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A B S T R A C T

The plight of wild birds is becoming critical due to exposure to environmental contaminants. Although labo-
ratory studies have provided insights into the developmental effects of chemical exposures, less is known about
the adverse effects of environmental chemicals in developing wild birds. Early life stages are critical windows
during which long-term organization of physiological, behavioral, and neurological systems can occur. Thus,
contaminant exposure at early life stages can directly influence survival and reproductive success, with conse-
quences for population stability and resilience in wild species. This review synthesizes existing knowledge
regarding both short- and long-term effects of early-life exposure to widespread contaminants in birds. We focus
especially on wild birds and on contaminants of concern within the Gulf of Mexico as an example of a habitat
under anthropogenic stress from exposure to a complex mixture of chemicals and changing land uses that
exacerbate existing vulnerabilities of wildlife in this region. Chemical contaminants for discussion in this review
are based on avian mortality records from the Wildlife Health Information Sharing Partnership (WHISPers)
database and on additional review of the literature regarding avian contaminants of concern for the northern
Gulf of Mexico, and include oil and associated polycyclic aromatic hydrocarbons, dioxin and dioxin-like com-
pounds, flame retardants, pesticides, heavy metals, and plastics. We provide an overview of effects in bird species
at both the pre-hatching and post-hatching early life stages, discuss differences in sensitivities by route of
exposure, life stage, and life history, and provide recommendations for future research. We find that additional
research is needed on altricial species, post-hatching early-life exposure, long-term effects, and on ecologically
relevant contaminant concentrations and routes of exposure. Given the increasing frequency and intensity of
anthropogenic stressors encountered by wild animals, understanding both lethal and sublethal impacts of con-
taminants on the health of individuals and populations will be critical to inform restoration, management, and
mitigation efforts.

Introduction

Bird numbers are dramatically declining worldwide (Hallmann et al.,
2014; Inger et al., 2015; Rosenberg et al., 2019), a loss that is associated
with a myriad of factors, including environmental contaminants
(Hallmann et al., 2014; Haney et al., 2014; Hao et al., 2021). The impact
of contaminants is most obvious during major die-off events, for
example, thousands of oiled seabirds washing up on beaches following
the Deepwater Horizon Spill in the Gulf of Mexico (Haney et al., 2014).
However, sublethal effects can also have major, long-lasting impacts on
individuals, especially when those effects are experienced early in life (e.

g., Brunson et al., 2005; Spencer and Verhulst, 2007; Zimmer and
Spencer, 2014; Bolton et al., 2017; Grace et al., 2017b; Grace and
Anderson, 2018; Dupont et al., 2019b). Early-life sublethal experiences
and exposures can alter physiological, neurological, and behavioral or-
ganization to an extent that is often not possible at later time points,
once central nervous system development is complete (Seckl, 2001,
2004; Cottrell and Seckl, 2009; Ottinger and Dean, 2022). These early-
life effects can have short- and long-term consequences for future sur-
vival (e.g., Lindström, 1999; Monaghan et al., 2012; Grace et al., 2017a)
and reproductive success (e.g., Lindström, 1999; Zimmer et al., 2013;
Dupont et al., 2019a; Grace et al., 2019), and thus, impact population
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dynamics.
The responses of birds to environmental stressors are of special in-

terest to ecologists, because avian diversity can be a functional indicator
for the resilience and overall health of an ecosystem (Smits and Fernie,
2013; McCloy et al., 2022, 2024) and birds are valuable providers of
ecosystem services (Sekercioglu, 2007). In the wild, birds are conspic-
uous, relatively easy to approach and observe, and display behavioral
complexity similar to that of mammals (Konishi et al., 1989; Henriksen
et al., 2011). Regarding mechanisms and pathways of response, the
avian endocrine and neuroendocrine systems are similar in many ways
to those of mammals (e.g., the hypothalamic–pituitary–adrenal and
hypothalamic-pituitary–gonadal axes; Wingfield, 2005). Developmen-
tally, the extra embryonic membranes of eggs function similarly to the
placenta and umbilical cord in mammals (Henriksen et al., 2011). From
a practical perspective, bird embryos develop almost entirely outside of
the mother’s body, within an egg that was formed in a short time win-
dow (approximately 4–14 days) (Henriksen et al., 2011). Thus, ovipa-
rous birds are frequently used as models for studying early-life stressors
because their developing embryos are accessible outside the mother’s
body. Additionally, since birds do not have a direct physiological link
with their offspring after hatching (such as maternal lactation), it is
easier to isolate the effects on the offspring from maternal influences,
unlike in mammalian models (Spencer et al., 2009).

Sensitivities of avian species to contaminants vary depending on
developmental mode, in addition to trophic level, and diet (Ottinger
et al., 2008). There is a spectrum of developmental strategies in birds
that span from altricial chicks requiring extensive parental care post-
hatching to precocial chicks being fully mobile upon hatching with
less post-hatch parental care. Precocial birds, such as the Japanese quail
(Coturnix japonica), have often been the subject of toxicological studies
and regulatory testing. These and other precocial birds are well devel-
oped at hatch, with sexual differentiation of the reproductive endocrine
systems and functional competency of other physiological systems
already relatively complete (Ottinger et al., 2008; Adkins-Regan, 2009;
Ottinger and Dean, 2022). Thus, precocial species are most vulnerable at
the embryonic stage, whereas species with altricial young remain sen-
sitive for a much longer period post-hatching, although they may
conversely retain a degree of neuroplasticity thereby contributing to
resilience (Ottinger et al., 2008). However, the underlying mechanisms
of biological action for contaminants are expected to remain consistent
across avian developmental modes, even if the severity of impacts varies
with timing of exposure.

In this review, we synthesize existing knowledge regarding both
short- and long-term effects of early-life exposure to contaminants in
birds. We focus especially on wild birds and on common contaminants of
concern within the Gulf of Mexico as an example of a habitat under
anthropogenic stress from exposure to a complex mixture of chemicals
and changing land uses that exacerbate existing vulnerabilities of
wildlife in this region. We further focus on direct effects of contaminants
on avian early life stages, while recognizing that indirect effects on
embryos and young birds through altered parental health and behavior
are probably common, as well. For example, exposure to organophos-
phate pesticides can impair foraging in adult birds, which could have
deleterious effects on young birds being fed or incubated/brooded by
parents (Grue et al., 1997). The effects of our selected contaminants on
adults are reviewed in other sources and we refer the reader to these for
more information on indirect effects on young birds (e.g., Fry, 1995;
Walker, 2003; Ottinger et al., 2009; Harris and Elliott, 2011; Hao et al.,
2021).

Selection of contaminants for this review

The Gulf of Mexico has areas of high human population density, as
well as agricultural, military, and industrial activities, all of which
contribute to water and shoreline contamination. Contaminants
included in this review were selected in two ways. First, we examined

reported avian mortality records for the five United States Gulf states in
the Wildlife Health Information Sharing Partnership (WHISPers) data-
base for the last ten years (January 1, 2014 – December 31, 2023). For a
summary of avian morbidity and mortality events submitted to the
database for the continental United States in 2023 see Dusek et al.
(2024) and for aquatic birds from 1971 to 2005 see Newman et al.
(2007). Most records in the database are of adult birds, and we assume
that the factors that strongly impact adults may also impact young birds
and embryos. Mortality events attributed to toxic compounds are
included here if current research suggests they also pose a sublethal
hazard to birds. Mortality events attributed to pollutants in the WHIS-
Pers database included (from most to least number of birds affected):
heavy metals (copper, lead, or mercury), avicide (4-aminopyridine),
organophosphates, entanglement, petroleum, and anticoagulant roden-
ticides. We do not discuss the avicide and anticoagulant agents listed
here because these chemicals mainly kill adult birds. We also omit
entanglement because this is primarily a physical threat, and not toxi-
cological. We additionally reviewed literature regarding avian con-
taminants of concern in the Gulf of Mexico, and these were also included
in this review. The most widespread contaminants of concern in the Gulf
of Mexico include polycyclic aromatic hydrocarbons (PAHs), dioxin and
dioxin-like compounds, flame retardants, metals (lead, mercury, arsenic,
cadmium, silver, nickel, tin, chromium, zinc, and copper), and pesticides
(Ward, 2017). Microplastics (Grace et al., 2022) and per- and poly-
fluoroalkyl substances (PFAS) are also emerging contaminants of
concern for the Gulf of Mexico (Pulster et al., 2022) but in this review we
only discuss plastics because little is known about PFAS effects on avian
early-life stages. Within this framework, we came to our final list of
contaminants for this review: oil and associated polycyclic aromatic
hydrocarbons, dioxin and dioxin-like compounds, flame retardants,
pesticides, heavy metals, and plastics.

Exposure to these contaminants can occur prior to hatching via
maternal deposition in eggs and/or contamination of the egg surface.
For example, there is significant maternal deposition of endocrine dis-
rupting chemicals into the eggs of wild, free-living birds (e.g., Custer
et al., 2010), and laboratory studies have demonstrated that endocrine
disrupting chemicals readily transfer from the hen into the egg and
partition in the egg compartment according to lipid solubility (Lin et al.,
2004; Ottinger et al., 2005). Post-hatching, young birds can be exposed
to these contaminants through direct contact, secondary contact from
residues on the feathers of parents that return to brood nestlings, or
through ingestion. Thus, for each contaminant of interest we separately
discuss both pre-hatching and post-hatching effects and summarize
existing studies in Tables 1 and 2, respectively.

