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A multi‑source information fusion 
approach in tunnel collapse risk 
analysis based on improved 
Dempster–Shafer evidence theory
Bo Wu1,2,3, Weixing Qiu1, Wei Huang1, Guowang Meng1, Jingsong Huang1 & Shixiang Xu1*

The tunneling collapse is the main engineering hazard in the construction of the drilling‑and‑
blasting method. The accurate assessment of the tunneling collapse risk has become a key issue in 
tunnel construction. As for assessing the tunneling collapse risk and providing basic risk controlling 
strategies, this research proposes a novel multi‑source information fusion approach that combines 
Bayesian network (BN), cloud model (CM), support vector machine (SVM), Dempster–Shafer (D–S) 
evidence theory, and Monte Carlo (MC) simulation technique. Those methods (CM, BN, SVM) are 
used to analyze multi‑source information (i.e. statistical data, physical sensors, and expert judgment 
provided by humans) respectively and construct basic probability assignments (BPAs) of input factors 
under different risk states. Then, these BPAs will be merged at the decision level to achieve an overall 
risk evaluation, using an improved D–S evidence theory. The MC technology is proposed to simulate 
the uncertainty and randomness of data. The novel approach has been successfully applied in the case 
of the Jinzhupa tunnel of the Pu‑Yan Highway (Fujian, China). The results indicate that the developed 
new multi‑source information fusion method is feasible for (a) Fusing multi‑source information 
effectively from different models with a high‑risk assessment accuracy of 98.1%; (b) Performing 
strong robustness to bias, which can achieve acceptable risk assessment accuracy even under a 20% 
bias; and (c) Exhibiting a more outstanding risk assessment performance (97.9% accuracy) than the 
single‑information model (78.8% accuracy) under a high bias (20%). Since the proposed reliable risk 
analysis method can efficiently integrate multi‑source information with conflicts, uncertainties, and 
bias, it provides an in‑depth analysis of the tunnel collapse and the most critical risk factors, and then 
appropriate remedial measures can be taken at an early stage.

The highways are extremely important infrastructures for most countries. It ensures communication and devel-
opment between different regions, especially in the mountains and hilly areas. Most of the surrounding rocks of 
highway tunnels are mainly hard rock mass, and the geological conditions of the crossing sections are complex 
and  changeable1. Hard rock tunnels are mostly constructed by drilling and blasting. Due to various risk factors 
in the complex project environment, safety violations often occur in highway tunnel construction. The collapse 
is one of the most frequent and harmful geological hazards during the construction of a tunnel. Because the 
collapse was sudden and instantaneous, it was difficult to predict and the construction workers did not have 
enough time to escape. Once the tunnel collapse occurs, it may cause serious economic losses, construction 
delays, and even human casualties. Therefore, it is necessary to research the risk mechanism of tunnel collapse 
by considering the accident scenario and safety analysis, aiming to provide decision support for assuring the 
safety of tunnel construction.

In recent years, a lot of research work has been carried out in tunnel collapse risk assessment.  Zhou2 pro-
posed a method for tunnel collapse risk analysis based on the fuzzy Analytic Hierarchy Process. He discussed 
the collapse mechanism of mountain tunnels and proposed a list of risk factors for tunnel collapse. The Bayesian 
network is used to conduct a quantitative analysis of safety risks in the Wuhan Yangtze River Metro  Tunnel3. Wu 
et al.4 proposed an evaluation method based on a dynamic Bayesian network to provide a real-time dynamic risk 
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assessment for tunnel construction. An optimization method for the preliminary support parameters was pro-
posed based on the genetic algorithm (GA) and combined covariance Gaussian process regression (CCGPR) cou-
pled algorithm presented to provide a complete information-based construction method for tunnel  engineering5. 
There are also many studies using artificial intelligence for risk assessment to realize the automation and intel-
ligence of assessment.  Pan6 used artificial intelligence to monitor the entire life cycle of real complex projects. 
The artificial neural networks are used to assess the risk of shield drilling under severe ground conditions such 
as squeezing  grounds7.

However, since the above evaluation methods only focus on a single information source, the reliability and 
accuracy of the security risk assessment cannot be guaranteed. Incomplete consideration of information can 
lead to inaccurate assessment results, which can not provide accurate recommendations to decision  makers8. 
This would defeat the purpose of the risk assessment. In comparison, the fusion model can greatly improve the 
accuracy of prediction results due to it has a better understanding of risk  factors9. For example, a fusion model is 
proposed to predict the risk of water inrush  disasters10. The fusion of sensor data and simulation data improves 
the accuracy of the structural safety risk  assessment9. Nowadays, there has been an increasing interest in the 
development of modern information technology and Internet technology, which makes the processing and 
analysis of data from multiple sources particularly important. The data fusion technology may prove to be more 
helpful to meet the security risk management needs of the tunnel construction than point-based  methods11. 
Over the years, various information fusion studies have been proposed, such as Dempster–Shafer (D–S) evidence 
 theory12,13, maximum entropy  method14, rough  sets15, etc. Among the above information fusion methods, D–S 
evidence theory is an effective and commonly used method in the field of information fusion. However, the tradi-
tional D–S theory of evidence has two disadvantage that may not be appropriate in practical situations. (1) When 
multiple sources of information are evaluated differently, D–S theory gives fusion results that are contrary to 
common sense. (2) The probability distribution is based on a user-defined function or distribution, which is too 
ideal for practical purposes. To solve the above problems, This research proposes a novel risk assessment approach 
that integrates Monte–Carlo (MC) simulation technique, normal cloud model (CM), Bayesian networks (BN), 
probabilistic support vector machine (SVM), and improved D–S evidence theory. The tunneling collapse risk 
probability distribution is obtained by analyzing different information sources with different models. Finally, the 
judgment of each model is fused to give the overall collapse risk result. This model aims to achieve the following 
goals: (1) Constructing models to estimate the collapse risk according to the expert judgment, monitoring data, 
and tunneling collapse database; (2) The judgment of the models is fused to get the final collapse risk assessment 
result; (3) Evaluating the performance of the models to quantify the quality of judgment.

