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This paper presents a method for pixel-wise classification applied for the first time on hippocampus histological images. The goal is
achieved by representing pixels in a 14-D vector, composed of grey-level information and moment invariants. Then, several
popular machine learning models are used to categorize them, and multiple metrics are computed to evaluate the performance of
the different models. The multilayer perceptron, random forest, support vector machine, and radial basis function networks were
compared, achieving the multilayer perceptron model the highest result on accuracy metric, AUC, and F1 score with highly
satisfactory results for substituting a manual classification task, due to an expert opinion in the hippocampus histological images.

1. Introduction

The study of the hippocampus region has been of particular
interest because of its relationship with memory and learning
processes [1, 2], its volume as an indicator for Alzheimer’s
disease [3], personality disorder [4], neurological disorders
derived from strokes [5–9], and drug addiction effects [10],
to mention a few.

Most common hippocampal quantification techniques
are based in MRI images [11, 12] for volumetric calculation
and histological images [13, 14] for neural cell counting.

However, determining hippocampal volume in histologi-
cal images is a challenging labour, on the one hand because
image conditions are not always good and hippocampus sec-
tion is of an irregular shape that is only a few pixels thick,
which makes this labour an intensive and time-consuming
task that demands the help of an expert to correctly identify
the area of interest and so be able to determine hippocampus
volume.

On one hand, pixel-wise classification has been used
broadly for task such as mitosis detection in histological
breast images for cancer detection [15–17], gland segmenta-

tion of prostate histology images [18], and nuclei segmenta-
tion [19], among others, where the solution range goes
from digital image processing approaches used in combina-
tion with ML techniques to convolutional neural networks.

On the other hand, studies on hippocampus region have
been performed exhaustively using magnetic resonance
images from humans and rats, to perform segmentation tasks
by applying several methods such as atlas based [20–23], a
combination with support vector machines (SVMs) [24],
and patch-based approaches [25], among others [26–29].

Even though each published work reports improvements
over previous approaches on their own image source type
and task types, as far as we know with our deep search in
the literature, to perform a pixel-wise classification on hippo-
campus structure from rat brain histological images cuts,
using the coronal anatomical plane, has not been done
before. Mesejo et al. [30] perform a segmentation endeavour
by using deformable models and random forest (RF) from
Allen Brain Atlas [31] image repository using the sagittal
anatomical plane. Senyukova et al. [32] do atlas-based seg-
mentation on several brain sections with RF and Markov
Random Fields on Nissl-stained histological sections of
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mouse brains. And Riklin-Raviv et al. [33] propose a slice-by-
slice segmentation with three-dimensional Gaussian mix-
tures and level sets where the successful segmentation of
one section provides a prior for the subsequent one, assum-
ing that the segmentation of few sparsely sampled slices is
done manually.

This work reports the implementation of a computer
vision method to extract pixel features and use them along
with several machine learning (ML) techniques such as
multilayer perceptron network (MLP), SVM, radial basis
function network (RBFN), and RF, to perform pixel-wise
classification on rat brain histological images using the coro-
nal anatomical plane to correctly identify the hippocampus
structure and facilitate its measurement.

2. Materials and Methods

The images used in this work are supplied by the Pharmacol-
ogy Department of the Autonomous University of Aguasca-
lientes. These images are serial coronal sections of
approximately 6μ thick, from male rat brains of the Sprague
Dawley strain around 8-12 weeks old with a weight of 250-
330 g. The cuts are stained with a specific chemical dye, and
in this case hematoxylin-eosin is employed, to create contrast
on the seeked anatomical structure.

A total of 25 images were digitized from an optical micro-
scope with a magnifying glass of 0.67x, using an LGE LM-
X520 camera model that was configured with an ISO speed
rating of 100, a focal length of 3.5mm, and a variable expo-
sure time ranging from 1/60 s to 1/30 s. Each image was cap-
tured at 4161 × 3120 pixels and was saved originally in JPEG
format.