Oil and associated polycyclic aromatic hydrocarbons (PAHs)

The Gulf of Mexico is one of the most important regions for oil and
gas production, refinement, and processing in the United States. Forty-
seven percent of the total United States (U.S.) petroleum refining ca-
pacity, and 49 % of the total U.S. natural gas processing plant capacity
are located along the Gulf Coast. Additionally, offshore production in
the Gulf accounts for 15 % of total U.S. crude oil production and 3 % of
dry natural gas production (U.S. Energy Information Administration,
2023).

Oil and associated chemicals from leaks and spills such as the
Deepwater Horizon Oil Spill present a significant risk for marine and
coastal species. Routes of exposure for adults, young birds, and eggs
include direct oiling (i.e., fouling), ingestion, inhalation, aspiration, and
absorption. Adult birds are at highest risk of fouling because of their
greater mobility; however, young birds and eggs can also be fouled
through overwash of nesting areas with contaminated water, or through
contact with the contaminated feathers of parents during incubation/
brooding. Both adults and young can ingest and aspirate oil and PAHs
through consumption of contaminated food, accidental ingestion during
foraging activities, or by preening oiled feathers (Goodchild et al.,
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2020). Additionally, PAHs can be inhaled following natural or anthro-
pogenic combustion (Abdel-Shafy and Mansour, 2016). The molecular
response pathway following PAH ingestion is well characterized and
highly conserved across vertebrates and invertebrates. PAHs and other
contaminants (e.g., dioxin-like compounds) activate the aryl hydrocar-
bon receptor (AhR), a transcription factor that then translocates to the
nucleus and induces expression of target genes with AhR-responsive
DNA elements, including cytochrome P450 1A (CYP1A). CYP1A en-
zymes oxidize PAHs and other foreign chemicals that bind to the AhR,
which facilitates their excretion by increasing their water solubility. In
addition, the CYP1A enzymes can also bioactivate and result in
increased toxicity of the metabolized or secondary compounds produced
(Franci et al., 2018; Rothhammer and Quintana, 2019; Zhu et al., 2019).
Activation of AhR-dependent detoxification typically increases the
production of reactive oxygen species and oxidative stress, although the
AhR pathway is also a mediator of the antioxidant system that protects
against oxidative stress (Grishanova and Perepechaeva, 2022).

Pre-hatching exposure to oil and PAHs

Oiling of eggs can block egg pores, thus reducing embryonic oxygen
availability (Hoffman, 1978), and this in combination with direct
transfer of PAHs (Goodchild et al., 2020), can induce embryotoxic ef-
fects (Hoffman, 1978). The principal route of embryonic exposure,
however, appears to be through maternal deposition of PAHs into
lipophilic components of the egg (Franci et al., 2018). Embryonic

exposure to PAHs results in reduced heart rate, metabolic rate (Good-
child et al., 2020), embryonic growth rate (Hoffman, 1978), and embryo
viability (Hoffman, 1978; Franci et al., 2018; Goodchild et al., 2020) in
addition to teratogenic effects including incomplete or abnormal skull
ossification (Hoffman, 1978). Reduced embryonic growth rate may
prolong the incubation period, resulting in increased energetic costs for
parents (Goodchild et al., 2020), which may lead to increased nest
abandonment or reduced subsequent reproductive success. In ovo
exposure to PAHs also results in small changes to methylation of the
CYP1A promoter region which persist until shortly after hatching
(Brandenburg and Head, 2018) and may impact the regulation of the
AhR pathway.

Post-hatching exposure to oil and PAHs

Post-hatching, young birds can ingest or inhale oil and PAHs, how-
ever little is known regarding the effects of mode of exposure on
developmental outcomes. Sub-lethal ingestion of certain crude oils by
semi-precocial (i.e., herring gull, Larus argentatus; Atlantic puffin, Frac-
tercula arctica) and precocial chicks (i.e., mallard, Anas platyrhynchos)
generally results in depressed growth, hypertrophy of hepatic, adrenal,
and nasal tissue, and osmoregulatory impairment (Miller et al., 1978;
Peakall et al., 1982, 1983), although these effects depend on the type of
crude oil ingested (Peakall et al., 1983). Osmoregulatory impairment
has been further investigated in mallard ducklings, for which a single
oral dose of crude oil halted development of an adaptive response to

Table 1
Summary of studies investigating the effects of pre-hatching (i.e., in ovo) contaminant exposure on birds; see text for details and reference citations.

Chemical category Method of exposure General effects Lab
studies1

Field
studies

Altricial2 Precocial3

Oil and PAHs Surface application,
injection

Embryotoxicity, teratogenic effects, changes to regulation of the
AhR pathway, reduced heart rate, metabolic rate, embryonic
growth, and embryo viability

✓ − ✓ ✓

Dioxin and dioxin-like
compounds (TCDD and
PCBs)

Injection, dietary
exposure of parents,
correlation

Increased metabolic costs, immunosuppression, changes to
cardiac development and gene expression, gross abnormalities (e.
g., edema, skeletal and beak malformations), endocrine
disruption, brain assymetries, distended yolk

✓ ✓ (Obs4) ✓ ✓

Flame retardants (FRs)
PBDEs Injection, dietary

exposure of parents
Delayed hatch, oxidative stress, reduced thyroid weight, DNA
damage, changes to organ morphology

✓ ✓ (Obs) ✓ ✓

Organophosphate FRs Injection At high doses: delayed pipping, differential gene expression,
increased liver somatic index, reduced thyroid hormone,
impaired growth, gallbladder development, and circulation

✓ − − ✓

Pesticides
Organophosphate
pesticides

Injection, immersion,
surface application

Increased mortality, reduced growth, morphological
malformations, anuria, gastroschisis, immunosuppression

✓ − − ✓

Neonicotinoids Injection, immersion
and surface application
to embryos

At high doses: teratogenic effects, suppression of neural crest,
negative impacts on neural tube survival and heart tube
formation

✓ − − ✓

Heavy metals
Lead Injection, immersion Developmental abnormalities, reduced hatching success,

impaired chick viability
✓ ✓ (Obs,

Exp5)
✓ ✓

Mercury Injection, correlation Neuro-inflammation, decreased hatchability, embryonic
malpositioning, erythrocyte abnormalities, decreased pre-
fledging body condition

✓ ✓ (Obs) ✓ ✓

Copper Injection, immersion Mixed metabolic effects, reduced organ growth, reduced vital
organ growth, increased oxidative damage, hepatocyte damage
and necrosis, increased malondialdehyde, reduced glutathione,
structural malformation (when combined with other pollutants)

✓ − − ✓

Plastics Injection Heart defects, death of neural crest cells, organ and tissue
malformations

✓ − − ✓

1 Includes studies of wild birds held in captivity.
2 Studies included species with altricial or semi-altricial young.
3 Studies included species with precocial or semi-precocial young.
4 Observational studies.
5 Experimental (i.e., manipulative) studies.
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saltwater ingestion (i.e., increased water and Na+ transport across the
intestinal mucosa) and abolished this response when it previously
existed (Crocker et al., 1974). High doses (10 ml/kg) of crude oil appear
toxic to avian red blood cells due to destructive oxidative damage,
inducing severe hemolytic anemia. It can also alter red blood cell
morphology, degenerate their mitochondria, and induce Heinz body
formation (Leighton et al., 1983; Leighton, 1985). High doses of crude
oil in semi-precocial chicks (i.e., herring gull and Atlantic puffin) also
leads to maladaptive morphological changes, including reduced subcu-
taneous fat, reduced thymus and bursa, and histological lesions in liver,
spleen, bone marrows, kidney, thymus and adrenals (Leighton, 1986).

Crude oil ingestion also affects avian endocrine development, spe-
cifically the hypothalamic–pituitary–adrenal (HPA) and hypothalamic-
pituitary-thyroid (HPT) axes (Peakall et al., 1981; Rattner and Eastin,
1981). Corticosterone, the primary avian glucocorticoid increases for up
to two weeks following a single oral dose of crude oil in black guillemot
(Cepphus grylle) and herring gull nestlings (Peakall et al., 1981), and is
depressed after chronic dosage in mallard ducklings (Rattner and Eastin,
1981), in a classic response of the HPA axis to chronic stress. Thyroxine
(a thyroid hormone) also exhibits a short-term increase in circulating
concentration following a single oral dose of crude oil (Peakall et al.,
1981), but no long-term changes in concentration were observed
following chronic dosage (Rattner and Eastin, 1981).

Very few studies have investigated fitness effects of early-life sub-
lethal doses of crude oil or PAHs in birds, a necessary next step in un-
derstanding the population-level consequences of such exposure. Dose-
dependent studies are particularly useful given the range of exposure
levels in wild birds. In wild Cassin auklets (Ptychoramphus aleuticus)
crude oil dosing of adults decreased laying at all doses (high, medium,
low), and decreased hatching success of eggs at high doses. However, for
those chicks that did hatch, growth rate and fledging success were un-
changed compared to controls (Ainley et al., 1981). These results sup-
port a strong effect of maternal deposition of PAHs on embryo viability;

however, this mechanism of exposure may not have long-term conse-
quences for surviving chicks. Instead, direct post-hatching exposure of
chicks is probably more important. Further research is needed on the
importance of mode of exposure and avian developmental mode (i.e.,
precocial vs. altricial) for exposure outcomes.

