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Abstract: Prediction of response to percutaneous sclerotherapy in patients with venous malforma-
tions (VM) is currently not possible with baseline clinical or imaging characteristics. This prospective
single-center study aimed to predict treatment outcome of percutaneous sclerotherapy as measured by
quality of life (QoL) by using radiomic analysis of diffusion-weighted (dw) magnetic resonance imag-
ing (MRI) before and after first percutaneous sclerotherapy. In all patients (n = 16) pre-interventional
(PRE-) and delta (DELTA-) radiomic features (RF) were extracted from dw-MRI before and after first
percutaneous sclerotherapy with ethanol gel or polidocanol foam, while QoL was assessed using
the Toronto Extremity Salvage Score (TESS) and the 36-Item Short Form Survey (SF-36) health ques-
tionnaire. For selecting features that allow differentiation of clinical response, a stepwise dimension
reduction was performed. Logistic regression models were fitted and selected PRE-/DELTA-RF
were tested for their predictive value. QoL improved significantly after percutaneous sclerotherapy.
While no common baseline patient characteristics were able to predict response to percutaneous
sclerotherapy, the radiomics signature of VMs (independent PRE/DELTA-RF) revealed high potential
for the prediction of clinical response after percutaneous sclerotherapy. This proof-of-concept study
provides first evidence on the potential predictive value of (delta) radiomic analysis from diffusion-
weighted MRI for Quality-of-Life outcome after percutaneous sclerotherapy in patients with venous
malformations.

Keywords: venous malformation; slow-flow vascular malformations; radiomics; percutaneous
sclerotherapy; quality of life
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1. Introduction

Venous malformations (VM) are slow-flow vascular malformations according to the
ISSVA (International Society for the Study of Vascular Anomalies) classification, with a
prevalence of up to 1% in the overall population [1–3]. VM are congenital lesions consisting
of dysplastic and dilated veins due to a disturbed vasculogenesis. If symptomatic, common
symptoms include pain, swelling, inflammation and functional impairment. Since vascular
malformations typically involve multiple tissue compartments such as subcutaneous fat,
muscles or even bone, surgical resection is challenging and frequently associated with
recurrence of the lesion. In recent years, percutaneous sclerotherapy of VMs has emerged
as a minimally invasive treatment option, using sclerosing agents such as (gelified) ethanol,
polidocanol or bleomycin [4]. These agents harm dysplastic endothelial cells of VMs,
causing intralesional thrombosis, inflammation, and scarring. Percutaneous sclerotherapy
has proven to be effective even in challenging anatomic regions accompanied by a low risk
profile [2]. However, many patients require several sessions of percutaneous sclerotherapy
before improvement of clinical symptoms may be recognized. Moreover, some patients do
not sufficiently respond to percutaneous sclerotherapy, with substantial implications for
patients’ daily and social lives.

Therefore, early identification of responders and non-responders to percutaneous
sclerotherapy is crucial. Currently, no reliable baseline clinical or imaging parameters
exist to predict patient outcome following percutaneous sclerotherapy. Imaging in VMs is
based on ultrasound and magnetic resonance imaging (MRI) [5]. Since diffusion-weighted
(dw) magnetic resonance imaging (MRI) depends on the intralesional diffusion of water
molecules, which may be restricted in slow-flow malformations either by partial throm-
bosis or after sclerotherapy, dw-MRI may provide useful predictive parameters for the
effectiveness of sclerotherapy [6,7]. In this context, data on radiomics approaches for the
assessment of the predictive value of MRI are still sparse and usually, the radiomics method
uses pre-therapeutic images for evaluation of prediction, which neglects the changes of the
observed disease during treatment or follow-up [8]. Hence, an additional delta-radiomics
approach, which employs the changes in radiomic features during treatment to instruct
clinical decisions, may be worthwhile for evaluation of treatment response [8,9]. To the best
of our knowledge, there is no data on the capability of baseline and delta-radiomic features
of dw-MRI to predict the treatment response of percutaneous sclerotherapy in VM patients.