When performing a visual inspection on these images,
several conditions can be identified:

(i) No relevance on a specific colour for detecting ana-
tomical structures

(ii) Different lighting effects: some images are brighter
than others

(iii) Fuzziness of the hippocampus boundaries

(iv) Variability of hippocampus’ shape and orientation

(v) Cutoff of regions and presence of markings such as
scraps, tears, and streaks in tissue

(vi) Rotated and uncentred brain position

Examples of some of these characteristics are shown in
Figure 1.

Our methodology for hippocampus pixel classification
consists of four consecutive steps, as depicted in Figure 2.
The first step uses image processing to enhance hippocampus
region. The second step characterizes each pixel as a 14-
dimensional vector. Those vectors constitute the features
used by the classification algorithms. After all images have
been characterized, the third step begins. At this step, the
training, validation, and test set are created. The last step
involves feature classification to differentiate between a non-

hippocampus pixel and hippocampus pixel. The details of
each of these steps are now described.

2.1. Image Conditioning and Preprocessing. The provided
images contain ample dark areas, since brain image is swi-
veled and given the large image dimensions, it is necessary
to condition them in order to speed up its preprocessing step.
Therefore, images are straightened and only brain image is
kept along with its aspect ratio. It is determined that an image
size average of 1024 × 832 pixels is big enough to preserve
hippocampus pixels and small enough to perform a fast pre-
processing step. An example of the conditioning phase is dis-
played in Figure 3. Finally, the coordinates that make up the
main hippocampus bounding box are annotated.

Because of the ample differences between hippocampus
images and the image conditions explained in previous sec-
tion, a preprocessing phase is performed in order to enhance
hippocampus region and extract meaningful information to
construct the features that will be used later in the classifica-
tion step. This phase is based in the procedure employed in
Vega et al. [34] and Marin et al. [35]. However, given the dif-
ference between the images and their respective domain field,
the procedure has to be tailored to generate suitable images.
Next, the details of the preprocessing step are described.

2.1.1. Colour Independence. Histological cuts contain differ-
ent colours because of the type, amount of dye, and the expo-
sure time given to the tissue. Consequently, pixels differ in
colour and intensity despite belonging to the same hippo-
campus region. For this reason, the input image is converted
from an original RGB colour space to a Hue Saturation Value
(HSV) colour space, extracting the Value Channel (VC) to
better capture the full range of the different colours that
belong to the hippocampus and to make it independent from
the illumination of the sample images. Then, the image is
cropped to the annotated bounding box to be furthered proc-
essed. IV denotes the resultant image for future references.
Because of the nature of VC, the hippocampus region is rep-
resented by dark colour pixels which correspond to values
close to zero. In order to emboss them, image is negated hav-
ing INV as result.

INV = 255 − IV : ð1Þ

Figures 4(a) and 4(d) show an example of this phase.

2.1.2. Background Homogenization. Since the background is
not homogeneous, a mean filter followed by a convolution
with a Gaussian kernel followed by a histogram correction
operation is applied. This phase is performed in the same
way that [34] does background homogenization but working
with an INV image. The resulting image of this phase is
denoted as IH , and an example of the outcome is presented
in Figures 4(b) and 4(e).

2.1.3. Hippocampus Enhancement. Hippocampus enhance-
ment is performed by applying a top-hat transformation.

IHE = γ IHð Þ, ð2Þ
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where γ is a morphological opening using a disc of eight
pixels in radius, thus removing most anatomical structures
not belonging to hippocampal region and yielding better
results than performing a boundary detection with algo-
rithms like Canny, Prewitt, and Sobel. Figures 4(c) and 4(f)
exhibit an example of the procedure applied in this phase.

2.2. Feature Extraction. The purpose of this step is to perform
a pixel characterization in terms of some quantifiable mea-
surements that can be used latter in the classification step.
To accomplish this task, unlike Marin et al. and Vega et al.
whom used seven and five functions, respectively, in this
work, a total of fourteen functions are used. Our method uses

Figure 1: Coronal sections of the rat brain where the layers of the hippocampus stained with hematoxylin and eosin are observed. 3x
magnification. Columns show difference in colour as well as in lighting. Rows show variability in hippocampus shape and markings presence.