Literature review
Dempster–Shafer (D–S) evidence theory. Information sources are usually divided into three catego-
ries, namely statistical data, physical sensors, and expert judgment provided by  humans14. Among them, statis-
tical data and physical sensors are called hard information. Humans act as soft sensors and execute decision-
making processes through a web-based  system16. Regarding evidence, each source of information constitutes 
all the evidence on which the decision is  based17. In the complex decision-making process, how to compose 
multiple sources of evidence that may conflict with each other has become a challenging task. So far, over the 
years, various information fusion researches have been proposed, such as rough  set15,18, Dempster–Shafer (D–S) 
evidence  theory8,17, maximum entropy  approach14, and others. Among the above-mentioned information fusion 
methods, D–S evidence theory is an effective and common method in the field of information fusion. Pan et al.9 
proposed a risk analysis method based on SVM and D–S evidence theory to fuse different monitoring data, in 
order to evaluate the structural health status. Zhang et al.19 developed a novel safety risk assessment method 
based on D–S evidence theory and the cloud model to perceive the safety risk of buildings adjacent to the tun-
neling excavation.

However, the traditional D–S evidence theory cannot deal with highly conflicting evidence and will lead to 
unexpected and counter-intuitive results and make the evidence fusion approach  insignificant19. In order to 
minimize the negative effect of high-conflict evidence, this paper adopted an improved D–S evidence theory by 
combining the weighted mean rule and the D–S evidence theory to solve the above problem.

Classification method. For classification problems, support vector machines (SVM) and artificial neural 
networks (ANN) are the two main supervised learning algorithms in the field of machine  learning20. Although 
ANN has provided a powerful tool for the research on tunnel  construction21,22. There are still limitations such as 
long calculation time, spatial disasters, local minima, overfitting, etc.6,23. Due to the small sample of training data 
for the tunneling collapse case in this paper, classification using neural networks will be prone to overfitting. The 
support vector machines (SVM), as a method parallel to artificial neural networks (ANN), is a machine learning 
method established based on the principle of structural risk minimization and the statistical learning theory for 
a small sample. The SVM has higher accuracy in a small number of training data predictions. Therefore, this 
article attempts to use SVM to process statistical data for collapse risk assessment.

Methodology
In order to improve the credibility and robustness of the tunnel collapse risk evaluation, a new hybrid multi-
source information fusion method is proposed. Figure 1 is a flowchart of the tunnel collapse risk analysis method 
in this paper. In the developed method, all available data from the construction process is collected for risk 
analysis to improve the accuracy and robustness of the assessment results. In the process of data fusion, an 
improved D–S evidence theory is utilized to refine and synthesize different classification results generated from 
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probabilistic models. According to the characteristics of different information sources, choose the correspond-
ing probability model.

For statistical data, since the statistical data has been classified, SVM with the advantage of small sample clas-
sification is used for risk assessment. For physical sensors, quantitative monitoring data needs to be mapped to 
qualitative collapse risk values. The CM combines fuzzy mathematics and probability theory to map qualitative 
concepts and quantitative data and is therefore used to process monitoring data during the constructs of BPAs. 
For expert judgment provided by humans, Bayesian Networks (BN) is used to investigate causal relationships 
between tunnel collapse and its influential variables based upon the risk/hazard mechanism analysis and expert 
scores.

In collapse risk assessment, the MC simulation can conduct risk analysis by constructing a calculation model 
containing a series of inherent uncertain  variables24. It can estimate all possible decision results and evaluate 
the impact of risks in an uncertain  environment25. The MC simulation is adopted to simulate measurement and 
human error, proving the robustness of the hybrid approach. A typical hazard concerning the tunnel collapse 
in the construction of the Fujian Jinzhupa Tunnel in China is presented as a case study. The results demonstrate 
the feasibility of the proposed approach and its application potential.

BPA construction. Normal cloud model. The normal cloud model is a new cognition model of uncertain-
ty, proposed by Li et al.26. It can synthetically describe the randomness and fuzziness of elements and implement 
the uncertain transformation between a qualitative concept and its quantitative value. The normal CM can be 
determined by numerical characteristics (Ex, En, He). The Expectation “Ex” is the expectation of the cloud drop-
lets in the universe of discourse and the typical sample of a qualitative concept. The Entropy “En” is the entropy 
of “Ex”, representing the uncertainty measurement of a qualitative concept. Hyper-entropy “He” represents the 
uncertainty degree of Entropy “En”.

Let X be the universe of discourse and B be a qualitative concept connected with X. If there is a number x, 
(1)x ∈ X , (2) x is a random instantiation of concept B, (3) x satisfies Eq. (1), the grade of a certain degree of x 
belonging to concept B satisfies Eq. (2)26:
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Figure 1.  Flowchart of the proposed hybrid method for multi-source information fusion decision.
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The tunneling collapse risk assessment is a multi-source information decision-making problem under uncer-
tain conditions. Various tunnel collapse risk factors Bi are analyzed in the decision-making process. In order 
to explore useful information from multiple sources, each risk factor should be further divided into different 
risk states Bij (i = 1, 2, …, M; j = 1,2, …, N). Each risk state can correspond to a specific double limit interval, 
denoted as [bij(L), bij(R)]. The conversion from the double limit interval [bij(L), bij(R)] to the normal cloud model 
(

Exij ,Enij ,Heij
)

 can be achieved by Eq. (3)26.

where, “Exij” is the expectation; “Enij” is the entropy of “Exij”, “Heij” is the Hyper-entropy. The range of the con-
stant “h” is from 0 to “Enij” which is adapted to reflects the uncertainty degree of those factors.