Therefore, this study aims to evaluate the predictive value of radiomic features ob-
tained from pre- and post-interventional dw-MRI in evaluating outcome of percutaneous
sclerotherapy of VM by means of patients’ quality-of-life improvement.

2. Materials and Methods
2.1. Study Design

This study was performed as a prospective single-center observational proof-of-
concept study at a tertiary care vascular anomalies center. All patients with venous
malformations of the upper or lower limb who had never been treated by percutaneous
sclerotherapy before and who were not treated otherwise for the past 12 months were
consecutively included between March 2020 and June 2021. Patients with mix-type vascular
malformations were excluded. Children too young for MRI without sedation or anesthesia
were also excluded. Diagnosis of VM was based on clinical and imaging (ultrasound,
MRI) assessment. Percutaneous sclerotherapy was performed in all patients for clinical
indications after interdisciplinary vascular anomalies board discussion independent of the
presented study. Patient data and procedural data were retrieved from the Clinical and
Radiological Information System (CIS, RIS) and Picture Archiving and Communication Sys-
tem (PACS). The study was approved by the Institutional Review Board (ID: 2019-515-f-S).
Figure 1 shows the study workflow.
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Figure 1. Scheme on study workflow. Percutaneous sclerotherapy was repeated if patients suffered
from remaining symptoms and treatable areas of the VM were identified on ultrasound imaging.
SF-36: Short Form-36, TESS: Toronto Extremity Salvage Score in Unoperated Controls, PS: Per-
cutaneous Sclerotherapy, FU: Follow-Up, VM: Venous Malformation, ROC: Receiver Operating
Characteristic. Modified to Yang et al. [10].

2.2. MRI Examination

MRI was performed within 48 h before and 24 h after first percutaneous sclerotherapy
of the VM. All imaging examinations were conducted on a 1.5 T scanner (Ingenia, Philipps,
Best, The Netherlands) with an anterior coil and a build-in posterior coil (32 channels)
covering the entire VM (see Table 1 for anatomical locations). An axial T2 Dixon turbo
spin echo (TSE) sequence was acquired for anatomical information, as well as short-TI
inversion recovery (STIR) for fat suppression. Diffusion weighted images were acquired as
axial diffusion-weighted whole-body imaging with background body signal suppression
(DWIBS) using three b-values (0, 50, 1000; TE 71 ms, TR 4690 ms, IR 180 ms, EPI single shot,
EPI factor 31, slice thickness 6 mm, slice gap 0 mm, ACQ voxel MPS 3.98/4.38/6.00 mm,
REC voxel MPS 2.19/2.19/6.00 mm, sense factor 2). The calculated apparent diffusion coef-
ficient map was used for further analysis. The examination was conducted without contrast
medium. The same protocol was used for MRI before and after percutaneous sclerotherapy.

2.3. Interventional Therapy

All procedures were performed after informed consent. Patients received analgoseda-
tion (midazolam, piritramide) or general anesthesia. For percutaneous sclerotherapy, one to
five appropriate locations of VMs were sequentially identified under ultrasound-guidance.
Intravascular placement of the inserted 22 G needle was assured with aspiration of ve-
nous blood and injection of contrast medium under fluoroscopy, confirming appropriate
distribution within the venous malformation and excluding extravasation. Sclerotherapy
was performed with gelified ethanol (DiscoGel, Ab Medica Deutschland GmbH & Co. KG,
Düsseldorf, Germany; containing gelified 96% ethyl alcohol) and/or polidocanol foam
(Aethoxysklerol 3%; Kreussler Pharma, Wiesbaden, Germany). Percutaneous sclerotherapy
was repeated after 4 to 6 weeks if it was technically feasible, patients reported restricting
symptoms, mostly pain, or no further improvement in patients’ symptoms was gained
after sclerotherapy.
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Table 1. Patient characteristics. y = years, F = female, M = male, No = number, mo = months.

