
Kaggle [35] Pneumonia 900

Total 2700

4.1. Dataset

The publicly available CXR images of Non-COVID-19, COVID-
9, and pneumonia are used in this work. These investigations
ave been driven all together of 2700 images, in which there 900
mages for each class. The description of the dataset is given in
able 2.

.2. Hardware and software details

The proposed architecture has been implemented in MATLAB
2020b (version 9.7) and executed using system configuration of
Vidia, Windows 10 Pro, and 64 GB RAM GPU.

.2.1. Training
The proposed Multi-COVID-Net architecture has been trained

y 70% of randomly partitioned images, and these images are
esized into 224 X 224 X 3 for better resolution. The proposed
rchitecture classifies the image in either of the three categories:
OVID-19, Non-COVID-19, and Pneumonia. The InceptionV3 and
esNet50 pre-trained CNN architecture are used to diagnose
hese images. These networks hyperparameters are optimized
sing MOGOA, and the parameters are presented in Table 3. Fig. 2
hows the sample training images of Multi-COVID-Net.
5

Table 3
Training options using MOGOA optimization.
Parameters InceptionV3 ResNet50

Rate

Momentum 0.5224 0.750
Learning rate 0.0549 0.0650
Epoch 7 6
L2Regularization 1.3042e−04 1.1746e−04
Batch size 32 32

4.2.2. Testing
The proposed Multi-COVID-Net architecture has been tested

by randomly selected 30% dataset images. These images are re-
sized into 224 X 224 X 3 before testing of the network. After that,
these image are fed into a trained Multi-COVID-Net model. The
network architecture firstly extracts the features and classify the
images using fully connected and soft-max layers. Fig. 3 shows
the sample testing images.

4.3. Performance parameters and evaluation metrics

In this work, accuracy, sensitivity, specificity, precision, and F1
score values are utilized to determine the classification results.
The definition of these parameters are represented in Eqs. (5), (6),
(7), (8), and (9) [36] and the related terms are presented Table 4.

Accuracy =
TP + TN

TP + TN + FP + FN
(5)

Sensitivity or recall =
TP

TP + FN
(6)

Specificity =
TN

TN + FP
(7)

Precision =
TP

(8)

TP + FP
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Fig. 2. Training image samples (a–b) Non-COVID-19 (c–d) COVID-19 (e–f) Pneumonia.
Table 4
Performance parameters.
Parameters Definition

True Positive (TP) The COVID-19 image is correctly diagnosed
False Positive (FP) The Non-COVID-19 image is misdiagnosed as COVID-19
True Negative (TN) The Non-COVID-19 image is correctly diagnosed
False negative (FN) The COVID-19 image is misdiagnosed as non-COVID-19
6
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F

Fig. 3. Testing image samples (a–b) Non-COVID-19 (c–d) COVID-19 (e–f) Pneumonia.
1 Score = 2
Precision × Recall
Precision + Recall

(9)

In addition to the above performance metrics, Receiver Oper-

ating Characteristics (ROC) and Confusion Matrix (CM) are also

used to evaluate the proposed work. The ROC is the representa-

tion of the characteristics of classification methods performance
7

execution. This ROC has generated between specificity vs. sensi-
tivity. CM is describing the performance of classification in terms
of tabular form.

4.4. Experimental results

In this sub-section, the results and the performance of the pro-
posed method is presented. The trained Multi-COVID-Net model
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Fig. 4. (a) Generated ROC (b) Generated CM.
able 5
esults of the Multi-COVID-Net model.
Accuracy Sensitivity Specificity Precision F1 Score

98.27% 99.63% 97.59% 95.39% 97.46%

Table 6
Parameters of MOGOA.
Parameters Values

Dimension 8
Objective function 3
Number of iterations 20
Population size 200
Archive size 32
Lower bound [0.2, 0.01, 1.0000e−04, 0.2, 0.01, 1.0000e−04, 8]
Upper bound [0.9, 0.1, 2.0000e−04, 0.9, 0.1, 2.0000e−04, 64]

results are presented in Table 5, showing better performance
values.

4.4.1. ROC and CM
The ROC and CM have been generated to test the perfor-

ance of the Multi-COVID-Net model classification effective-
ess. The proposed Multi-COVID-Net produces better accuracy in
OVID-19 (98.88), Non-COVID-19 (97.40), and Pneumonia (97.77)
lasses. Hence this Multi-COVID-Net may be utilized for auto-
atic screening of COVID-19. The generated ROC and CM are
hown in Fig. 4. The selected parameters of the MOGOA is
resented in Table 6.