Dioxin and dioxin-like compounds: Polychlorinated biphenyls
(PCBs) and 2,3,7,8-tetrachlor-odibenzo-p-dioxin (TCDD)

Dioxins are naturally released through volcanoes and forest fires,
while anthropogenic sources include incineration of waste, manufacture
of pesticides, chlorine bleaching of paper/pulp (Antos et al., 2015), and
agriculture (Amaral-Sliva et al., 2020). Dioxins and dioxin-like com-
pounds produce toxic effects in a wide variety of organisms through the
aryl hydrocarbon receptor signaling pathway, which is highly conserved
across vertebrates and invertebrates (see “Oil and associated polycyclic
aromatic hydrocarbons”). In birds, variation in sensitivity to dioxins and
dioxin-like compounds is associated with amino acid identities within
the AHR1 ligand binding domain (sites 324 and 380 specifically)
(Karchner et al., 2006; Head et al., 2008). This allows classification of
birds genotypically into high, low, and moderate sensitivity groups
(Farmahin et al., 2013). There are several classes of dioxins and dioxin-
like compounds, including polychlorinated dibenzo-p-dioxins (PCDDs,
75 congeners), polychlorinated dibenzofurans (PCDFs, 10 of which are
dioxin-like), and polychlorinated biphenyls (PCBs, 12 of which are
dioxin-like) (White and Birnbaum, 2009). In this review, we focus on
two dioxin and dioxin-like compounds, 2,3,7,8-tetrachlor-odibenzo-p-
dioxin (TCDD), and selected PCBs.

TCDD is generally considered the most toxic PCDD (Amaral-Sliva
et al., 2020), while PCBs encompass a very large group of compounds
that vary according to their toxic equivalency (TEQ) as well as their
effects on endocrine systems (see Ottinger & Dean, 2011, 2022). PCBs
have a very long half-life in the environment and remain chemically

Table 2
Summary of studies investigating the effects of post-hatching (i.e., hatching through fledging) contaminant exposure on birds; see text for details and reference
citations.

Chemical category Method of
exposure

General effects Lab
studies1

Field
studies

Altricial2 Precocial3

Oil and associated
PAHs

Ingestion Hypertrophy of hepatic, adrenal, and nasal tissue, osmoregulatory
impairment, hemolytic anemia and histological lesions (at high doses),
altered red cell morphology, Heinz body formation, endocrine disruption,
reduced growth, subcutaneous fat, thymus, and bursa

✓ ✓ (Exp5) − ✓

Dioxin and dioxin-like
compounds

Ingestion,
correlation

Immunosuppression, altered cardiac development, liver enlargement,
decreased bursa weight, endocrine disruption, asymmetrical brain
regions, vitamin A deficiency

✓ ✓ (Obs4) ✓ ✓

Flame retardants (FRs)
PBDEs Injection, dietary

exposure of parents
Impaired reproduction, altered immune response, reduced viability ✓ ✓ (Obs) ✓ ✓

Organophosphate FRs Ingestion Behavioral changes, decreased metabolism and growth, changes to
thyroid structure

✓ − − ✓

Pesticides
Organophosphate
pesticides

Ingestion Reduced brain cholinesterase activity, immunosuppression, reduced
white blood cell counts, reduced body weight, impaired thermoregulation

✓ ✓ (Obs,
Exp)

✓ ✓

Neonicotinoids None Indirect food web effects (hypothesized) − − − −

Heavy metals
Lead Ingestion,

injection,
correlation

Variable, can include lower survival, decreased health, increased
oxidative stress

✓ ✓ (Obs,
Exp)

✓ ✓

Mercury Ingestion,
correlation

Endocrine disruption, reduced later reproductive success, accelerated
telomere attrition

✓ ✓ (Obs) ✓ ✓

Copper Ingestion Reduced bursa of Fabricius growth, reduced lymphocyte production,
reduced cell-mediated response, anemia, liver and GI tract damage

✓ ✓ (Obs) ✓ ✓

Plastics Ingestion Reduced body mass and growth, altered serum chemistry, damage and
inflammation of GI tract and spleen, kidney damage

− ✓ (Obs) ✓ ✓
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stable in the sediment and become available when the sediment is
disturbed (e.g., rain events and dredging). TCDD and PCBs are lipophilic
and can cross cellular membranes to bind cytoplasmic AhR receptors
(Head and Kennedy, 2007; Yu et al., 2017; Hale et al., 2019; Amaral-
Sliva et al., 2020). Wild birds exposed through their diet store these
lipophilic compounds in their fatty tissue, which females then pass onto
their offspring by maternal deposition into their eggs (Bohannon and
Ottinger, 2017). There are many studies on the effects of dioxins and
dioxin-like compounds in birds, and further information on the mech-
anisms that affect differential sensitivities between species (Bianchini
and Morrissey, 2020). Most notably, recent approaches using Adverse
Outcomes Pathways (AOP) bring together mechanisms of action with
outcomes for the individual and consequently the population (Doering
et al., 2018; Villeneuve et al., 2014). This AOP is useful for dioxins and
dioxin-like compounds and includes understanding the actions of pes-
ticides and other environmental chemicals (see below).

Pre-hatching exposure to TCDD and PCBs

Sublethal exposure to TCDD in ovo in domestic chickens has long-
term effects on metabolism and immune function in chicks, including
increased metabolic costs and diminished immune responses (Amaral-
Sliva et al., 2020), and the development of brain asymmetries, especially
in the forebrain and tectum (Henshel, 1998). Similarly, exposure to PCBs
during embryonic development resulted in deformities and impacted
immune function in chickens (Lavoie and Grasman, 2007). In the lab-
oratory, there are numerous effects that span effects on cardiac devel-
opment, gene expression, gross abnormalities, and endocrine disruption
(Carro et al., 2018; Dean et al., 2018, 2019; Ottinger et al., 2018). In the
field, observational and experimental studies document both short- and
long-term effects of exposure to PCBs and/or PCDDs in a variety of
precocial/semi-precocial (e.g., gulls, terns), and altricial/semi-altricial
species (e.g., herons, swallows, wrens, bluebirds, chickadees, starlings,
osprey, kestrel, eagles). These effects include edema and beak defects,
brain asymmetry, altered vitamin A status, shortened limbs, immuno-
suppression, heart deformities, bone abnormalities, and reduced
thyroxine, hatchling mass, and hatching success (Harris and Elliott,
2011). In the Great Lakes region of the United States, PCB exposure in
ovo is associated with increased mortality and abnormalities (i.e., Great
Lakes embryo mortality, edema, and deformity syndrome) in embryos
and chicks of bald eagles (Haliaeetus leucocephalus), cormorants, gulls,
and terns (Fry, 1995). Indeed, the presence of deformities was once
considered a diagnostic of Great Lakes contamination and the negative
effects on wildlife. Laboratory studies, however, have failed to replicate
the syndrome, and the cause-and-effect relationship between PCBs and
the deformity syndrome has since been questioned through reanalysis of
historical data and alternative explanations (Harris and Elliott, 2011).
Interestingly, dosing female zebra finches with PCBs had effects on the
song brain system of the offspring (Hoogesteijn et al., 2008). This sup-
ports the importance of considering maternal deposition of hormones,
other chemicals, and environmental chemicals on the developing em-
bryo. Changing global temperatures may exacerbate the effects of toxins
such as PCBs. For example, incubation temperature can interact with
PCB-126 exposure in ovo to affect embryo and chick mortality, and the
probability of hatching with a distended yolk, which is often fatal, in
killdeer (Charadrius vociferus; Lunny et al., 2020).

Post-hatching exposure to TCDD and PCBs

The effects of dioxins and dioxin-like compounds have been exten-
sively examined over a range of chemicals. As reviewed by White and
Birnbaum (2009), there are numerous adverse health effects of these
compounds across vertebrate species, including wild birds (reviewed in
Harris and Elliott, 2011). Liver enlargement may be a generalized
response, although in black guillemots this effect was sex-specific, and
no effect on organ size was observed in tree swallows (Tachycineta

bicolor; reviewed in Harris and Elliott, 2011). Decreased bursa of fab-
ricius weight has also been observed in common tern and American
kestrel chicks exposed to PCBs post-hatch, with possible negative im-
pacts on immune function (reviewed in Harris and Elliott, 2011). For the
many correlative wild studies, separation of in ovo and post-hatch
exposure is not possible, because concentrations of PCBs and TCDD in
tissues may reflect either exposure route. These studies, in both semi-
precocial and altricial birds suggest effects on heart weight and shape,
decreases in some thyroid hormones, immunosuppression, and de-
creases in vitamin A stores. Studies in tree swallows showed increased
heart abnormalities that were observed at hatch (Carro et al., 2018).
Laboratory studies of captive birds also support decreases in vitamin A
in association with PCBs and changes to immune and endocrine function
(Harris and Elliott, 2011). Very few studies examine long-term effects on
fitness and productivity of early-life exposure to dioxins and dioxin-like
compounds, and this is a much-needed area of research.

Flame retardants (brominated and chlorinated compounds, and
organophosphates)

Flame retardants (FRs) are chemical additives that prevent or delay
fire propagation in combustible materials. They are incorporated into a
wide variety of materials, including textiles, electronics, vehicles, and
polyurethane foams, and are critical for preventing injuries, mortalities,
and loss of property, worldwide (Pantelaki and Voutsa, 2019). FRs are
classified into three categories based on chemical composition: (1)
inorganic FRs, (2) halogenated FRs, including brominated and chlori-
nated FRs, and (3) organophosphorus-containing FRs (Pantelaki and
Voutsa, 2019). Between avian species there appears to be a high degree
of variation in sensitivity to each chemical (Guigueno and Fernie, 2017).