ID Age, y Sex Localization Previous Therapy No of Used
Accesses Sclerosing Agent Quantity, mL No of Performed

Therapies Follow-up, mo

1 22 F forearm none 4 gelified ethanol/polidocanol 2/2 2 19
2 24 F lower leg none 1 gelified ethanol 1 1 17
3 9 M elbow none 2 polidocanol 2 2 18
4 8 F lower leg none 3 polidocanol 2 2 17
5 46 F knee none 4 gelified ethanol/polidocanol 3/1 4 20
6 48 M forearm resection 3 polidocanol 2 3 16
7 25 F thigh none 1 gelified ethanol 2 4 15
8 17 F forearm none 2 gelified ethanol 2 1 12
9 21 F forearm none 1 gelified ethanol 2 1 9
10 25 F forearm none 1 gelified ethanol 1 3 12
11 26 F thigh none 4 gelified ethanol 4 2 10
12 34 F thigh none 3 polidocanol 4 3 8
13 15 M thigh/knee none 5 polidocanol 4 4 12
14 39 F forearm resection/laser therapy 1 polidocanol 4 3 5
15 18 F thoracic wall resection 4 gelified ethanol/polidocanol 2/2 3 8
16 49 M forearm none 4 polidocanol 4 4 5
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All procedural data and patient recordings of performed interventional procedures
were analyzed with regard to age, sex, localization (upper/lower limb), number of used
accesses (needle locations) during sclerotherapy, type and amount of sclerosing agent, as
well as any minor or major adverse events according to the Common Terminology Criteria
for Adverse Events, version 5.0 classification.

2.4. Clinical Outcome and Quality-of-Life

Clinical outcome and quality-of-life were assessed using two standardized question-
naires (SF-36 and TESS score) at baseline, four weeks after the first interventional treatment
of the venous malformation and at latest available follow-up (range 5–20 months, infor-
mation on the latest follow up can be found in Table 1). The 36-Item Short Form Survey
(SF-36) health questionnaire is a 36-item generic measure of general health status [11].
It covers physical and mental measures and is used for a wide range of different evalu-
ations, including relative burden of a disease or assessment of therapy outcome [12,13].
For patients under 18 years of age, the questionnaires were completed with the aid of their
parents. The Toronto Extremity Salvage Score (TESS) is widely used for the functional
assessment of patients following surgery for musculoskeletal tumors located at the upper
or lower extremity [14–16]. It comprises questions regarding mostly everyday life tasks and
evaluates the difficulty in performing these tasks. Additional questions cover challenges in
completing duties at work and leisure activities.

The quality-of-life data analysts were blinded for imaging and interventional proce-
dure data. With pain and limitations in motility being the major symptoms of VM located at
the extremities, affiliated parameters from quality-of-life data were used to define, in total,
four outcome parameters to assess: (1) effectiveness of first percutaneous sclerotherapy
and (2) effectiveness of repetitive percutaneous sclerotherapy. Effectiveness of the first
percutaneous sclerotherapy was defined by two outcome parameters: first, improvement in
SF-36 pain score by at least 20 points and second, improvement in TESS score by at least 5%
each four weeks after first sclerotherapy compared to baseline. Effectiveness of repetitive
percutaneous sclerotherapy was defined by two outcome parameters: first, achieving a
SF-36 pain score of at least 85 points (meaning pain only rarely or in severe stress situations)
and second, by achieving a TESS score of 85% or higher.

2.5. Image Analysis and Radiomic Feature Extraction

Two experienced radiologists, blinded for interventional and clinical data, indepen-
dently evaluated pre- and post-interventional MRI data in a random order. For image seg-
mentation, the reader-specific label map volume based on the VM volume in T2-weighted
images was transferred to diffusion-weighted-MRI sequences. Radiomic features from
labelled dw-MRI sequences (ADC) were extracted twice, each by the same independent
readers for inter-observer analysis, and included 162 first-order logic features and 216 gray
level co-occurrence matrix (GLCM) features, as described elsewhere [17]. The radiomics
features were extracted from the VM regions on both pre- (PRE-RF) and post-interventional
(POST-RF) dw-MRI. The delta-radiomic features (DELTA-RF) were calculated by subtract-
ing PRE-RF from POST-RF. Image analysis and feature extraction was performed with a
freely available software package (3D slicer, version 4.11.2, USA [18])