.4.2. Performance analysis with other classifiers
In this work, six standard DL networks are used for the classifi-

ation of the images. These are Decision Tree (DT) [37], K-Nearest
eighbor [38], Support Vector Machine (SVM) [39], Navies Bayes
NB) [40], Random Forest (RF) [41], CNN [42], Stack Encoder
SE) [43], ResNet50 [44], InceptionV3 [45], Ensemble Deep Learn-
ng Network (EDLN) [24] Without Optimization and proposed
nsemble Deep Learning Network (EDLN) with MOGOA Opti-
ization algorithms. The performance comparison of these net-
orks has done using metrics: accuracy, specificity, sensitivity,
recision, and F1 score, is given in Table 7. The performance

omparison in terms of the ROC and CM is illustrated in Figs. 5

8

Table 7
Performance comparison of classifiers.
Method Accuracy Sensitivity Specificity Precision F1 Score

DT 71.98 77.04 69.44 55.76 64.70
K-NN 73.95 96.67 62.59 56.37 71.21
SVM 77.16 94.07 68.70 60.05 73.30
NB 85.06 87.78 83.70 72.92 79.66
RF 86.67 84.41 86.30 76.13 81.38
CNN 91.96 87.04 95.93 91.44 89.18
SE 75.19 95.59 66.48 58.00 71.33
ResNet50 88.27 97.78 83.52 74.79 84.75
InceptionV3 91.85 93.33 91.11 84.00 88.42
EDLN 94.19 97.78 93.89 88.89 93.12
Proposed 98.27 99.63 97.59 95.39 97.46

and 6. ROC curve is the graphical representation to show the
classification ability of the network. The more the curve closer
to top left border of ROC space, results will be more accurate.
Fig. 5 compares the ROC curve of the proposed classifier with the
state of the art classifiers and shows the closest ROC curve toward
the top left of the ROC curve to prove its efficiency. From all
these comparisons, the optimized MOGOA model gives the best
accuracy compared to other DL networks.

4.4.3. Performance analysis with other optimization algorithms
This sub-section presents the performance comparison of dif-

ferent optimization algorithms with MOGOA. The optimization al-
gorithm are GA [46], Pattern Search (PS) [47], PSO [26], WOA [27],
Grasshopper Optimization Algorithm (GOA) [48], Multi-objective
Genetic Algorithm (MOGA) [28]and EDLN based Multi-objective
GOA (MOGOA). Table 8 shows the performance comparison of
optimized networks. From all these comparisons, MOGOA opti-
mized Multi-COVID-Net provides the best performance metrics in
terms of accuracy, sensitivity, specificity, Precision and F1 score
compared to other optimization techniques. Therefore, we offer
the proposed method as an accurate tool for screening COVID-19
patients.

4.4.4. Performance analysis with grid search optimization
Grid search strategy (GSS) is the conventional and most pop-

ular method used for optimization of the hyperparameters of
DL networks. GSS can be used to optimize only single objective
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Fig. 5. ROC of (a) DT (b) K-NN (c) SVM) (d) NB (e) RF (f) CNN (g) SE (h) ResNet50 (i) InceptionV3, (j) EDLN Without Optimization (k) EDLN with MOGOA Optimization
algorithms.
and hyper parameter space is specified manually to optimize the
single objective. GSS creates the grid of all the possible solutions
9

of specified hyperparameters space. The combination which gives
the best results from the grid, will be selected hyperparameters.
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Fig. 5. (continued).

10
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Table 8
Performance comparison of optimization algorithms.
Method Accuracy Sensitivity Specificity Precision F1 Score

GA 95.80 97.04 95.19 90.97 93.91
PS 94.95 95.56 93.15 87.46 91.33
PSO 95.19 96.30 94.63 89.97 93.02
WOA 94.44 97.78 92.78 87.13 92.15
GOA 96.30 98.15 95.37 91.38 94.64
MOGA 96.53 98.63 96.48 93.40 96.42
Proposed 98.21 99.63 97.59 95.39 97.46

Although GSS strategy is simple but the main drawback is the in-
crease in the number of iterations exponentially with the addition
of each parameter. Comparison of GSS with non-optimized and
MOGOA optimized network is sown in Fig. 7 with the variations
in the percentage of training images.