Image conditioning 
and pre-processing

Data set
Creation

Feature
Extraction Classification

Figure 2: Diagram of the implemented methodology for hippocampus pixel-wise classification.

(a) (b)

Figure 3: (a) Original image. (b) Final image: rotated, centred, and resized.
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some variants that are described. The first five features are as
follows: f1, f2,⋯, f5, which are based on the pixel’s grey-level
information available. In this work, we find that the features
calculated from IHE produce more meaningful representation
of hippocampus pixels. The features are outlined as follows:
considering a squared pixel region of size w ×w taken from
IHE and centred at pixel ðx, yÞ, we have the following:

f1 is the value of the pixel being characterized at position
ðx, yÞ subtracted from the smallest value of the squared region

f1 x, yð Þ = IHE x, yð Þ −
min

s, tð Þ ∈ S9x,y
IHE s, tð Þf g: ð3Þ

f2 is the largest value of the squared region subtracted
from the value of the pixel being characterized at position
ðx, yÞ

f2 x, yð Þ =
max

s, tð Þ ∈ S9x,y
IHE s, tð Þf g − IHE x, yð Þ: ð4Þ

f3 is the value of the pixel being characterized at posi-
tion ðx, yÞ subtracted from the average value of the squared
region

f3 x, yð Þ = IHE x, yð Þ −
mean

s, tð Þ ∈ S9x,y
IHE s, tð Þf g: ð5Þ

f4 is the value of standard deviation of the squared pixel
region characterized at position ðx, yÞ

f4 x, yð Þ =
stdDev

s, tð Þ ∈ S9x,y
IHE s, tð Þf g: ð6Þ

f5 is the value of the pixel being characterized at posi-
tion ðx, yÞ

f5 x, yð Þ = IHE x, yð Þ: ð7Þ

Then, for the next two features, f6 and f7, we use the

(a) (b)

(c) (d)

(e) (f)

Figure 4: (a, d) Colour independence. (b, e) Background homogenization. (c, f) Hippocampus enhancement.
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first two Hu moment invariants [36] denoted by ϕ1 and ϕ2.
These are computed from IHu image, which is obtained by
multiplying a squared pixel region of 17 × 17 size from IHE
and an equal dimension matrix of Gaussian values, whose
mean is 0 and variance is (1.7)2; then, IHu is given by

IHu i, jð Þ = I
S17x,y
HE i, jð Þ × G17

0,1:72 i, jð Þ: ð8Þ

With these choices of parameters, the 9 × 9 central values in
Gaussian matrix contain 97% of the area of the represented
Gaussian distribution, making the remainder values being
close to 0. The effect of this multiplication is that the values
become sensitive for describing hippocampal and nonhip-
pocampal central pixels. Given that ϕ1 and ϕ2 computation
can take nonpositive and zero values, f6 is defined as

f6 =

log ϕ1ð Þ, ifϕ1 > 0,

−log ϕ1j jð Þ, ifϕ1 < 0,

0, otherwise,

8>><
>>:

ð9Þ

and f7 is defined as

f7 =

log ϕ2ð Þ, ifϕ2 > 0,

−log ϕ2j jð Þ, ifϕ2 < 0,

0, otherwise:

8>><
>>:

ð10Þ

Given that images contain other brain regions of similar
shape and that image conditions are extremely variant, a set
of extra seven features are used to acquire even more
descriptive pixel information that can help better distin-
guishing between the seeked hippocampus section and the
alike structure. Figure 5 illustrates the alike structure that
is also obtained as result of the preprocessing step.
Table 1 shows the comparison of the performance obtained
when using seven features and the increased achievement
by adding the extra seven.

For the remaining seven features, f8, f9,⋯, f14, the infor-
mation is extracted from the INV image by following the same
process described above, making a total of a 14-D feature
vector.