2.6. Radiomic Feature Selection and Dimension Reduction for Differentiation of Response to
Interventional Therapy

Due to the exceeding number of radiomic features (n = 378) in comparison to the
number of patients (n = 16), feature selection and dimension reduction were performed
separately for PRE-RF and DELTA-RF [19]. Inter-observer reproducibility of the textural
features was assessed by calculating the Concordance Correlation Coefficient (CCC) for
each of the features as a measure of the intra-class correlation. Features with a coefficient
ranging from 0.8 to 1 were considered “excellent” and included in further analysis [20,21].
A z-score standardization was used for feature normalization, followed by a random
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subdivision of the dataset in a balanced training and test dataset (75/25 ratio). Further
feature reduction was performed only on the training dataset using a Boruta machine-
learning algorithm, which applies a Random Forest algorithm by performing a top-down
search for relevant features. Irrelevant features are progressively eliminated to stabilize
the model after comparison of original attributes’ importance to importance achievable
at random [22]. A correlation matrix was calculated subsequently and closely correlated
features were eliminated [23,24]. In a last step, features that allow for differentiation of
clinical response according to the four defined outcome parameters from quality-of-life
analysis (see above) were selected respectively and logistic regression models were fitted.
Diagnostic accuracy of the features was evaluated by receiver operating characteristic (ROC)
calculating the area-under-the-curve (AUC). Radiomic feature selection and dimension
reduction was performed by using an open-source software package (R/R studio, version
4.0.5; R Foundation, Vienna, Austria).

2.7. Statistical Analysis

All data are presented as mean ± standard deviation or as median (and range), as ap-
propriate. The paired student t-test was used for pre- versus postinterventional data. The
characteristics age, sex, localization of the malformation (upper or lower limb), previous
therapies, number of accesses during sclerotherapy, sclerosing agent (gelified ethanol,
polidocanol or a combination of both), the quantity of the agent in mL, and the number
of performed therapies were analyzed regarding their influence on patient outcome (im-
provement in SF-36 pain score by at least 20 points or improvement in TESS score by at
least 5% each four weeks after first sclerotherapy compared to baseline; achievement of
a SF-36 pain score of at least 85 points; or a TESS score of 85% or higher after repetitive
sclerotherapy) with a binary logistic regression using IBM SPSS statistics (version 28.0.1.0,
IBM Corp., Armonk, NY, USA) for metric and categorial predictors, respectively. Statistical
analysis of the QoL data was performed using Prism 9 software (GraphPad Software Inc.,
San Diego, CA, USA). A p-value of < 0.05 was considered significant.

3. Results
3.1. Patient Characteristics

Sixteen consecutive patients (12 female and 4 male; median age 27 years [range 8–49 years])
undergoing percutaneous sclerotherapy for venous malformation were included in this
study. Nine patients (56.25%) had a VM of the upper extremity, seven patients (43.75%)
of the lower extremity. Three patients had a history of previous treatment at least 9 or
more years ago (patients 6 and 15 had two surgical treatments previously, patient 6 in
the 1970s and patient 15 in 2004, patient 14 one surgical treatment (2011) and one laser
therapy (2012)). Only one patient received additional laser therapy after sclerotherapy
(patient 2); all other patients had no further treatment. Median follow up was 12 months
after the first treatment, range 5–20 months. Last quality-of-life assessment was at least
4 weeks after last treatment. Detailed information on patient characteristics and follow-up
can be found in Table 1 summarizing both baseline patient data as well as information on
performed procedures. Additionally, exemplary MRI and procedural images of a patient
with a venous malformation treated by sclerotherapy is presented in Figure 2.