In the CM framework, the correlation can measure the relative membership between the observed value bij of 
the factor Bi and the cloud model of a specific risk state Bij. The measurement of BPAs under different risk states 
of influential factors can be obtained by Eq. (4)19.

where, mi(Bj) is the belief measure;  En′ represents a random number that satisfies En′ ∼ N
(

En,He2
)

 , and mi(Φ) 
represents the BPAs value in uncertain situations, that is, the focus element cannot be determined under the 
indicator Bi, so all elements are included.

Probabilistic SVM. The traditional linear SVM performs linear division by a hyperplane. This hyperplane is 
found by maximizing the separation margin, which is the distance between the hyperplane and the closest data 
point. The kernel function is used to map the original data from a low-dimensional space to a feature space with 
a high-dimensional space, which can obtain better classification accuracy. Besides, the penalty parameter C of 
the error term also plays a key role in classification accuracy. A high value of C means a strict classifier that does 
not admit many misclassified  points27. The discrimination function is:

where m is the size of the training data set, αi represents Lagrange multipliers, K(xi, x) is a kernel function, and 
b is a threshold parameter based on the training set.

The linear SVM only gives one class prediction output that will be either yes or no. To extract the associated 
probabilities from SVM outputs, several methods have been proposed. This research chooses Platt’s approach, 
which uses the Sigmoid function to map the output of the SVM to the interval [0, 1], as given by Eq. (6)9.

where a and b are the parameters computed from the minimization of the negative log-likelihood function on 
a set of training examples:

where ti is the new label of the classes: + 1 becomes t+ and − 1 becomes t−, N+ and N− are the number of points 
that belong to class 1 and class 2 respectively.

Bayesian network. The Bayesian network (BN) is a combination of two different mathematical areas, the prob-
ability theory, and graph theory. It consists of several conditional probability tables (CPT) and a directed acyclic 
graph (DAG)28. A BN model with n nodes can be represented as B〈G,�〉 , where G stands for a DAG with n 
nodes and Θ is defined as the CPT of the BN model. A general BN intuitively represents a complex network 
with n nodes and direct edges. The nodes {X1, · · · ,Xn} in the graph are labeled by related random variables. The 
directed edges between nodes represent the relationship between variables. Each node is attached to a CPT that 
contains the conditional probability of the parent node.

Assuming parents(Xi) is the parent nodes of Xi in DAG, the conditional probability distribution of Xi is 
defined as P

(

Xi|parents(Xi)
)

 . The calculation of P(x) can be written as Eq. (8)
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Improved D–S evidence theory. In this paper, the D–S theory is used to combine multi-source informa-
tion to obtain the tunnel collapse risk. Dempster’s combinational rule for multiple evidence is calculated with 
Eq. (9)19.

where K is defined to be the normalization factor. l is the number of evidence pieces in the process of combina-
tion, and i, j, k denotes the ith, jth, and kth hypothesis, respectively.

When the value of K is close to 1, there will be a high conflict, which means that Dempster’s evidence aggre-
gation rule will be meaningless. To deal with high-conflict evidence, this paper proposed a hybrid combination 
rule by combining the weighted mean rule and the Dempster’s rule. This article will use a threshold ξ to indicate 
high evidence conflicts. When K is greater than ξ, there is high evidence conflict, and the D–S evidence theory 
will be replaced by the weighted mean rule, as shown in Eq. (10)19. In this research, the value of the threshold ξ 
is defined to be 0.9519.

where l and L are the numbers of evidence and the number of hypotheses, respectively, and k is the kth hypothesis.

Tunnel collapse risk assessment. The collapse risk assessment can provide support for construction 
decision-making on site. Once the collapse risk drops to a high-risk level, certain precautions can be taken 
before the tunnel collapses. After multiple information sources are fused at the decision-making level, the result 
of tunnel collapse risk assessment depends on the maximum value of BPAs, as shown in Eq. (11). The confidence 
indicator mi(�) is designed to measure the credibility of the fusion result.

where Bi denotes collapse risk levels, Bw indicates the probability of different risk levels 
m(B) = {m(B1),m(B2), ...,m(Bn),m(�)}.

The sensitivity analysis of the tunneling collapse risk factors is proposed to reveal the sensitivity of system 
performance to small changes in risk factors. Up to now, some sensitivity analysis methods have been  proposed29. 
To consider the nonlinearity and interaction relationship between risk factors, this paper adopts global sensitiv-
ity analysis (GSA). Spearman’s rank correlation coefficient (a GSA measure) does not depend on distributions 
with a similar shape or being linearly related. The GSA measurement of the ith input factor Ci can be calculated 
by Eq. (12)30.

where P is the number of the repeated interactions; R(xpi )
(

R(tp)
)

 is the rank of xpi
(

tp
)

 among the simulated input 
data; R(xpi )

(

R(tp)
)

 is the mean value of R(xpi )
(

R(tp)
)

.

A case study
The Jinzhupa Tunnel is a twin-tube highway tunnel. The right and left tunnels are 782 m and 771 m long, 
respectively. This paper takes the left line (ZK242 + 548 ~ ZK243 + 319) as the object of study. The fault struc-
ture along the left line of the tunnel is shown in Fig. 2. There are 316 m of V-level surrounding rock section 
and 455 m of IV-level surrounding rock section. The rock mass is mainly composed of the residual silty clay, 
granite fully weathered layer, and broken strong weathered layer. Furthermore, there is a fracture fragmentation 
zone at section ZK243 + 139 ~ 160. Affected by this, the rock mass is relatively broken, showing a huge mosaic 
structure or broken mosaic structure. The rock mass is broken and has varying degrees of weathering. During 
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the construction process, it is easy to cause tunnel collapse and water burst. Therefore, it is urgent to conduct a 
collapse risk assessment of the tunnel to reduce the losses caused by the collapse. In the proposed fusion method, 
the following four steps are adopted:

Step (1) Collapse risk assessment based on statistical data: The risk mechanism of tunneling collapse is ana-
lyzed to reveal the potential risk factors. Then the collected tunneling collapse data set are used to train SVM 
models.