4.4.5. Performance analysis with another dataset
To observe the scalability and generalization of the proposed

rchitecture, another dataset is used to check the performance.
nother dataset is taken from the web link https://github.com/
rmiro/COVID-CXNet and https://www.kaggle.com/paultimothy
ooney/chest-xray-pneumonia which includes 200 images of
ach class: COVID-19, pneumonia, and normal. The test dataset is
irectly given as input to the proposed model. Model first do the
re-processing and resizing of the input image to make it fit to
he deep ensemble model. Hyper parameters of the DL networks
ill be fixed which are optimized using MOGOA. Table 9 shows
he performance comparison of the optimized and non-optimized
nsemble DL network in terms of accuracy, specificity, sensitivity,
recision and F1-score.

.5. Comparative analysis using cross-validation

Cross-validation (CV) is a re-sampling technique; it helps to
void over-fitting or under-fitting. It is utilized to evaluate the
roposed model with small data samples. The X-ray images have
11
split into training and testing samples and referred to the pa-
rameter k times. As such, this procedure is called k-fold cross-
validation. In this method, the k value is chosen as 10 (into
10 iterations). The experiments have been conducted between
optimized and non-optimized networks using the calculated error
rate k vs. a number of iterations. The performance of this 10-
old cross-validation network is presented in Fig. 8. From these
xperiments, the proposed optimized network produces a very
ess error rate than the non-optimized network.

.6. Computational complexity

The computational complexity of the ensemble network de-
ends on the number of deep learning architectures used for the
lassification. The complexity of ensemble network is calculated
sing O(2N ), where N is the total number of the networks. In the
roposed algorithm, two DL networks are ensemble, therefore the
alue of N = 2. Computational complexity of MOGOA optimiza-
ion is O(MP2), where M is the number of objectives and P is the
umber of solutions. Therefore, total computational complexity
f the proposed network is (O(2N ) + O(MP2)).

.7. Discussion

The millions of individuals are infected by COVID-19; hence
here is an urgent need for accurate screening of COVID-19. This
ork has been diagnosed with COVID-19 patients from non-
OVID-19 and pneumonia patients through CXR images. CXR is
n affordable and commonly available medical imaging modality
n all radiological centers and hospitals. The developed Multi-
OVID-Net was trained by 1890 numbers of CXR images, provid-
ng the best performance metrics.

The Multi-COVID-Net model performance was compared with
ther state-of-the-art DL networks. Also, the optimized Multi-
OVID-Net model has been compared with metaheuristic opti-
ization algorithms to prove its efficiency. The proposed
ulti-COVID-Net architecture has the ability to diagnose COVID-
9 patients without trained radiologists. The advantages of
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Fig. 7. Comparison of MOGOA with GSS.
Table 9
Performance comparison on another dataset.
Method Accuracy Sensitivity Specificity Precision F1 Score

Without optimization 91.00 99.50 86.75 78.97 92.91
With Proposed optimization 95.33 99.50 93.25 88.05 93.43
Fig. 8. Comparison with cross-validation.
12
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ulti-COVID-Net are twofold: first, the pre-processing step is
ot required to test the images, since the data augmentation
tep helps to resize the test images. Second, the pre-trained CNN
rchitecture is optimized using MOGOA on CXR images to avoid
verfitting issues to give better performances.
The limitation of the proposed work is as follows:

• Although the proposed Multi objective optimized ensemble
deep learning method provides the best performance, but it
is computational expensive as it uses two DL networks to
improve the efficiency.

• For implementation of multi objective optimization, it is
essential that Pareto optimal solutions should be well dis-
tributed across all objectives.

. Conclusions and future work

In this paper, a Multi-COVID-Net model was proposed to di-
gnose COVID-19 using chest X-ray images. For the diagnosis
f COVID-19, two pre-trained CNN architecture such as Incep-
ionV3 and ResNet50 were used. After a comprehensive literature
eview, it was discussed that the current gap is the lack of
arameter tuning of CNN using an optimization algorithm that
an substantially improve the accuracy. The MOGOA algorism was
hen employed for the effective training of these CNN networks
s the main contribution. The Multi-COVID-Net model was tested
n a wide range of dataset images. The Multi-COVID-Net model
erforms superior and produced better performance results than
ther DL networks and meta-heuristic optimization algorithms.
For future work, it is recommended to propose mechanisms

or reducing the computational cost of the proposed method,
specially in the archiving mechanism. Also, using proper solution
election technique from the archive to improve the distribution
f obtained Pareto optimal solutions across all objectives.
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