3.2. Interventional Therapy

A mean of 2.6 ± 1.1 (range 1–4) percutaneous sclerotherapies were performed per
patient. Patients received sclerotherapy in a mean of 2.7 ± 1.4 locations per session, range
1–5. In the first therapy cycle, six patients received only gelified ethanol with a dose of
1.9 ± 1.1 mL, while seven patients were treated with polidocanol alone, with a dose of
2.9 ± 1.1 mL. The remaining three patients were treated with a combination of 2.3 ± 0.6 mL
gelified ethanol and 1.7 ± 0.6 mL polidocanol. No major adverse events were observed
during or after the intervention, and minor adverse events included post-interventional
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pain and local inflammation. No procedure-associated short- or long-term adverse events,
such as necrosis or nerve damage, were observed during follow-up.
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Figure 2. Representative imaging of a venous malformation in the gluteal area of a 34-year-old
woman before therapy (a) shows a well marginated lesion on apparent diffusion coefficient (ADC)
(a) and T2-weighted (c) imaging, which is markedly hypo-intense after therapy in ADC (b) and
T2-weighted imaging (d,f) with a surrounding hyperintense edema (arrowheads in (f)). For seg-
mentation a volume of interest (red line) was drawn on T2-weighted images (c,d) and transferred to
ADC (a,b). (e) Representative fluoroscopic imaging during percutaneous sclerotherapy followed by
administration of the sclerosing agent via percutaneous needles in three locations (black asterisks).

3.3. Clinical Outcome—Quality-of-Life

Detailed quality-of-life data at baseline, four weeks after first sclerotherapy and at last
follow-up at least four to six weeks after the last sclerotherapy, can be found in Figure 3.
The detailed values for the assessed categories, as well as statistical details, can be found
in Supplementary Materials Tables S1 and S2. TESS showed a significant improvement in
quality-of-life at last follow-up after repetitive sclerotherapy (92.0 ± 8.1%) in comparison
to the baseline (77.5 ± 16.2%, p-value 0.0009). Thus, the improvement led to score values
close to the maximum of 100%. The more-detailed SF-36 survey achieved a significant
increase in the score values in all assessed categories after repetitive sclerotherapy as well.
In detail, the score for physical functioning significantly improved from 72.8 ± 23.3 to
93.1 ± 11.1 (p-value 0.0022), while the score for the role limitations due to physical health
increased significantly from 51.6 ± 38 to 89.1 ± 20.4 (p-value 0.0012). Three patients did
not sufficiently improve in these categories, but already had rather high baseline scores
for physical functioning of 75 or more. With the SF-36 score, the effects of physical disease
on mental health are also evaluated, as characterized by the following categories: role



Diagnostics 2022, 12, 1430 8 of 14

limitations due to emotional problems, energy/fatigue, emotional well-being and social
functioning. All four categories improved significantly after repetitive sclerotherapy, from
60.4 ± 45.9 to 93.8 ± 25 (p-value 0.0083), from 56.9 ± 17.5 to 72.8 ± 20.9 (p-value 0.0006),
from 57.5 ± 24.1 to 75.0 ± 18.0 (p-value 0.0024), and from 82.8 ± 25.0 to 92.2 ± 15.1
(p-value 0.0346), respectively. Additionally, repetitive percutaneous sclerotherapy led to
a significant improvement of pain, yielding an increase in SF-36 score from 23.3 ± 16.7
to 70.3 ± 24.8 (p-value < 0.0001). Here, half of the patients had a score of 80 or higher at
final follow-up, which means pain occurs only in situations with increased stress, such as
extensive participation in sports or long walks. As an overall score, the general health score
improved significantly from 50.3 ± 22.6 to 73.8 ± 16.8 (p-value < 0.0001). Furthermore,
patients reported a considerably more positive outlook regarding their expectations for
future health change with a score increasing from 26.6 ± 25.0 at baseline to 79.7 ± 22.8 after
repetitive sclerotherapy (p-value < 0.0001). In summary, defined quality-of-life outcome
parameters were achieved as follows: eight patients (50%) improved in pain score by at
least 20 points and six patients (37.5%) showed an improvement in TESS score of at least 5%
after first sclerotherapy. Meanwhile, seven patients (43.75%) achieved a SF-36 pain score of
85 or higher, and 10 patients (62.5%) achieved a TESS score of 85% or higher at last follow
up after repetitive sclerotherapy. All other patients were defined as non-responders for
further analysis.
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Figure 3. Results of the Toronto Extremity Salvage Score (TESS) (a,c) and Short Form 36 (SF-36) (b).
(d) survey after the first percutaneous sclerotherapy (a,b) and after repeated therapies (c,d). The indi-
vidual values can be found in Supplementary Materials Table S1. * p < 0.05, ** p < 0.01, *** p < 0.001,
**** p < 0.0001 R.l.d.t. = Role limitations due to.