Step (2) Collapse risk assessment based on expert judgment: According to the construction personnel’s 
description of the site situation, the Bayesian network is used to assess the collapse risk.

Step (3) Collapse risk assessment based on monitoring data indicator: Using the arch displacement and 
horizontal convergence displacement monitoring data of the tunnel as the information source, the cloud model 
is applied for collapse risk assessment.

Step (4) Multi-source information fusion: The results of the above three assessment models are used as infor-
mation sources and fused using the improved D–S theory to obtain the overall tunneling collapse risk value.

Step (5) Robustness of risk assessment results: Different percentages of deviation (5%, 10%, 15%, and 20%) 
were added to the collected data. The robustness of the proposed hybrid method is further validated in the pres-
ence of unavoidable data biases.

Result and analysis
Collapse risk assessment based statistical data. Risk/hazard identification in the tunnel collapse. In 
actual engineering, the tunneling collapse may be affected by many factors, which interact with each other. Many 
 scholars31–34 have studied the risk factors of collapse and established a similar index system. Referring to previ-
ous researches, a total of 15 risk factors are selected, as shown in Table 1. The risk factors are analyzed in detail 
as shown in  researches2,35. At the same time, the safety status of each tunnel collapse risk factor is divided into 
four levels, as shown in Table 1.

Choice of kernel function and parameters. In order to construct the SVM model, a dataset of 70 tunnel collapses 
was collected from the  study2 and classified according to Table 1. The dataset is used as training data, and the 
optimal hyperparameters (C, γ) of the SVM model are found using the grid search method. Due to the limited 
input data, the fivefold cross-validation is conducted to determine the best value of the penalty parameter C and 
the gamma γ. Pairs of (C, γ) with different values are tested in the SVM model, and their corresponding results 
about the classification accuracy as shown in Fig. 3. The search range for the optimal hyperparameters (C, γ) is 
 [2−8,  28]. When the parameter C = 4, γ = 0.17678, the accuracy of classification is the highest.

Calculation of the collapse risk probability. According to Eq. (6), the probability of different collapse risk levels 
is calculated. Since the fracture zone is prone to collapse during excavation, this paper assesses the collapse risk 
of the fracture zone. In tunnel sections (ZK243 + 130 ~ 330), every 10 m of the tunnel section is selected as a 
testing sample, and 20 samples are taken. The SVM model (C = 4, γ = 0.17678) is utilized to evaluate the collapse 
risk value of the testing sample(risk factor level probability distribution as input and collapse risk probability as 
output), the classification results as shown in Table 2. The risk level of tunnel collapse with the highest probability 
in the bold font in Table 2 represents the classification result. Despite the high accuracy of the probabilistic SVM 
evaluation results, it is worth noting that the second-highest probability is very close to the highest value in some 
of the prediction results. For example, a tunnel section No.9, the probability of tunnel collapse for class I (0.45) 
and class II (0.50) is very close, which means that the results are very uncertain.

Collapse risk assessment based on expert judgment. Establishment of the DAG and CPT. The 
DAG is mainly constructed by directed edges and node variables that represent the probability causality between 
node variables. In combination with the risk factors in Table 1, the DAG can be established, as shown in Fig. 4. 
To reduce the uncertainty of expert judgment, an expert survey based on confidence index is used to construct 
the conditional probability tables (CPT), the detail as seen in the  research34.

Figure 2.  Fault structures along the Jinzhupa Tunnel (Figure no. 2 was drawn using AutoCAD software with 
version no. AutoCAD 2017 and link: https:// www. autod esk. com. cn/).

https://www.autodesk.com.cn/
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Calculation of the tunneling collapse risk. Similarly, taking the above 20 sections as examples, experts were 
invited to rate the risk factors in Table 1. The each risk score value is entered into CPT, and then the probability 
distribution of collapse risk values is obtained by Eq. (8), the result as shown in Table 3.

Compared with the prediction results of the probability SVM, the accuracy of the model is lower. The second-
highest probability in some prediction results is also very close to the highest value. For example, a tunnel section 
No.1, the probability of tunnel collapse for class II (0.48) and class III (0.52) is very close, which means that the 
results are very uncertain.

Collapse risk assessment based on monitoring data indicator. Monitoring data indicator sys-
tem. The monitoring measurement data includes the displacement of the vault, the surface settlement of the 
shallow buried section, and the change of the surrounding rock convergence. These data can reflect the stability 
of the tunnel support after the initial lining, thereby assessing the risk of collapse. Combined with this project, 
the vault displacement and the convergence displacement are used to analyze the collapse risk. According to the 
Chinese standards “Technical code for monitoring measurement of highway tunnel (DB 35/T 1067-2010)” and 
“Technical specification for construction of highway tunnel (JTG/T 3660-2020)”, the daily deformation rate and 
cumulative deformation of the two-monitoring data are divided into four levels, as shown in Table 4 where, the 
cumulative deformation (y) should be multiplied by the coefficient (ζ) according to the distance between the 
measuring point and the excavation surface (D), the detail as shown in Table 5where B is the face span of the 
excavation section.