Therefore, one pixel is represented by the 14-D feature
space and is denoted by F

F = f1, f2,⋯, f14ð Þ: ð11Þ

2.3. Data Set Creation. The data set, denoted by FT , is consti-
tuted from hippocampal features FH and nonhippocampal
features FO. FT is distributed in the following way. First, all
features F from hippocampal pixels are collected from all
images, acquiring 24,520 hippocampal features. Then, to be
sure to obtain a well-balanced data set, the same amount of

randomly picked features is collected from nonhippocampal
pixels from all images. Thus, the entire data set FT makes a
total of 49,040 features F.

FT = FH + FO: ð12Þ

Next, data set is complemented with ground truth values,
C1 for hippocampal pixel and C0 for nonhippocampal pixels.
For debugging purposes, data set is augmented with C1 and
C0 pixel coordinates along with the source image name.

Finally, the data set is randomly split into training (DTN),
validation (DVL), and test (DTS) set, distributed in 70%, 20%,
and 10%, respectively, making sure the same amount of
hippocampal features as well as nonhipocampal ones are is
contained in these data sets. A sample visual examination
conducted on one of the images is shown in Figure 6.

2.4. Classification. To be able to determine if a pixel belongs
to C1 or C0, in this work, different ML models are employed:
MLP, RBFN, SVMs, and RF.

AMLP [37] is an artificial neural network that overcomes
the limitations of least mean square algorithm in solving pre-
diction problems. MLP consists of a set of three types of
nodes: input nodes, known as input layer; one or more layers
of computation nodes, known as hidden layer; and an output
layer. The first layer receives an input signal and propagates it
through network; then, each node of the hidden layer

Figure 5: A hippocampus section is framed with cyan colour. Other
brain regions that have a similar shape and similar pixel
characteristics are framed with green colour.

Table 1: Model comparison using 7 vs. 14 features.

Model
Accuracy using

7 features
Accuracy using
14 features

Accuracy
difference

MLP 0.917652 0.940481 +0.022829

RBFN 0.915206 0.931512 +0.016306

Random
forest

0.915614 0.937627 +0.022013

SVM lineal 0.899715 0.918875 +0.019160

SVM poly feat 0.907868 0.931512 +0.023644

SVM poly
kern

0.912556 0.935997 +0.023441

SVM RBF
kern

0.917856 0.939462 +0.021606

Total average
accuracy

0.912352 0.933638 +0.021285
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executes a nonlinear activation function, and the result is trans-
mitted to the output layer where nodes located here perform a
final activation function whose result is interpreted as the prob-
ability that the input signal corresponds to a known class.

On the other hand, RBFN was first proposed by Broom-
head and Lowe [38] where the hidden layer is trained with
an unsupervised algorithm, and the output layer is constructed
with a supervised one. The key idea is to transform data points
into high-dimensional space with the use of a Gaussian func-
tion, so that the transformed points become linearly separable.

SVMs [39] are a category of feed forward networks that
can be used for pattern classification and nonlinear regression.
SVMs construct a hyperplane as the decision surface in such a
way that the margin of separation between positive and nega-
tive samples is maximized. There are three main types of
SVMs: lineal, polynomials, and radial basis functions.

Random forests [40] are variants of clustering algorithms
known as decision trees that perform particularly well on
small data sets and like SVMs can perform both classification
and regression tasks, but unlike decision trees, RF can limit
the sensitivity to small variations in the training data by aver-
aging predictions over many trees.

So that models can be more efficient, techniques such as
feature engineering [41] can be used, but looking for maxi-
mizing their performance, all DTN features, f i of F, are used
and standardized making them zero mean and unit variance
in the following way.

f i =
f i − μi
σi

, ð13Þ

where μi is the average and σi is the standard deviation of the
i-th feature. For all these models, only f i of F features are fed
to the models, isolating data that is used for debugging
purposes.

In MLP, a supervised learning algorithm known as back-
propagation is used for training the layers and the synaptic
weight between nodes [37]. With the right choice of weights
and with the right number of the hidden nodes, MLP can be
used to address classification problems [42]. Hence, the func-
tion approximation for classification is defined by a nested
set of weighted summations.