3.4. Outcome Prediction–Binary Logistic Regression

Binary logistic regression identified none of the analyzed common clinical parameters
such as age, sex, location of VM, prior therapies, number of accesses during sclerotherapy,
type or amount of sclerotic agent used, or number of performed sclerotherapies as pre-
dictive for any of the above defined quality-of-life outcome measures (all p-values > 0.05,
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see Supplementary Materials Table S2). Hence, there are no common baseline patient
characteristics that can be used to predict response to percutaneous sclerotherapy of VM.
Therefore, radiomic analysis of the data was performed subsequently (an overview of the
workflow can be found in Figure 1).

3.5. Outcome Prediction—Radiomics Features before Therapy

Radiomic features are written in italics for easy identification. In a first step, radiomics
analysis of baseline dw-MRI data (PRE-RF) was performed to predict outcome after scle-
rotherapy of VM. Subsequent to the multistep dimension reduction from pre-interventional
dw-MRI data only, independent PRE-RF related to each of the defined outcome goals were
identified (Figure 4). Regarding response to the first percutaneous sclerotherapy (PRE-RF),
the feature variance was identified for an increase of at least 20 points in SF-36 pain score and
the feature maximum was identified for an increase in TESS score of at least 5% (Figure 4).
Regarding response at last follow-up after repetitive percutaneous sclerotherapy, the feature
range was identified for an achieved SF-36 pain score of at least 85 (meaning no significant
pain in everyday life) and the feature minimum was identified for an achieved TESS score of
at least 85% (Figure 4). When assessing the prediction performance of the aforementioned
tissue factors, each ROC analysis for the discrimination of responders and non-responders
to percutaneous sclerotherapy according to the defined outcome parameters showed an
accuracy with an AUC of 1, respectively.
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Figure 4. Independent radiomic features of pre-treatment MRI differentiated well between responders
(yes = green) and non-responders (no = red) to percutaneous sclerotherapy using the identified
features after feature selection. Response was defined as an increase in pain score of at least 20 points
assessed with the SF-36 (a) or improvement of the TESS score of at least 5% (b) after the first treatment
and as an achievement of at least 85 points in the SF-36 pain score (c) or of 85% or more in the TESS
score (d) after repetitive percutaneous sclerotherapy.

3.6. Outcome Prediction—Delta Radiomic Features before and after the First Treatment

Radiomic features are written in italics for easy identification. In a next step, delta
radiomics analysis from dw-MRI data before and after the first percutaneous sclerotherapy
of VM was performed to predict outcome after sclerotherapy, obtaining DELTA-RF after
the multistep dimension reduction (Figure 5). Regarding response to the first percutaneous
sclerotherapy (DELTA-RF), the feature range was identified, discriminating responders from



Diagnostics 2022, 12, 1430 10 of 14

non-responders regarding an increase in SF-36 pain score by at least 20 points. Further, for
an increase in TESS score after first sclerotherapy by at least 5%, six independent features
(large dependence emphasis, run entropy, run percentage, short run emphasis, short run high
gray level emphasis, and zone percentage) were identified (Figure 5). As clusters of DELTA-
RF became apparent in the correlation matrix (Supplementary Figure S1), representing
closely correlating features, only the combination of short run emphasis and zone percentage
were included in further analysis. Regarding response at last follow-up after repetitive
percutaneous sclerotherapy, four independent DELTA-RF (minimum, small area emphasis,
small dependence emphasis and zone percentage) were identified with respect to achieving a
SF-36 pain score of 85 or higher. Again, the correlation matrix revealed closely correlating
features (Supplementary Materials, Figure S1), whereby the combination of minimum, zone
percentage and small area emphasis were included for predictive performance analysis. For
achieving a TESS score of at least 85%, the DELTA-RF minimum was identified, which
is the same feature identified for the PRE-RF analysis (see above). When assessing the
predictive value of these DELTA-RF, the ROC analysis for the discrimination of responders
and non-responders to the chosen response criterion each revealed an accuracy with an
AUC of 1, respectively.
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Figure 5. Independent delta-radiomic features of pre-treatment MRI differentiated well between
responders (yes = green) and non-responders (no = red) to percutaneous sclerotherapy using the
identified features after feature selection. Response was defined as an increase in pain score of at least
20 points assessed with the SF-36 (a) or improvement of the TESS score of at least 5% (b) after the first
treatment and as an achievement of at least 85 points in the SF-36 pain score (c) or of 85% or more in
the TESS score (d) after repetitive percutaneous sclerotherapy. In case of several relevant features per
response criterion (b,d), a correlation matrix was calculated (details can be found in Supplementary
Materials Figure S1).