Monitoring data collection. The tunnel is excavated by the bench method, and the monitoring points and meas-
uring points are arranged as shown in Fig. 5. Among them, point A, B, and C are the monitoring points for the 
settlement of the vault, DE and FH are the surrounding rock convergence line. The surrounding rock displace-
ment is monitored once in the morning and once in the evening, and the average value is taken as the monitoring 
value of the day.

Calculation of the tunneling collapse risk. According to Eq. (3), the cloud model parameter values (Ex,En,He) 
of the two monitoring indicators are constructed, as shown in Table 6. Finally, the tunnel collapse risk BPAs is 
constructed by Eq. (4).

The cloud model is used to obtain the BPAs of the cumulative settlement and daily settlement of the monitor-
ing data (A, B, C, DE, and FH), and the improved D–S theory is used to fuse them separately to obtain the risk 
level. Finally, the maximum value of the two result is selected as the collapse risk value, the flowchart as shown 
in Fig. 6.

Table 1.  Classified states of tunnel collapse risk factors.

Factors I II III IV

Tunnel collapse (T) Safe Deformation Small-scale collapse Large-scale collapse

Geometric factor (B1) No risk Low risk Medium risk High risk

Geological factors (B2) No risk Low risk Medium risk High risk

Construction technology (B3) No risk Low risk Medium risk High risk

Construction management factors 
(B4)

No risk Low risk Medium risk High risk

Excavation span (m) (X1) < 7 7–10 10–14 > 15

Depth-to-height ratio (H0/H) (X2) > 20 15 ~ 20 10 ~ 15 < 10

Rock mass grade (X3) I (81 ~ 100) II (61 ~ 80) III (41 ~ 60) IV, V (< 40)

Groundwater level ((H0 + H)/Hw) 
(X4)

< 5 5 ~ 20 20 ~ 35 > 35

Unfavorable geology (X5) Non-Catastrophability (76 ~ 100) Weak Catastrophability (51 ~ 75) Medium Catastrophability (26 ~ 50) Strong Catastrophability (0 ~ 25)

Bias angle (°) (X6) < 10 10 ~ 25 25 ~ 40 > 40

Primary support stiffness (X7) Reasonable Almost reasonable Unreasonable Extremely unreasonable

Ground reinforcement measures 
(X8)

Accurate Almost accurate Inaccurate Extremely inaccurate

Excavation method (X9) CRD CD Bench Full face

Waterproofing and drainage meas-
ures (X10)

Reasonable Almost reasonable Unreasonable Extremely unreasonable

Timeliness of primary 
support(min) (X11)

< 30 30 ~ 60 60 ~ 120 > 120

Monitoring (X12) Reasonable Almost reasonable Unreasonable Extremely unreasonable

Construction quality (X13) Good (76 ~ 100) Fair (51 ~ 75) Poor (26 ~ 50) Very poor (0 ~ 25)

Accuracy of geological investiga-
tion (%) (X14)

 > 90 75 ~ 90 60 ~ 75  < 60

Rationality of procedure 
linkage(X15)

Reasonable Almost reasonable Unreasonable Extremely unreasonable
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Figure 3.  Support Vector Machines evaluation accuracy based on pairs of (C, γ). (Figure no. 3 was drawn using 
Matlab software with version no. Matlab 2020 and link: https:// ww2. mathw orks. cn/).

Table 2.  Results of probabilistic Support Vector Machines. Significant values are in bold.

Tunnel section m (I) m (II) m (III) m (IV) Predicted risk Ture risk

No.1 0.14 0.60 0.18 0.08 II II

No.2 0.02 0.02 0.94 0.02 III III

No.3 0.04 0.91 0.03 0.01 II II

No.4 0.64 0.30 0.06 0.00 I II

No.5 0.04 0.91 0.03 0.02 II II

No.6 0.03 0.91 0.04 0.02 II II

No.7 0.07 0.87 0.04 0.02 II II

No.8 0.91 0.03 0.03 0.03 I I

No.9 0.45 0.50 0.02 0.03 II I

No.10 0.83 0.09 0.04 0.04 I I

No.11 0.03 0.89 0.05 0.03 II II

No.12 0.01 0.93 0.01 0.05 II III

No.13 0.87 0.08 0.03 0.02 I I

No.14 0.92 0.04 0.02 0.02 I I

No.15 0.05 0.91 0.02 0.01 II II

No.16 0.87 0.08 0.02 0.02 I I

No.17 0.05 0.90 0.03 0.02 II II

No.18 0.86 0.08 0.03 0.03 I I

No.19 0.91 0.03 0.03 0.03 I I

No.20 0.03 0.91 0.04 0.02 II II

https://ww2.mathworks.cn/
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Figure 4.  DAG of Bayesian network.

Table 3.  Results of Bayesian network at ten monitoring sections. Significant values are in bold.

Tunnel section m (I) m (II) m (III) m (IV) Predicted level Ture level

No.1 0.00 0.48 0.52 0.00 III II

No.2 0.00 0.00 0.93 0.07 III III

No.3 0.00 0.70 0.30 0.00 II II

No.4 0.00 0.96 0.04 0.00 II II

No.5 0.00 0.96 0.04 0.00 II II

No.6 0.78 0.22 0.00 0.00 I II

No.7 0.00 0.97 0.03 0.00 II II

No.8 0.84 0.16 0.00 0.00 I I

No.9 0.19 0.81 0.00 0.00 II I

No.10 0.87 0.13 0.00 0.00 I I

No.11 0.00 0.99 0.01 0.00 II II

No.12 0.00 0.01 0.83 0.17 III III

No.13 0.96 0.03 0.01 0.00 I I

No.14 0.65 0.35 0.00 0.00 I I

No.15 0.07 0.93 0.00 0.00 II II

No.16 0.33 0.67 0.00 0.00 II I

No.17 0.01 0.98 0.00 0.00 II II

No.18 0.66 0.33 0.01 0.00 I I

No.19 0.18 0.82 0.00 0.00 II I

No.20 0.00 0.93 0.07 0.00 II II

Table 4.  Classified states of monitoring measurement data.