Brominated and Chlorinated FRs

Brominated and chlorinated FRs are the cheapest available FRs, and
thus extensively used in manufacturing. This group of halogens en-
compasses the high-profile compounds dichlorodiphenyltrichloroethane
(DDT), polychlorinated biphenyl (PCB), and hexachlorobenzene (HCB),
and polybrominated diphenyl ethers (PBDEs). Many of these compounds
have been added to the Stockholm Convention, which entered into force
in 2004, because of the high bioaccumulation levels in top predators,
adverse health effects, and environmental persistence (Guigueno and
Fernie, 2017). Brominated and chlorinated compounds have since
decreased substantially in the environment (Guigueno and Fernie,
2017), although their residues continue to be detected across a diverse
range of environments (Choo et al., 2019). Here, we focus on PBDEs
which were banned from use and production in the European Union and
voluntarily phased out in the United States because of their status as a
persistent organic pollutant (POP) (Pantelaki and Voutsa, 2019). How-
ever, PBDEs are resistant to degradation by heat, light, acids, bases, and
reducing or oxidizing compounds (Rahman et al., 2001), and thus are
persistent in the environment (Choo et al., 2019), making them a
continuing pollutant of concern.

Pre-hatching exposure to polybrominated diphenyl ethers (PBDEs)
Avian embryos can be exposed to PBDEs through maternal transfer

into eggs, although the relationship between maternal and egg
contaminant concentrations can be variable (Eng et al., 2013). Embry-
onic effects of PBDEs appear to depend on species, with some species
displaying higher sensitivity than others. For example, egg cell injection
of PBDE in American kestrels (Falco sparverius) resulted in delayed
hatch, shorter humerus length, reduced total thyroid weight, and
elevated levels of oxidized and reduced glutathione, thiobarbituric acid
reactive substances, and 8-OH-dG, which are markers of oxidative stress
and DNA damage in embryos (Rattner et al., 2013). However, common
tern (Sterna hirundo) eggs exposed to the same concentrations of PBDE
displayed only delayed hatch times and some evidence of oxidative DNA
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damage, but no effects on humerus length, organ weight, or glutathione
and thiobarbituric acid levels (Rattner et al., 2013). No effect of em-
bryonic PBDE or PBDE-congener exposure has been found on hatching
success in American kestrels, common terns (Rattner et al., 2013), or
zebra finches (Taeniopygia guttata) (Winter et al., 2013), and no long-
term effect was found on growth of chicks, hematocrit, hemoglobin, or
thyroid hormone levels at sexual maturity in zebra finches (Winter et al.,
2013). However, long-term effects on reproductive success were found
in zebra finches, with birds exposed pre-hatching to the PBDE-congener
BDE-99 having smaller clutch sizes and longer time intervals between
laying and producing offspring with significantly smaller pre-fledging
body mass (Winter et al., 2013). In the American kestrel, PBDEs can
reduce eggshell thickness, leading to increased vulnerability to preda-
tion and reduced viability as well as adversely affecting immune re-
sponses (Fernie et al., 2005, 2009; Buck et al., 2020). Exposure to PBDEs
can also impair pipping behavior (McKernan et al., 2009) and is corre-
lated with reduced reproductive success at high concentrations (i.e.,
above 1,000 ng/g ww) in wild, free-living osprey (Pandion haliaetus;
Henny et al., 2009).

Post-hatching exposure to PBDEs
Post-hatching exposure to PBDEs in wild avian species can disrupt

endocrine function (Fernie et al., 2005; Guigueno and Fernie, 2017).
PBDEs have been implicated in neurobehavioral abnormalities in birds,
but few effects were found in exposed chicks, suggesting that avian
neural tissue is more vulnerable in ovo (reviewed in Guigueno & Fernie,
2017). Growth of zebra finch and European starling (Sturnus vulgaris)
chicks dosed with PBDEs post-hatching was not affected by the exposure
(Eng et al., 2014; Currier et al., 2015). Conversely, post-hatch exposure
to BDE-99 did exert long-term effects on mating behavior in zebra
finches (Eng et al., 2012); pre-hatch exposure resulted in effects on the
song control system (Eng et al., 2018). Assessing the sublethal effects of
these compounds on nestling birds using growth as a physiological
endpoint may be too simplistic and more nuanced physiological in-
dicators may be needed to understand the impacts of these compounds
on nestling wild birds.

Organophosphate Flame Retardants (FRs)

In response to the decrease in brominated and chlorinated com-
pounds, organophosphates were introduced as an alternative flame
retardant, and are some of the most used flame retardants, today.
Organophosphate FRs are not chemically bound to the materials they
are added to and are thus easily released into the environment through
volatilization, abrasion, and dissolution (Pantelaki and Voutsa, 2019).
Like brominated and chlorinated compounds, they can increase rapidly
in the environment and high concentrations are observed in avian
predators (Guigueno and Fernie, 2017), although less research has been
conducted on their toxic effects and bioaccumulation (Pantelaki and
Voutsa, 2019). Organophosphates are lipophilic, and thus rapidly
distribute into tissues and fate. In this review, we focus on three widely
used organophosphate FRs which are contaminants of emerging
concern: triphenyl phosphate (TPHP), tris(1-chloro-2-propyl) phosphate
(TCPP), and tris(1,3-dichloro-2-propyl) phosphate (TCDPP). TPHP is
widely used as a flame retardant, plasticizer, lubricant, and in paints,
glues, and hydraulic fuel (Guigueno et al., 2019). It rapidly degrades in
the environment but can be passed in ovo from avian mothers to
offspring, suggesting continuous environmental exposure (Guigueno
et al., 2019). TCPP and TCDPP are high production organophosphate
FRs that are used predominantly in polyurethane foam (Farhat et al.,
2013). They are rapidly metabolized in fish, rats, and chicken embryos
and so have little potential to bioaccumulate. Unlike TPHP, however,
TCPP and TCDPP do not degrade easily in soil or water and so are
environmentally persistent (Farhat et al., 2013).

Pre-hatching exposure to organophosphate FRs
At environmentally relevant concentrations, in ovo exposure to TCPP

and TDCPP appear to have little effect on embryonic development or
morphology for precocial domestic chickens (Gallus gallus domesticus)
(Farhat et al., 2013). However, in ovo exposure to TCPP and TDCPP at
concentrations above currently documented environmental levels had
much stronger effects on embryonic development. In domestic chickens,
high levels of TCPP are associated with delayed pipping time, reduced
structural size, increased liver somatic index (a potentially adaptive
response to increased detoxification demands), and upregulation of the
xenobiotic metabolizing enzyme CYP3A37, deiodinase I (typically a
marker of hypothyroidism), and liver fatty acid-binding protein
(involved in fatty acid transport and metabolism; Farhat et al., 2013).
High concentrations of TDCPP exposure in ovo were associated with
impaired embryonic growth, and a reduction in free plasma thyroid
hormone (T4) (Farhat et al., 2013), elevated plasma bile acids (Farhat
et al., 2014), and markedly impaired gallbladder development in do-
mestic chickens (Farhat et al., 2013), and with hepatic sinusoidal dila-
tion, a sign that circulation is impaired in Japanese quail (Jacobsen
et al., 2017). High TDCPP exposure was also associated with upregula-
tion of CYP2H1 and CYP3A37 (Farhat et al., 2013) and differential
expression of genes involved in immune function, lipid homeostasis,
growth and development, and oncogenesis in domestic chickens (Farhat
et al., 2014). Microarray analysis has determined that this differential
expression was due to dysregulation of 47 genes at high doses of TDCPP,
five of which remained dysregulated at low doses (Farhat et al., 2014).
Thus, current levels of TCPP and TDCPP contamination do not appear to
pose extreme hazards to avian embryonic development, but increased
levels may have dramatic effects.

Post-hatching exposure to organophosphate FRsguig
Post-hatching exposure to environmental levels of TPHP is associ-

ated with some behavioral and physiological changes, including
increased aggression (but not fear behavior or general activity) and
suppressed thyroid gland structure in female Japanese quail (Coturnix
japonica; Guigueno and Fernie, 2017; Guigueno et al., 2019; Hanas et al.,
2020). Dosing of TPHP above the documented environmental exposure
has additional effects in Japanese quail, including decreased neophobia
(Hanas et al., 2020), decreased metabolism and growth in domestic
chicks, and enhanced thyroid structure in males, but suppression of
thyroid structure in females (Guigueno and Fernie, 2017; Guigueno
et al., 2019). Further research into the effects of environmentally rele-
vant levels of organophosphate FRs at early life stages is needed, espe-
cially for wild and altricial or semi-altricial birds.

Pesticides

Here we provide a brief overview of two widely used pesticides of
concern for avian wildlife: organophosphate and neonicotinoid
insecticides.

Organophosphate pesticides

Organophosphate pesticides (OPs) are widely recognized as having
lethal and sublethal effects on vertebrate animals, including birds (Mitra
et al., 2021). They can include a variety of compounds, such as mala-
thion, parathion, diazinon, chlorpyrifos, and others (Roberts and Rei-
gart, 2013) and range in their fat-solubility (Freed et al., 1976). OPs are
toxic to both invertebrates and vertebrates because they irreversibly
inhibit the enzyme acetylcholinesterase (AChE), leading to an accumu-
lation of the neurotransmitter acetylcholine and hyperstimulation of
cholinergic receptors. This causes symptoms including seizures, respi-
ratory failure, and, eventually, death (reviewed in Mitra et al., 2021).
OPs were previously considered safe for non-target vertebrates because
they are metabolized and excreted easily. However, OPs and some other
AChE inhibitors are metabolically activated such that intermediate
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compounds can have high toxicity (Singh et al., 2023). Birds are espe-
cially sensitive to OPs, at least in part because birds have higher activity
of acetylcholinesterase in their brains than mammals, leading to more
rapid binding of organophosphates and other cholinesterase inhibitors
to acetylcholinesterase (reviewed in Mitra et al., 2021).