4. Discussion

Although venous malformations (VM) are benign lesions, they may cause severe
symptoms such as pain, swelling, or functional impairment once symptomatic. As congen-
ital lesions with a high rate of recurrence after therapy or the impossibility of definitive
cure, VM often accompany patients’ lives over a tedious period with alternating or chronic
symptoms [25]. Thus, patients often experience a high degree of physiological and psycho-
logical strain, aggravated by a high rate of initial misdiagnosis or insufficient therapies [26].
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This notion is verified by the poor baseline quality-of-life data (especially regarding pain or
psychological scores) of the patient cohort presented in this study, showing values close
to the ones reported for severe bone lesions or musculoskeletal cancers [27,28]. However,
different from standardized response assessment in musculoskeletal cancers, response
assessment early after interventional treatment of VMs is a challenge, as therapy success is
often not visible on imaging. In this study, a thorough analysis of patients’ quality-of-life by
well-established SF-36 and TESS surveys was performed to assess response to percutaneous
sclerotherapy and generate meaningful targets for outcome prediction.

Percutaneous sclerotherapy has been established as a minimally invasive strategy with
good outcomes and a low risk profile [4], fostering it as treatment of choice in most VMs,
even in challenging locations [2]. This notion is supported by the good outcome results
in the presented study, as shown by significant improvement in patients’ quality-of-life.
However, there are currently no established baseline patient characteristics or imaging
parameters that may predict such responses prior to VM treatment [29]. Similarly, all
common baseline parameters, as well as interventional procedure data, were not associated
with patient outcome neither after first sclerotherapy nor at last available follow-up after
repetitive cycles of sclerotherapy in the presented study. However, predictive biomarkers
to identify non-responders prior to or early during the repetitive cycles of sclerotherapy
would be crucial to guide treatment decisions in VM patients and thereby protect patients
from (further) inefficient treatment sessions.

Therefore, this study evaluated the feasibility of using quantitative tissue parameters
extracted from pre- (PRE-RF) and post-interventional (DELTA-RF) dw-MRI for response
prediction to percutaneous sclerotherapy, as diffusion-weighted (dw) imaging with cal-
culation of the apparent diffusion coefficient is a sensitive MRI method to detect venous
malformations [30]. Dw-MRI is influenced by a variety of factors, such as cell density, intrale-
sional thrombosis [31] or perfusion [32] and, as shown from data of this study, by sclerosing
agents used for percutaneous sclerotherapy. Further, visual assessment of dw-MRI carries
pitfalls such as influence by factors like T2 relaxation times [33], so a radiomics approach
enables a more objective and thorough multidimensional assessment of these data. Artifi-
cial intelligence has already been used for vascular diseases (peripheral artery disease or
deep vein thrombosis of the limb [34].

Using radiomics analysis of baseline dw-MRI as well as change in dw-MRI data after
sclerotherapy, this study identified several (pre- or delta-) radiomic features significantly
associated with treatment response (as characterized by the defined outcome parameters in
quality-of-life improvement) after either first sclerotherapy or repetitive cycles of sclerother-
apy. In detail, identified pre-interventional features (range, minimum, maximum) indicate
that the heterogeneity of the untreated VMs in the baseline dw-MRI scan is predicting
outcome of sclerotherapy. This notion fits well with the clinically observed heterogeneity of
these lesions. Hence, once confirmed in larger prospective studies, these features may guide
therapeutic decision for or against starting a treatment with percutaneous sclerotherapy.