Tunnel collapse level I (safe) II (deformation) III (small-scale collapse) IV (large-scale collapse)

Daily deformation rate (mm/day) 0 ≤ x < 2 2 ≤ x < 5 5 ≤ x < 10 10 ≤ x ≤ 20

Cumulative deformation (mm) 0 ≤ y < 50 50 ≤ y < 100 100 ≤ y < 200 200 ≤ y ≤ 300

Table 5.  The coefficient (ζ) of the cumulative deformation (y).

The distance between the measuring point and the excavation surface (D) 1B 2B 3B 4B ~ 4B

ζ 0.5 0.75 0.85 1
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Figure 5.  Schematic diagram of monitoring point layout.

Table 6.  Cloud models parameter value of the two monitoring indicators.

Indicators

I II III IV

Ex En He Ex En He Ex En He Ex En He

Daily settlement 1 0.333 0.002 3.5 0.5 0.002 7.5 0.833 0.002 12.5 0.833 0.002

Cumulative settlement 25 8.333 0.002 75 8.333 0.002 150 16.777 0.002 250 16.777 0.002

Start

The daily settlement 
value of sensor 
(A,B,C,DE,FH)

The cumulative 
settlement of sensor 

(A,B,C,DE,FH)

Improved Dempster's 
Fusion rule

Cloud model 1

BPA 

Safety level 
identification (X)

Improved Dempster's 
Fusion rule

Cloud model 2

BPA 

Safety level 
identification (Y)

X>Y

Safety level is X Safety level is Y

Yes No

End

Figure 6.  Flowchart of monitoring data processing.
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According to the flowchart shown in Fig. 6, The monitoring data from the above 20 sections were used for 
collapse risk assessment. According to Eq. (4), the monitoring data are converted into risk probability distribution 
values, the result as shown in Table 7. Obviously, in tunnel sections (No.6 and No.9), the probability of tunnel 
collapse for class I (0.50) and class II (0.50) is very close, which means that the results are very uncertain. It is 
difficult to make an accurate judgment on the risk of tunnel collapse.

Multi‑source information fusion. In order to settle the problem of unreliable evaluation results of single-
information sources, the improve D–S evidence theory (section 2.4) is used to fuse the multi-source data. This 
method combines the different results of the three above-mentioned single-source assessment methods. Accord-
ing to Eqs. (9) and (10), the fusion results can be calculated, the result as shown in Table 8. To demonstrate the 
effectiveness of the new fusion method, several sections with conflicting information were selected for compari-
son with the traditional D–S theory, as shown in Table 9. The following conclusions can be obtained:

(1) The multiple-information fusion method proposed in this paper can improve the accuracy and reduce 
uncertainty in the tunnel collapse risk evaluation. Only section evaluation error appears at section No. 9, 
indicating that the evaluation accuracy rate of 20 sections has reached 95%. The confidence indexes m(Θ) 
of the 20 tunnel sections are all close to 0, which means that the uncertainty of the results is 0.

(2) The proposed method can solve the problem of inconsistent results of the three risk assessment methods 
effectively. For example, because the results of the three risk categories are different (SVM and CM belong 
to level I and BN belong to level II), the single-source risk assessment method cannot directly assess the 
overall tunnel collapse risk level of the monitoring section 4. The multi-source information fusion method 
is used to evaluate the monitoring section 4 and the results are shown in Table 8. The BPAs value of tunnel 
collapse risk level II (that is m (II)) is equal to 1, which means that the collapse risk level for the monitoring 
section 4 is level II with a high confidence level

(3) When the evaluation results of three single information sources are different (e.g. Tunnel section No.1 and 
No.12), the fusion result of the improve D–S theory is better than the tradional D–S theory. Dempster’s 
rule accumulates consensus support only and rejects a proposition completely if it is opposed by any evi-
dence, no matter what support it may get from any other evidence. As a result, when three kinds of single 
information evaluation give different results, the tradional D–S theory will give a fusion result contrary 
to common sense. The improve D–S theory has high accuracy when merging high conflict information 
sources because it combines the weighted mean rule.

Verification of evaluation results. When the tunnel was excavated to section ZK243 + 143, the tunnel 
vault collapsed, as shown in Fig. 7. This is due to the section being in the fracture zone of the surrounding rock 
and the insufficient strength of the tunnel lining support, resulting in the tunnel collapse. The multi-source 
information fusion assessment method was applied to this section for collapse risk assessment, the results as 

Table 7.  Results of Cloud model at ten monitoring sections. Significant values are in bold.

Tunnel section m (I) m (II) m (III) m (IV) m (Θ) Predicted level Ture level

No.1 0.52 0.46 0.00 0.00 0.02 I II

No.2 0.00 0.00 1.00 0.00 0.00 III III

No.3 0.48 0.50 0.00 0.00 0.02 II II

No.4 0.00 0.95 0.00 0.00 0.05 II II

No.5 0.01 0.97 0.00 0.00 0.02 II II

No.6 0.50 0.50 0.00 0.00 0.00 – II

No.7 0.00 1.00 0.00 0.00 0.00 II II

No.8 1.00 0.00 0.00 0.00 0.00 I I

No.9 0.50 0.50 0.00 0.00 0.00 – I

No.10 0.00 0.99 0.00 0.00 0.01 II I

No.11 0.41 0.53 0.00 0.00 0.06 II II

No.12 0.00 0.60 0.35 0.00 0.05 II III

No.13 0.96 0.00 0.00 0.00 0.04 I I

No.14 1.00 0.00 0.00 0.00 0.00 I I

No.15 0.03 0.90 0.00 0.00 0.07 II II

No.16 0.58 0.40 0.00 0.00 0.02 II I

No.17 0.00 0.93 0.00 0.04 0.03 II II

No.18 1.00 0.00 0.00 0.00 0.00 I I

No.19 0.98 0.00 0.00 0.00 0.02 I I

No.20 0.00 1.00 0.00 0.00 0.00 II II
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Table 8.  Results of multi-source information fusion at ten monitoring sections. Significant values are in bold.