In a review of a spectrum of pesticides, ethoprop was notable due to
being highly toxic to birds and wide use (De Montaigu and Goulson,
2020). A separate review by Katagi and Fujisawa (2021) considered the
pesticides that are applied to seeds as additional sources of risk for birds,
with bioaccumulation of a suite of compounds that could be maternally
deposited. In addition, toxicity studies with northern bobwhite quail
revealed that the exposure route affected the level of toxicity and inhi-
bition of AChE. Both the parent compound and metabolized secondary
products can be toxic (see Katagi and Fujisawa, 2021 for detailed list-
ings). There are documented cases of raptor poisoning with organo-
phosphate pesticides as early as 1985–1995 across the United States,
United Kingdom, and Canada (for review, see Mineau et al., 1999).
These documented cases of lethality from pesticides resulted from both
on and off label use of the compounds, seed treatments, granular pes-
ticides, and contaminated food items. Finally, OPs were one of the major
causes of adult avian mortality attributed to toxicosis in the Gulf states
according to our search of the WHISPers database.

Pre-hatching exposure to organophosphate pesticides
Laboratory studies have demonstrated the embryotoxic effects of OPs

on Japanese quail, mallards, chickens, and pheasants (Phasianus col-
chicus). These effects include embryo mortality, malformations of the
axial skeleton, anuria, gastroschisis, stunted growth, altered sexual dif-
ferentiation, edema, immunosuppression, genotoxicity, and decreased
hatchability, although effects varied based on the avian species, specific
organophosphate insecticide tested, and of course by concentration of
insecticide applied (Hoffman, 1990; Uggini et al., 2010; Uggini and
Suresh, 2013). These studies typically involve immersion of eggs in
pesticides, topical application of pesticides on eggs, or injection of
pesticides into the egg cell. Immersion of eggs is unlikely in the field;
thus, this route of exposure is probably not ecologically relevant. Topical
application in natural settings is possible if pesticides are deposited onto
eggs from parent plumage (Fry, 1995), although ecologically relevant
concentrations via this route are unknown.

Regarding the ecological validity of injections into the egg cell, it is
currently unclear whether OPs are maternally deposited in eggs and/or
pose a risk to the developing embryo. Some OPs are lipophilic and may
accumulate in fatty deposits (Freed et al., 1976), thus it is possible that
they may maternally transfer to egg yolks as documented with other
lipophilic compounds such as methoxychlor, an organochlorine pesti-
cide (Ottinger et al., 2005), and soy phytoestrogens (Lin et al., 2004;
Ottinger et al., 2009). However, organophosphates are typically much
more rapidly metabolized than organochlorines (Mitra et al., 2021 but
see Freed et al., 1976 for some exceptions), and thus may not persist in
eggs or be transferred at all. Thus, the ecological relevance of studies
that use injection of organophosphate insecticides into eggs (e.g., Lehel
et al., 2014) is unknown. At least two studies have documented cross-
generational effects of pesticide mixtures including organophosphates
in birds (i.e., domestic chicken and gray partridge, Perdix perdix; Gaffard
et al., 2022; Khan et al., 2015). In both the mechanism of parental effects
on offspring was unknown and the pesticide mixture included another
class of pesticide that is known to be maternally deposited in eggs (Khan
et al., 2015; Liu et al., 2017; Gaffard et al., 2022). Future research on
ecologically relevant exposure pathways for avian embryos is needed to
establish relevant experimental paradigms for pre-hatching effects of
OPs in birds.

Post-hatching exposure to organophosphate pesticides
Young birds are probably exposed to OPs in the same ways that

adults are, through the food supply and for more precocial chicks, the
environment. Nestling birds may be more sensitive to sublethal doses of

organophosphate pesticides than adults (Grue and Shipley, 1984),
although effects vary somewhat by species, dosage, pesticide, timing
and duration of exposure, and measured trait. Sublethal effects of
organophosphate pesticide exposure in young birds include reduced
body weight in nestling European starlings (Sturnus vulgaris) and white-
throated sparrows (Zonotrichia albicollis), sometimes resulting in
reduced body weight at fledge (see Grue et al., 1997). Free-living nest-
ling European starlings orally dosed with dicrotophos at 5- and 15-days
old had reduced brain cholinesterase activity (Grue and Shipley, 1984).
Exposures to methidathion and chlorpyrifos in domestic chicks were
associated with reduced white blood cell counts, neutrophils, and lym-
phocytes, while effects on packed cell volume, hemoglobin, and red
blood cell counts were pesticide specific (Ojezele and Abatan, 2009).
Similarly, oral exposure to organophosphate pesticides resulted in dose-
dependent immunotoxicity (decreases in humoral immunity, cell-
mediated immunity, and phagocytic activity, pathological changes to
the bursa of Fabricius, spleen, and thymus) in chicks (Shahzad et al.,
2015). Organophosphates can also impair thermoregulation (Grue et al.,
1997; Mitra et al., 2011), an effect that has been noted in mallard
ducklings, resulting in increased mortality at low ambient temperatures,
but within thermoneutral range for mallard ducklings (Martin and Sol-
omon, 1991). Apparent hypothermia may be an adaptive response to
toxins, lowering body temperature to reduce effects of toxins (reviewed
in Grue et al., 1997), but this effect can clearly be lethal when weather
conditions are not favorable. Taken together, organophosphate pesti-
cides of various types appear to have highly toxic effects at all life stages,
with adverse effects on neural and associated behaviors posing risks for
productivity. Although some of the most potent compounds are no
longer used in high quantities, many have become legacy chemicals,
with residues still available in the environment to affect wildlife.

Neonicotinoids

Neonicotinoid insecticides have been used since the 1990′s to protect
crops and lawns, and to kill fleas and ticks on domestic animals and are
still of global importance (Matsuda et al., 2020). This class of in-
secticides are agonists that bind to nicotinic acetylcholine receptors
(nAChRs) of postsynaptic neurons, leading to nervous stimulation at low
concentrations, paralysis, and death at high concentrations (Kundoo
et al., 2018). Neonicotinoids have high selective toxicity to insects,
because of their stronger binding to insect nAChRs than those of verte-
brates (Kundoo et al., 2018), making them highly preferred over or-
ganophosphates that have high toxicity for humans and wildlife (Gobeli
et al., 2017). However, there is growing concern that neonicotinoids
may have adverse effects on non-target organisms, including birds (Li
et al., 2020). Neonicotinoids are systemic in action, and are widely
applied to seeds, after which they spread throughout the growing plant
(Kundoo et al., 2018). They are also water soluble and therefore pose a
threat to both aquatic and terrestrial animals (Wood and Goulson,
2017). For a thorough review of neonicotinoid toxicity and exposure
routes for wildlife we refer the reader to Gibbons et al. (2015) andWood
et al. (2017).

Pre-hatching exposure to neonicotinoids
Birds are believed to be exposed to neonicotinoids in ovo through

maternal transfer and/or through contact of the egg with neonicotinoids
and diffusion through the egg membranes. Several studies have
demonstrated negative effects of neonicotinoid (specifically imidaclo-
prid) exposure to avian embryonic development at a range of exposures,
including teratogenic effects, suppression of neural crest generation, and
depressed neural tube cell survival, and negative impacts on heart tube
formation (Hussein et al., 2014; Gao et al., 2016; Hussein and Singh,
2016; Liu et al., 2016; Salvaggio et al., 2018). However, environmen-
tally relevant exposure levels were frequently not considered in these
studies, where the interest lay in modeling effects on human health
outcomes. In contrast, a study in Japanese quail found that injection of
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imidacloprid into the egg cell resulted in no morphological changes to
the heart, liver, lungs, or kidneys (Gobeli et al., 2017).

Neonicotinoid exposure can also have indirect effects on young bird
development, through effects on parents. For example, a reduced
cellular immune response was detected in partridge chicks whose par-
ents were fed imidacloprid-treated seeds as 20 % of their diet. Imida-
cloprid was not detected in the egg yolk, thus this effect does not appear
to be due to maternal transfer, but rather an indirect mechanism (Lopez-
Antia et al., 2015). Although the mechanism resulting in immune
changes in offspring is unclear, imidacloprid-treated parents displayed
reduced clutch sizes, delayed laying, and higher levels of carotenoids
and vitamins in yolks produced (probably due to smaller clutch sizes;
Lopez-Antia et al., 2015). Future studies are needed of both wild avian
species exposed to ecologically relevant concentrations of neon-
icotinoids, and of the impact of timing of exposure on developmental
outcomes.

Post-hatching exposure to neonicotinoids
Very few studies have investigated the impacts of early-life post-

hatching exposure to neonicotinoids on birds. However, for insectivo-
rous birds, indirect effects probably include reduced food supply related
to the collapse of insect populations following neonicotinoid treatment
(reviewed in Gibbons et al., 2015). Recent evidence suggests negative
effects of neonicotinoids on non-target insect species (reviewed in Wood
and Goulson, 2017), and this disruption to the food web is suspected to
contribute to large scale declines of birds in correlation with neon-
icotinoid use (Li et al., 2020). However, nearly all studies on the toxicity
of neonicotinoids for non-target insect species have been conducted in
honeybees (Apis mellifera), and increased research is needed in other
invertebrates (Wood and Goulson, 2017). Indirect food web effects are
difficult to identify experimentally, and further studies are necessary to
establish a causal link between neonicotinoid use, food supply, and bird
population sizes and reproductive success. Direct effects of neon-
icotinoid exposure on young birds are essentially unknown and warrant
further investigation given the apparent toxicity of neonicotinoids on
adult birds at ecologically relevant doses (Addy-Orduna et al., 2019),
and the documented and predicted exposure of many bird species across
foraging guilds (e.g., insectivorous, nectivorous, granivorous, frugivo-
rous, omnivorous; Anderson et al., 2023; Bishop et al., 2020; Gibbons
et al., 2015; Wood and Goulson, 2017).