Further, delta-radiomics analysis identified several features associated again with
changes in heterogeneity (minimum, range), thereby results are in line with observations for
baseline radiomics analysis, and more advanced features of heterogeneity such as change
in zone percentage were identified as associated with outcome response of percutaneous
sclerotherapy. Exemplarily, this feature was also found to be relevant in response pre-
diction to neo-adjuvant chemoradiation of lymph node metastases in non-small cell lung
cancer (NSCLC) [35]. Hence, delta radiomics analysis of dw-MRI data before and after
first sclerotherapy also proved feasible in outcome prediction. The identified features,
once confirmed in larger prospective studies, may guide therapeutic decision to continue
sclerotherapy or change treatment to other available strategies.

Both baseline and delta radiomics analysis emphasize the potential of dw-MRI to guide
treatment decision and therapy monitoring via assessing imaging biomarkers beyond the
common anatomical information and including the advantages of a non-invasive diagnostic
tool without the need for radiation or contrast agents, which is of benefit considering the
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usually young patient cohort with the need for repetitive imaging [36]. Thereby, the technique
shows comparable potential to recently introduced multispectral optoacoustic imaging
(MSOT) for VM therapy monitoring, but with dw-MRI being currently much more available
and performable on every standard MRI scanner [37].

The presented study has several limitations. First, it is limited by a small patient cohort
in a single vascular anomalies center, resulting in a small number of patients for the training
and test set of the performed radiomics analysis. Although a multistep dimension reduction
approach was only performed in the training dataset to ensure the generalizability of the
statistical model, the number of patients in the test dataset is small. The AUC of 1 achieved
in the prediction performance analysis is therefore due to the small test cohort and is not
intended to suggest that a perfect model has been developed here. However, considering
the rarity of disease, inclusion of only untreated and symptomatic patients with VMs of the
limbs old enough to perform MRI on the identical scanner before and after sclerotherapy,
without the need for sedation or anesthesia, to avoid any bias from various pretreatments,
different scanner hardware or imaging regions or the need of repetitive anesthesia, the
number of included patients is consistent. Thereby, the study provides proof-of-concept
data to guide future larger prospective multicenter studies by identifying dw-MRI as
potential predictive tool for treatment response in VM patients undergoing sclerotherapy.

Second, two different sclerotic agents were used for sclerotherapy, which, however, is
frequently performed in percutaneous sclerotherapy therapy to take advantage of certain
properties of the respective agents [2,4]. Importantly, in perspective, dw-MRI could also be
evaluated for monitoring other treatment options of vascular anomalies.

5. Conclusions

In conclusion, the presented study shows, as proof-of-concept, that diffusion-weighted
MRI has the potential to predict therapy response after percutaneous sclerotherapy of
venous malformations. Once confirmed in larger studies, the identified radiomic features
may help to guide therapeutic decisions based on the most important outcome—the
improvement of patients’ quality-of-life.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/diagnostics12061430/s1, Figure S1: In case of several relevant
features per response criterion a correlation matrix was calculated for achievement of an increase in
TESS score of at least 5% after the first therapy (DELTA-RF) (a) or achievement of a pain score of at
least 85 points assessed with the SF-36 (b). Correlogram including independent radiomic features
where clusters of textural features became apparent. These indicate a strong correlation between
parameters of the same imaging method. Blue circles indicate positive correlation, red circles negative
correlation. Table S1: Statistical data of the QoL surveys after the first percutaneous sclerotherapy
(a) and after repetitive percutaneous sclerotherapy (b). Table S2: Outcome details of the individual
patients (1—outcome was achieved, 0—outcome was not achieved) after the first percutaneous
sclerotherapy (improvement in SF-36 pain of at least 20 points or improvement in TESS score of at
least 5%) and after repetitive percutaneous sclerotherapy (achievement of a pain score of at least
85 points assessed with the SF-36 or of a TESS score of at least 85%). Table S3: Outcome prediction
with binary logistic regression revealed no statistical significance regarding basic characteristics of
patients or the interventional procedure regarding outcome after the first percutaneous sclerotherapy
(a) or after repetitive percutaneous sclerotherapy (b).
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