Tunnel section m (I) m (II) m (III) m (IV) m (Θ) Predicted level Ture level

No.1 0.00 0.99 0.01 0.00 0.00 II II

No.2 0.00 0.00 1.00 0.00 0.00 III III

No.3 0.00 1.00 0.00 0.00 0.00 II II

No.4 0.00 1.00 0.00 0.00 0.00 II II

No.5 0.00 1.00 0.00 0.00 0.00 II II

No.6 0.00 1.00 0.00 0.00 0.00 II II

No.7 0.00 1.00 0.00 0.00 0.00 II II

No.8 1.00 0.00 0.00 0.00 0.00 I I

No.9 0.17 0.83 0.00 0.00 0.00 II I

No.10 0.85 0.11 0.02 0.02 0.00 I I

No.11 0.00 1.00 0.00 0.00 0.00 II II

No.12 0.00 0.35 0.64 0.01 0.00 III III

No.13 1.00 0.00 0.00 0.00 0.00 I I

No.14 1.00 0.00 0.00 0.00 0.00 I I

No.15 0.00 1.00 0.00 0.00 0.00 II II

No.16 0.88 0.12 0.00 0.00 0.00 I I

No.17 0.00 1.00 0.00 0.00 0.00 II II

No.18 1.00 0.00 0.00 0.00 0.00 I I

No.19 1.00 0.00 0.00 0.00 0.00 I I

No.20 0.00 1.00 0.00 0.00 0.00 II II

Table 9.  Comparison of fusion methods. Significant values are in bold.

Tunnel section Evaluation model Probability over Class I Probability over Class II
Probability over Class 
III

Probability over Class 
IV Predicted label True label

No.1

E1 0.14 0.6 0.18 0.08 II II

E2 0.00 0.48 0.52 0.00 III II

E3 0.52 0.46 0.00 0.00 I II

Fusion
Improve 0.00 0.99 0.01 0.00 II II

Traditonal 0.65 0.35 0.00 0.00 I II

No.2

E1 0.02 0.02 0.94 0.02 III III

E2 0.00 0.00 0.93 0.07 III III

E3 0.00 0.00 1.00 0.00 III III

Fusion
Improve 0.00 0.00 1.00 0.00 III III

Traditonal 0.00 0.00 1.00 0.00 III III

No.3

E1 0.04 0.91 0.03 0.01 II II

E2 0.00 0.70 0.30 0.00 II II

E3 0.48 0.50 0.00 0.00 II II

Fusion
Improve 0.00 1.00 0.00 0.00 II II

Traditonal 0.00 1.00 0.00 0.00 II II

No.4

E1 0.64 0.30 0.06 0.00 I II

E2 0.00 0.96 0.04 0.00 II II

E3 0.00 0.95 0.05 0.00 II II

Fusion
Improve 0.00 1.00 0.00 0.00 II II

Traditonal 0.00 1.00 0.00 0.00 II II

No.12

E1 0.01 0.93 0.01 0.05 II III

E2 0.00 0.01 0.83 0.17 III III

E3 0.00 0.64 0.36 0.00 II III

Fusion
Improve 0.00 0.35 0.64 0.01 III III

Traditonal 0.10 0.90 0.10 0.00 II III
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shown in Table 8 (No.2 tunnel section). The results indicate that the section is at small-scale collapse risk with a 
probability of 1. This section is likely to occur a small-scale collapse if the support conditions are not strength-
ened. The tunneling collapse risk assessment results are consistent with reality, which proves the usefulness of 
the assessment method in the actual construction process.

Robustness of risk assessment results. In actual engineering, due to the influence of measurement 
errors and human factors, data from multi-source observations may have inevitable deviations. This article will 
use the MC simulation technology to simulate the uncertainty of the data. The factors affecting tunnel collapse 
are assumed to obey normal distribution. To further verify the robustness of the proposed hybrid method under 
unavoidable deviations, we added different deviation percentages (i.e. 5%, 10%, 15%, and 20%) to the collected 

Figure 7.  Tunnel collapse.

Figure 8.  Tunnel collapse risk assessment results after 1000 iterations under different deviation levels at four 
section: (a) No.1; (b) No.2; (c) No.3; (d) No.8.
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data. In this paper, the number of repeated iterations P is set to 1000. Figure 8 shows the results of tunnel collapse 
risk assessment after 1000 iterations for 4 tunnel sections (No. 1, 2, 3, and 8) at different offset levels. Figure 9 
shows the global sensitivity analysis about tunnel section No. 2. The following conclusions can be obtained:

(1) The proposed multi-source information fusion approach has good robustness to deviation. In order to 
better understand the bias, Fig. 8 shows the frequency of a certain collapse risk level after 1000 iterations 
under different biases in 4 tunnel sections (No.1, No.2, No.3, and No.8). When the percentage of bias is 
increased, the accuracy of the risk assessment will be slightly reduced, but it will remain at a high level. 
Obviously, all data with a deviation of less than 10% can almost achieve an evaluation accuracy rate close 
to 100%, proving that the method is accurate and reliable under low bias. When the deviation is 20%, the 
evaluation accuracy of all tunnel sections is still higher than 90%, which proves that the method has strong 
robustness under high deviations. Anymore, the accuracy of the assessment of the No. 3 tunnel section 
under each level of bias has reached 100%. This is because the results of the three single-information 
evaluation methods of tunnel section No. 3 are consistent [that is, the results of all three different models 
are risk level II (Deformation)], so no conflicting information will have a negative impact on the result of 
multi-source information fusion.