Heavy metals

In the WHISPers database, heavy metals were the main toxicological
cause of avian mortality in the northern Gulf of Mexico over the past ten
years. Here, we focus on the three most significant and well-researched
metals from the standpoint of toxicology and environmental contami-
nation: lead, mercury, and cadmium (Scheuhammer, 1987) as well as
copper, which was identified as a major cause of avian mortality in our
WHISpers database search. Young birds are particularly sensitive to
toxic effects of metal exposure, and altricial species tend to be more
vulnerable than precocial species (Scheuhammer, 1987).

Lead (Pb)

A large body of research has demonstrated the significant health
risks of lead to humans and wildlife (Scheuhammer, 1987; Roux and
Marra, 2007; Pain et al., 2019). In response, the United States phased out
several major sources of environmental lead following the establishment
of the Clean Air Act including lead-based paint and leaded gasoline in
1978 and 1986, respectively. The U.S. also banned lead shot for
waterfowl hunting in 1991, and a growing number of states have banned
the use of small lead fishing weights (Roux and Marra, 2007; Pain et al.,
2019). However, a variety of sources of lead contamination continue to
exist in the U.S., including mining and smelting operations (Besser et al.,
2007), and most notably for birds, lead-based ammunition, which is

unregulated except for in waterfowl hunting and poses a significant
health threat to scavenging birds (Bellinger et al., 2013). Because lead is
non-biodegradable and continues to be used world-wide, concentrations
accumulate in the environment and pose a risk to wildlife including
birds (Roux and Marra, 2007; Rainio et al., 2015).

Birds are exposed to lead primarily through water and food and
secondarily through inadvertent or purposeful soil consumption, or
dermal absorption while swimming (Beyer et al., 1994; Burger, 1995).
Lead has a long residence time in the environment and bioaccumulates
in plants and animals (Burger and Gochfeld, 1994; Roux and Marra,
2007; Rainio et al., 2015; Usman et al., 2020). Plants absorb lead
through the soil and store it primarily in leaves and seeds (Olivares,
2003). Birds are then exposed to accumulated lead directly through
consuming fruits, or indirectly by consuming phytophagous insects and
soil invertebrates (Roux and Marra, 2007). Birds can also be exposed by
consuming meat contaminated with lead ammunition (Plaza and Lam-
bertucci, 2019), ingesting spent lead ammunition or fishing lures in the
environment (Pain et al., 2019), or ingesting soil directly (Beyer et al.,
1994). Dietary lead accumulates predominantly in the bones, livers, and
kidneys of birds (Scheuhammer, 1987; Pain et al., 2019), and in adult
birds, females accumulate lead faster than males, especially during egg
formation and laying (Scheuhammer, 1987). Ingested lead can also be
excreted by birds through normal excretion, deposition in the uropygial
gland, salt gland, or feathers, or through excretion into egg contents or
eggshells (Burger and Gochfeld, 1991, 1994). Young birds can thus be
exposed to lead through maternal deposition in eggs, or through post-
hatching diet. See Franson & Pain (2011) Pain et al. (2019) for re-
views of the effects of lead in different avian taxa.

Pre-hatching exposure to lead
Studies on the pre-hatching effects of lead exposure in wild bird

populations have elucidated significant effects on embryonic develop-
ment. Exposure to lead during critical stages of embryogenesis can
induce a myriad of adverse outcomes, including developmental abnor-
malities, reduced hatching success, and impaired chick viability
(reviewed in Burger, 1995; Burger and Gochfeld, 2000; Kertész and
Fáncsi, 2003). Furthermore, the transgenerational transmission of lead
toxicity via egg deposition underscores the long-term ecological impli-
cations of anthropogenic lead contamination in avian habitats (Burger,
1994).

Post-hatching exposure to lead
The effects of early post-hatching lead exposure on developing birds

appear to depend on dosage, species, and exposure route. Herring gull
chicks experimentally exposed to post-hatching lead had significantly
lower survival rates, were less healthy (measured by begging and
walking scores and by the number of times they stumbled when
walking) and had a lower degree of accuracy when pecking at parents’
bills to stimulate feeding (Burger and Gochfeld, 1994). These deficits
were homologous to those observed in the field among chicks with high
lead exposure (Burger and Gochfeld, 1994). In contrast, experimental
manipulation of lead levels in great tit (Parus major) nestlings revealed
few effects on growth, physiology (i.e., glucocorticoid metabolites,
aminolevulinate dehydratase activity, hematocrit, heat shock proteins),
and survival (Eeva et al., 2014; Rainio et al., 2015) and only minor ef-
fects on oxidative status or phagocytosis (Rainio et al., 2015). However,
great tits exhibited strong effects on growth and physiology of being in a
nest near a smelter that were not duplicated when birds were dosed with
lead, suggesting secondary effects of pollution on the food supply (Eeva
et al., 2014). These secondary effects are difficult to replicate in a lab-
oratory and warrant further investigation.

Mercury

Mercury is naturally found in coal and heavy-metal rich geologic
deposits and released by humans intentionally through mining
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operations, and unintentionally through fossil-fuel combustion. Global
mercury releases have increased steeply since the 16th century and
today are dominated by fossil-fuel combustion, especially by coal-fired
power plants, and artisanal gold mining operations in developing
countries (Krabbenhoft and Sunderland, 2013). Once released from
natural deposits, environmental mercury is readily converted by bac-
teria to methylmercury (MeHg; Paris et al., 2018). MeHg is highly
bioavailable, can cross cell membranes and the blood–brain barrier, and
can biomagnify at higher trophic levels (Paris et al., 2018). Historically,
MeHg was thought to primarily impact piscivorous species. However, it
is also widespread in terrestrial food webs via emergent aquatic insects
that are consumed by birds (Ackerman, et al. 2016). Changes in tem-
perature and hydrology due to climate change are also predicted to alter
mercury biogeochemical cycles (Krabbenhoft and Sunderland, 2013).
Increased precipitation is expected to increase deposition of mercury
from terrestrial to aquatic environments; increased frequency, scale, and
intensity of wildfires is expected to mobilize mercury stores in soils;
finally, changes to ocean productivity, circulation and oxygen minimum
zones is expected to alter methylmercury formation (Krabbenhoft and
Sunderland, 2013). Generally, studies indicate that methylmercury
production and bioaccumulation in aquatic systems will be accelerated
under climate change predictions (Krabbenhoft and Sunderland, 2013).
Mercury concentrations in blood and organs can vary throughout avian
development due to changes in sequestration, mass dilution, maternal
deposition, and diet. For birds with both precocial (i.e., American avo-
cets, Recurvirostra americana, and black-necked stilts, Himantopus mex-
icanus) and semi-precocial young (i.e., Forster’s terns, Sterna forsteri),
mercury concentration in internal tissues follows a U-shaped pattern
with highest concentrations occurring at hatching and fledging
(Ackerman et al., 2011).

Pre-hatching exposure to mercury
In ovo, methylmercury has similar accumulation patterns to that of

adult birds, accumulating in the liver, kidneys, and feathers. This
sequestration of methylmercury is advantageous by preventing the toxin
from accumulating in other vital tissues. By embryonic day 19, chicken
embryos appear to be able to demethylate methylmercury in the liver,
an additional protective mechanism for embryonic exposure
(Rutkiewicz and Basu, 2013). Despite these mechanisms, mercury ap-
pears to accumulate in the brain tissue of exposed embryos and hatch-
lings, at comparable levels to those found in adult birds following
mercury exposure through diet. Thus, neurotoxicity may be an impor-
tant effect of mercury for embryos, as well as adults (Rutkiewicz et al.,
2013). In ovo exposure to ecologically relevant high levels of methyl-
mercury is also correlated with long-lasting increases in telencephalon
size, indicating neuro-inflammation in zebra finches, although male
courtship behaviors or song quality were unaffected (Yu et al., 2017).

Mercury concentrations in tissues rapidly increase after embryonic
day 16 until hatching, most likely because the yolk is absorbed at this
point. Thus, embryotoxicity may be most important at the pipping and
hatching stages (Rutkiewicz et al., 2013). Methylmercury and total
mercury in eggs decreases hatchability (Heddle et al., 2020) and in
Forster’s terns this occurs at least in part through embryo malposition-
ing. Embryo malpositioning may occur as a direct result of maternal
transfer leading to impaired embryonic motor development, and/or
impaired parental care due to parental mercury levels (Herring et al.,
2010). Embryo malpositioning appears to be a dose-dependent effect, as
malpositioning was not observed in American avocets or black-necked
stilts with lower natural levels of total mercury (Herring et al., 2010).
Mercury in downy feathers at hatching (reflective of maternal transfer in
ovo) is also associated with increased erythrocyte nuclear abnormalities
and decreased pre-fledging body condition (Santos et al., 2020). How-
ever, no significant histopathological or neurochemical changes have
been observed in chicken embryos dosed with methylmercury, no
behavioral changes were noted in chicks exposed in ovo (Rutkiewicz
et al., 2013), and embryonic mercury exposure does not appear to

correlate with eggshell thickness (Peterson et al., 2020), or later
reproductive success of offspring (Paris et al., 2018).

Post-hatching exposure to mercury
Post-hatching mercury exposure can alter the hypothal-

amic–pituitary–adrenal (HPA) axis, although the direction of change is
inconsistent across studies. For example, wild Forster’s tern chicks with
high blood mercury concentrations exhibit lower fecal glucocorticoid
metabolite concentrations (Herring et al., 2012), suggesting that chronic
mercury exposure may suppress baseline glucocorticoids. Similarly,
common loon (Gavia immer) chicks show a reduction in the HPA axis
stress response following post-hatching mercury dosing (Franceschini
et al., 2017). However, wild red kite (Milvus milvus) nestlings and ju-
venile common blackbirds (Turdus merula) with high mercury concen-
trations exhibit elevated corticosterone concentrations in feathers,
which is reflective of stress during feather development (Meillère et al.,
2016; Powolny et al., 2020). This apparent discrepancy in the direction
of glucocorticoid change may be due to sampling differences, species-
specific differences in sensitivity or gastro-intestinal metal absorption,
or interactions between mercury and other contaminants, or other
environmental factors. For example, for red kite nestlings, the best sta-
tistical model predicting feather corticosterone also included an inter-
action between blood mercury and lead concentrations, suggesting that
these two heavy metals interact synergistically to affect HPA axis
function (Powolny et al., 2020).

When mercury is present at high levels in the nesting environment,
young birds would most likely be exposed at both pre-hatching through
maternal transfer, and post-hatching through dietary exposure. Thus,
several studies have examined the combined long-term effects of these
two exposures routes, and have found significantly reduced reproduc-
tive success later in life (Paris et al., 2018; Heddle et al., 2020), at least
among altricial zebra finches. Developmentally exposed finches hatched
32 % fewer eggs and fledged 50 % fewer juveniles than control birds
(Paris et al., 2018). This effect may be sex-dependent, as at least one
study has found that combined pre-hatching and post-hatching mercury
exposure more strongly affects survival and reproductive success in fe-
males than males (Heddle et al., 2020). Additionally, elevated cortico-
sterone concentration was negatively correlated with telomere length,
in these same nestlings. This suggests that heavy metal exposure of
nestling may lead to accelerated telomere attrition, a signal of biological
aging, through an interaction with glucocorticoids (Powolny et al.,
2020).

Copper

Copper (Cu) was one of the first metals extracted and used by
humans. Currently, it is used in building construction, electricity gen-
eration and transmission, electronic products, and vehicle
manufacturing (Doebrich, 2009). Cu is a component of agrochemicals
like fertilizers and pesticides that are used to improve yields and control
pests, which contributes to soil contamination (Ab Hamid et al., 2022).
Commercial antifouling paints can release high levels of Cu into water
(Adeleye et al., 2016). Global production of copper has increased
dramatically in recent years and was estimated to be 22 million metric
tons in 2023, up from 16 million metric tons in 2010 (Statista Research
Department, 2024). Cu is an essential micronutrient and is an additive in
commercial poultry and animal feeds, but the bioavailability of copper
sulfate (CuSO4), the main supplement form, is low due to the presence of
other ingredients that can inhibit absorption (Scott et al., 2016).
Therefore, animals can excrete high levels of Cu contaminating soil and
water. In humans, acute ingestion of excess Cu can cause gastrointestinal
disturbance, including nausea and vomiting, while chronic ingestion can
cause liver or kidney damage (United States Environmental Protection
Agency, 2009). The increase of Cu compounds in water, sediment, and
soils is an emerging environmental concern. In addition, our exploration
of toxicological causes of avian mortality in the WHISPers database
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revealed that Cu was a major component of deaths attributed to heavy
metals.

Pre-hatching exposure to copper
Cu has been used to promote growth and health of domestic poultry

and commercial feeds often contain high levels of this micronutrient
(Scott et al., 2016). As a result, poultry producers have become
increasingly interested in using Cu nanoparticles (Cu-NP) to enhance
growth of embryos. However, studies that experimentally injected Cu-
NP into eggs have had mixed results, with some finding enhanced
metabolic rates (e.g., Scott et al., 2016) and others finding reduced
metabolism (e.g., Pineda et al., 2013). In addition, some studies found no
effect of Cu-NP on organ growth (e.g., Scott et al., 2016) and others
found reduced growth of the embryo’s vital organs (e.g., Pineda et al.,
2013). Growers have also been interested in using various forms of Cu (e.
g., copper sulfate or acetate) as a substitute for injection of antibiotics
into eggs (Arafat et al., 2019). In general, injection of copper sulfate or
acetate into eggs increased hatching weight (Arafat et al., 2019; Hassan
et al., 2023). However, these experiments in poultry did not examine
high Cu concentrations. Injection of 5 ppm copper sulfate into chicken
eggs induced oxidative damage and necrosis of hepatocytes, increased
malondialdehyde (a product of polyunsaturated fatty acids peroxida-
tion), and decreased glutathione levels (Oguz et al., 2010).

Most studies of the toxicological effects of Cu on avian embryos have
looked at the combined effects of Cu and another environmental
pollutant. For example, Lehel et al. (2014) examined the combined ef-
fects of CuSO4 and chlorpyrifos on chicken embryos. Injection of 0.05 %
CuSo4 into the egg on day 0 of incubation had no effect on early (day 3)
embryo mortality but increased mortality (50 %) of late stage (day 19)
embryos over that of controls (5 %). When injected with chlorpyrifos on
day 0, the combination increased late-stage embryo mortality relative to
the control, CuSO4 alone, and chlorpyrifos alone treatment groups. Only
one living embryo was found in the combined treatment group, so sta-
tistical tests of effects on growth abnormalities could not be performed.
Lehel et al. (2021) examined the effects of CuSO4 and glyphosate on
chicken embryos. Injection with CuSO4 on day 0 of incubation increased
day 19 mortality and reduced body mass over that of controls, while
injection with CuSO4 and glyphosate increased mortality over that of
either contaminant by itself. Abdomen and leg deformities as well as
reduced growth were also found in the combined group on day 19.
Immersion of mallard eggs in water contaminated with CuSO4 did not
increase mortality or anomalies in embryonic development over that of
controls, while immersion in Pb and CuSO4 increased mortality and the
malformation rate of embryos over that of controls and treatment with
Pb alone (Kertész and Fáncsi, 2003).

Post-hatching exposure to copper

Domestic chickens fed a diet supplemented with 800 mg/kg CuSO4
from day 9 post-hatching exhibited reduced growth and significant Cu
accumulation in their livers. However, when half of the protein in their
casein diet was replaced with soybeans, Cu tissue accumulation was
reduced, suggesting that other diet components can mitigate Cu toxicity
(Funk and Baker, 1991). Liver and GI tract damage, anemia, and
increased mortality was seen in > 3 day old broiler chicks fed a starter
ration supplemented with 2140–––2393 ppm tribasic Cu chloride
(Malinak et al., 2014). The growth of the bursa of Fabricius was
inhibited in domestic ducklings fed > 400 mg/kg Cu from day 1 post
hatching, suggesting that exposure early in life to high copper concen-
trations could inhibit humoral immune function (Yang et al., 2009). One
day old chickens fed 300 mg/kg CuSO4 also had reduced overall bursa
growth, in addition to follicular atrophy, reduced lymphocyte produc-
tion, and increased inflammation and oxidative damage to the bursa
(Guo et al., 2020; Liu et al., 2020). Few studies have examined the effect
of copper alone on the growth and health of wild bird nestlings, but Cu
was associated with reduced cell-mediated immune response in nestling

white storks (Ciconia ciconia) four years after a toxic mining spill, but not
in the years immediately following the spill (Baos et al., 2006). Given the
evidence of negative effects of early-life Cu exposure in domestic birds,
and the increased risk of soil and water contamination from animal feeds
and human activities (Xiong et al., 2010), some wild birds are likely
exposed to high Cu. More research in this area is needed.

Plastics

Plastic pollution is of growing concern in the Gulf of Mexico region
(Grace et al., 2022). Here, we use the recommendations of Grace et al.
(2022) for categorizing plastic particles by size. To avoid confusion, we
recategorized plastics to match the scale presented in Table 1 of Grace
et al. (2022) if a published paper used a different categorization scheme.
Entanglement in macro- and megaplastic debris can kill or injure adult
birds, the vast majority of which are seabirds (reviewed in Battisti et al.,
2019) and entanglement was a leading cause of mortality in our
WHISPers search. Birds also incorporate plastics into nesting material
which can also entangle and kill adults and nestlings (e.g., Restani, 2023;
Votier et al., 2011). Birds may ingest plastics purposefully by mistaking
them for edible food items, indirectly through trophic transfer, or inci-
dentally (Grace et al., 2022). Ingestion of plastics by birds can be
problematic due to their largely non-digestible nature. Macroplastics are
well known to cause physical blockages, damage, or a false sense of
satiety in a variety of taxa (Wright et al., 2013). Plastic-induced fibrosis
or “plasticosis” was identified in flesh-footed shearwaters (Ardenna
carneipes), raising concerns about the possibility of this occurring in
other species as well as potentially affecting the efficiency of nutrient
absorption (Charlton-Howard et al., 2023).