(2) Since the No. 2 tunnel section is in a dangerous state (Small-scale collapse), a global sensitivity analysis is 
performed on this part to find out the key risk factors that affect the tunnel collapse. Therefore, some meas-
ures to prevent tunnel collapse can be taken in advance. The Spearman’s rank correlation coefficient [Eq. 
(12)] is used to measures the degree of influence of risk factors on the risk level of the tunneling collapse. 
As shown in Fig. 9, X3, X5, X6, and X11 are the top four risk factors that have the greatest impact on tunnel 
collapse. To reduce the risk level of tunnel section No.2, more attention should be paid to these four risk 
factors. In addition, when the deviation level increases to 20%, the results of the most sensitive risk factors 
remain unchanged, again verifying the robustness of the proposed method.

Discussion
There is no doubt that the single-source information assessment method also can estimate the tunnel collapse risk 
level. However, the single source of information does not fully reflect the environment of the tunnel construction, 
resulting in a certain bias and low accuracy of the assessment results. To compare the single-source information 
evaluation method with the multi-source information fusion method, the Monte Carlo simulation is used to 
simulate the inevitable uncertainty, and the four evaluation methods are calculated 1000 times. The tunneling 
collapse risk assessment results of four assessment methods iterate 1000 times under different deviation levels 
at tunnel section No.2, as shown in Fig. 10. The following conclusions can be obtained:

The single-source information assessment method (Fig. 10a–c) can get an accurate assessment result in case 
of small deviations, but it performs poorly at high bias. The multi-source information fusion method is more 
robust than the single-source information assessment method. As seen in Fig. 10d, the multi-source information 
fusion method has a higher accuracy of assessment under a large bias, proving that the proposed method has 
good robustness. This is because the proposed method makes full use of available information, including contra-
dictory information. When the data deviation is 20%, the evaluation accuracy of the single-source information 
evaluation method is less than 80% in 1000 iterations. In order words, the single-source information assessment 
method has a high sensibility to bias. However, the multi-source information fusion method can still have 97.9% 

Figure 9.  Global sensitivity analysis of 15 risk indicators (No. 2 section).
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accuracy of assessment in a 20% bias. This method is a good solution to the data bias caused by the large amount 
of uncertainty and complexity of the underground environment.

Conclusions and future works
This paper proposes a multi-source information fusion method for the tunneling collapse risk assessment, which 
provides risk warning and decision-making suggestions for tunnel excavation. The analysis process consists of 
four main steps: (1) Risk assessment systems are established for the three information sources (i.e. statistical 
data, physical sensors, and expert judgment provided by humans) separately; (2) The three information sources 
are processed by the BN, CM, and SVM respectively to obtain the BPAs of the collapse risk; (3) All predictions 
from three different assessment method are fused to obtain the overall tunneling collapse risk; (4) The Monte 
Carlo simulation method is used for global sensitivity analysis and robustness verification. Finally, the Jinzhupa 
tunnel in China is used to verify the applicability of the proposed approach. The methods developed in this 
research have the following innovations and capabilities:

(1) It can synthesize multi-source information to obtain a more accurate result for the tunneling collapse risk 
assessment. Due to many risk factors, the tunneling collapse risk assessment is a multi-attribute decision-
making problem. In this paper, both soft data from domain experts and hard data from electrical sensors 
and statistical data are used for evaluating the tunnel collapse risk. A hybrid combination rule combining 
the weighted mean rule and Dempster’s rule is proposed to process multiple conflicting pieces of evidence. 
Besides, a confidence index, m(Θ) is adopted to measure the reliability of the tunnel collapse risk result. 
As shown in Table 8, the value of m(Θ) is zero, indicating that the tunneling collapse risk has a high degree 
of confidence.

(2) As the deviation level of input data increases, the accuracy rate of the single-source information evaluation 
method is gradually decreasing. However, the proposed multi-source information fusion method is very 
robust to deviations. Even when the deviation is 20%, the accuracy of the collapse risk assessment still 
reaches 97.9%. In other words, this method has excellent tolerance to bias, which eliminates the adverse 
effects of deviation to the maximum extent and ensures the accuracy and reliability of the evaluation results.

(3) When the tunnel section is in a dangerous state, in order to provide advice to decision-makers, global 
sensitivity analysis is proposed to identify the most influential risk factors. The global sensitivity analysis 
considers the interaction between risk factors, making the results more in line with actual construction 
conditions. In the tunnel case of this study, the factors X3 (Rock mass grade), X5 (Unfavorable geology), 
X6 (Bias angle), and X11 (Timeliness of primary support) are identified to have the greatest impact on the 

Figure 10.  Four risk evaluation methods for tunnel collapse risk assessment after 1000 iterations under 
different deviation levels: (a) SVM; (b) BN; (c) CM; (d) Multi-source information fusion method.
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risk of tunnel collapse. Besides, because measurement errors or human errors may cause data deviations, 
the MC method is used to simulate the data deviations to prove that the proposed method still has good 
robustness under deviations.

The proposed method in this paper also has some limitations. Experts are still required to participate in the 
entire evaluation process, which means that a truly automated evaluation has not yet been achieved. In terms of 
tunnel collapse data collection, the amount of data is still small, and a system needs to be developed to collect 
data on a global scale. In addition, this method cannot predict the risk status of the next construction process, 
and further research is needed.

Data availability
The datasets generated during and/or analyzed during the current study are not publicly available but are avail-
able from the corresponding author on reasonable request.
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