Besides physical damage and obstruction, microplastics pose an
ecotoxicological concern for wildlife because they contain chemicals
associated with plastic production and can readily adsorb chemicals
from the environment at later time points (Grace et al., 2022). These
chemicals can leach from plastics following ingestion by wild birds
(Tanaka et al., 2019). Many of these chemicals of concern are discussed
elsewhere in this review, therefore we do not discuss them further here,
but note that the concentration of pollutants can be many times greater
on these plastic particles than in the surrounding environment (Yu et al.,
2019). However, one study found no relationship between ingested
plastic burden and several plastic associated chemicals in the tissues of
fledgling northern fulmars (Fulmarus glacialis; Collard et al., 2024).

Finally, plastics cannot be regarded as a singular pollutant entity;
rather, they represent a diverse array of polymer types, each with
distinct chemical compositions and additives. Furthermore, the extent
and rate of degradation vary among different polymer types and the
degradation process is influenced by environmental factors such as
sunlight, temperature, and microbial activity. In addition to degrada-
tion, plastic polymers possess varying degrees of adsorption capacity,
and through adsorption and desorption processes, can act as vectors for
the transport and distribution of harmful substances across ecosystems
(Grace et al., 2022). The multifaceted nature of plastics as pollutants
underscores the complexity in understanding their effect on wildlife
health and addressing plastic pollution comprehensively.

Pre-hatching exposure to plastics

Microplastics or larger plastics are unlikely to be deposited into eggs
from females, but nanoplastics were transferred into eggs after female
laying hens were orally dosed with radioactive micro- and nanoplastics
(Shelver et al., 2024). Although only a small percentage (<0.3 %) of
ingested plastics were transferred (Shelver et al., 2024), this suggests
that nanoplastics can be deposited into the eggs of other avian species.
Nanoplastics injected into the vitelline vein of chicken embryos were
distributed to many organs but were concentrated in liver and cardiac
tissue resulting in heart defects, death of neural crest cells, and wide-
spread malformations of other organs and tissues (Wang et al., 2023).
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Wang et al. (2021) recently developed a technique to visually monitor
the effects of nanoplastics on the development of quail embryos. More
research is needed to understand the implications of the transgenera-
tional effects of nanoplastics, especially in wild birds. Another potential
avenue of exposure for bird embryos is through eggshell gas exchange
pores. Nanoplastics could be deposited from adult feathers, nesting
material, or from the surrounding air. This potential avenue remains
largely unexplored. In addition, coastal microplastics increase the tem-
perature of sand in a dose dependent manner (Lavers et al., 2021;
Fuentes et al., 2023). This has the potential to increase heat stress in
developing embryos of beach-nesting birds in an already warming
world.

Post-hatching exposure to plastics

Chris Jordan’s series photographs of dead seabird chicks with
stomachs full of plastic litter fromMidway Atoll are well known (Jordan,
2024). Whether these plastics were the direct cause of death is debatable
and many researchers have begun looking for potential detrimental ef-
fects of plastic ingestion by seabird chicks as well as young of other
species. Lavers et al. (2014) found that plastic ingestion can significantly
reduce body mass and other morphometric measurements like wing
chord length and head-bill length in shearwaters. While others found no
association between plastic ingestion and body condition in pre-
fledgling shearwaters (Cousin et al., 2015; Verlis et al., 2018), or asso-
ciation with mortality of chicks in waved albatross (Phoebastria irrorata;
Anderson et al., 2008). Such equivocal results may be due to reliance on
simplistic physiological measures like body mass or morphometrics to
assess impacts.

Plastics can impact individuals at multiple scales, from nm to cm, so
more nuanced physiological indicators may be needed to understand
sublethal impacts of plastics on otherwise superficially healthy wildlife.
This can be difficult to accomplish in wild species because these tech-
niques are more invasive. Several blood analytes (calcium, uric acid,
cholesterol, and amylase) corresponded with the number and mass of
ingested plastics in fledgling flesh-footed shearwaters (Lavers et al.,
2019). Although few data exist on the blood chemistry of wild birds
(Maness and Anderson, 2017), changes in these analytes and blood cell
counts can provide information about the health of individuals and
threats to populations (Maness and Anderson, 2017; Ottinger et al.,
2019; Maness et al., 2023). A recent study examining the tissues of
euthanized flesh-footed shearwaters that had failed a fledging attempt
found widespread damage and inflammation in GI tract tissues (Rivers-
Auty et al., 2023). Plastic burden corresponded with tissue damage in
the proventriculus including a reduction in the size and number of
tubular glands, reduction in the number of rugae present, and an in-
crease in water content (i.e., edema) indicating inflammation. None of
these effects were seen with other ingested hard materials such as squid
beaks or pumice. The macroplastic burden in the proventriculus corre-
sponded with the number of ultrafine plastics embedded in the tissues of
the proventriculus and spleen, indicating digestive fragmentation of
plastics and transfer into the tissues of the GI tract. The embedded ul-
trafine plastics were associated with tissue damage and inflammation. A
mediation analysis found that damage to the proventriculus from the
plastics was associated with kidney damage independent of the number
of ultrafine plastics embedded in the tissue. This suggests kidney dam-
age from malabsorption, nutritional stress, and dehydration. Together,
the results of this study suggest that ingestion of a single macroplastic
particle can have long lasting effects on the health of young birds
through fragmentation and shedding of smaller plastics that then dam-
age tissues and cause a cascade of downstream pathologies (Rivers-Auty
et al., 2023).

Conclusions

Overall, compelling evidence demonstrates that early-life exposure

to these widespread contaminants significantly impacts both the phys-
iology and behavior of birds. In some cases, these sublethal effects can
negatively impact hatching and fledging success or have long-term
negative effects on longevity and/or reproductive success. Scaling up,
these effects may result in declining populations, and/or increased
sensitivity to additional stressors (i.e., decreased resilience), especially
for resident species and in a more transient manner for migratory spe-
cies. For example, early-life contaminant exposure often impacts im-
mune function and neuroendocrine organization, which may increase
susceptibility to future disease and negatively affect future fecundity
and mating/parental behavior, endangering the viability of avian pop-
ulations. Ultimately, the fitness of the population will be adversely
affected. Structured approaches, such as Adverse Outcomes Pathways
(Ankley et al., 2010) provide an approach to link mechanistic infor-
mation to outcomes for individuals and more broadly for populations.
Understanding both lethal and sublethal effects of environmental con-
taminants is critical for management, restoration, and mitigation to
reverse the steep decline in wild avian populations.

Future directions

This review has focused on the phase of avian life history that is least
understood, yet most at risk for high extrinsic mortality. Early life is a
highly vulnerable transitional period involving rapid anatomical,
physiological, neurological, and behavioral changes. Toxicant exposure
can disrupt these developmental processes, resulting in long-term al-
terations to the phenotype with implications for later reproductive
success and longevity, and thus population productivity. At the popu-
lation level, toxicant exposure may act synergistically with develop-
mental vulnerability by increasing general mortality or may act
antagonistically by most strongly affecting birds with lower predicted
intrinsic fitness. Thus, more basic research on post-hatching and post-
fledging survival and their interactions with toxicant exposure in wild
birds is needed to better understand the potential risks of exposure
during early life (see Custer et al., 2018; Doering et al., 2018). Consid-
ering the many gaps in current knowledge regarding early-life exposure
to contaminants for wild birds, we recommend the following directions
for future research in this field:

(1) Contaminant investigations using ecologically relevant concen-
trations and exposure routes. Much of our current knowledge of
early-life effects to contaminants involve unnatural exposure
routes (e.g., submersion of eggs in contaminants), or very high
concentrations beyond what is found typically in nature.
Ecological relevance is needed to accurately evaluate the poten-
tial threat sublethal exposures pose to individuals and
populations.

(2) Increased diversity of study organism life histories. Such studies
will allow for the determination of species-specific sensitivities
and increase our understanding of the factors underlying differ-
ential sensitivities to contaminants. Most contaminant exposure
research involves domestic precocial birds (e.g. chickens, Japa-
nese quail), with few studies conducted in altricial birds for
which critical exposure windows may be very different. Such
research would allow for differential sensitivities between species
to be integrated into predictive models to ascertain potential risk
based on bird species and/or life history.

(3) Assessment of the effects of exposure to common chemical mix-
tures early in life. Early-life effects are often sensitive to com-
pounding effects of multiple stressors and events (i.e., “allostatic
load”; McEwen & Wingfield, 2003), such that effects are magni-
fied when multiple stressors are present (Tung et al., 2016). For
example, a degraded habitat where heavy metal exposures are
high in combination with pesticide exposures may increase the
risk of disease in comparison to either exposure, alone.
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(4) Naturalistic scenarios involving early-life exposure to contami-
nants and additional common stressors. Early-life effects of con-
taminants are typically studied in a laboratory setting, where the
timing, duration, and magnitude of exposure can be strictly
controlled and where other conditions can be held constant.
However, wild organisms do not encounter contaminants and
other stressors in a vacuum. In the wild, a hatchling is confronted
with many potential stressors at once, for example unpredictable
food availability, predators, extreme weather events, parasites,
and contaminants.

(5) Evaluation of early-life effects of contaminant exposure across
life stages, especially impacts to fitness (e.g., survival and repro-
ductive success). Most currently published studies of early-life
exposure track individuals only until shortly after hatching or
just before fledging. While long-term studies are logistically
difficult, it is imperative to understand the risk of sub-lethal
contaminant exposure to population dynamics and persistence.

(6) Mitigation measures beyond reduction of environmental
contaminant load should be considered. For example, exposure to
organophosphate pesticides can impair foraging behavior (Grue
et al., 1997) and decrease prey availability. Supplemental feeding
may thus alleviate the impact of these effects on individuals and
populations.
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