RBFN solves the classification problem by proceeding in
a hybrid manner. First, an input layer is composed with the
same number nodes of the features being evaluated. Then, a
hidden layer transforms the given set of nonlinearly separa-
ble patterns by applying an unsupervised learning algorithm.
Finally, RBFN uses least squares estimation to train the out-
put layer in a supervised manner to solve the classification
problem. In RBFN, the function approximation for classifica-
tion is defined by a single weighted sum [37].

RF is settled on decision trees. A decision tree is a
machine learning technique, based on the divide and con-
quer paradigm where the basic idea is to partition the feature
space into patches and to fit a model to a patch. RF creates
different trees over the same training data set but provides
random subset of features to each of the trees in its building
process [43] and uses some aggregation technique, such as
majority voting to perform the final classification.

SVMs are a type of binary classifiers that construct a
hyperplane as the decision boundary and seek to maximize
the distance of positive and negative examples given in a

(a) (b)

(c)

Figure 6: Red dots represent hippocampus pixels and blue dots represent nonhippocampus pixels. (a) Sample image from training set, (b) the
same sample image taken from validation set, and (c) the same sample image taken from test set.
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training set [37]. SVMs use a two-step process on nonlinearly
separable data to find the decision boundary. In the first step,
a nonlinear transformation is applied to the data; in the sec-
ond step, the points that constitute the decision boundary are
then determined in the transformed space [44].

There are algorithms used in ML that have been proven
to maximize predictive output such as ensemble learning
[45]; however, this work is constrained to the mentioned
ML models with the purpose of evaluating the pixel charac-
terization method itself.

3. Experiments and Results

To measure the algorithmic performance of the proposed
method, the before mentioned ML models are trained with
DTN set, and in order to find the best performing hyperpara-
meters for each model, Random Search and Grid Search
techniques are used. The former is used to reduce the search
space and the latter to pinpoint the ideal values. Finally, DVL
set is used to assess that the found hyperparameters produce
good results and that models are not overfitted.

The final architecture of the MLP model is implemented
with TensorFlow and consists of an input layer with 14 nodes
and then four fully connected layers made up with 31, 68, 13,
and 7 nodes, respectively, with a ReLU activation type for each
one of them. Finally, an output layer consisting of 1 node with
a sigmoid activation type constitutes its architecture. The
model was compiled using ADAM optimizer and binary cross
entropy as loss function (LF) and trained over 37 epochs.

The RBFN is built in TensorFlow with the implementa-
tion provided by Vidnerová [46]. It was trained with K-
Nearest Neighbourhood (K-NN) for the unsupervised
algorithm and backpropagation for the supervised. The
model has 3 layers as well. The first layer contains 14 input
nodes, the second layer has 71 hidden nodes, and the third
layer has one output node with a sigmoid activation type.
The same σ value is used across Gaussian functions, and it
is calculated as follows: σ = dmax/

ffiffiffiffiffi
2k

p
, where dmax represents

the maximum distance between clusters and k is the number
clusters, which in turn, match the number of nodes of the
second layer. The model used a mean squared error as its
LF and RMSprop algorithm for the optimizer and trained
over 200 epochs.

The rest of the ML models are built with scikit-learn [47].
The best RF model is set with the following hyperparameters:
a gini criterion for measuring the quality of splits; a value offfiffiffiffiffiffi
Fn

p
is set for the maximum features, where Fn represents

the number of features; a value of 1 for the minimum samples
per leaf and minimum samples for node split; and unset
values for max depth, max leaf nodes, and max samples.

Finally, four different SVMmodels are used. The first one
is configured as lineal support vector classification with these
hyperparameters: a value of 182 for the regularization
parameter (C), a squared hinge LF, and l2 penalty function
(PF). The second model is a lineal support vector classifi-
cation fed with polynomial characteristics, and its hyper-
parameters are set in the following manner: a value of
172 for C, a 2nd degree polynomial characteristic, and a
squared hinge LF and a l2 PF. The third model is set with a

3rd degree polynomial kernel; a value of 2.1 for C; a squared
l2 PF; and a γ value of 1/ðCnσ

2Þ, where Cn is the number of
characteristic and σ2 is the variance; finally, a value of 40 is
used for the independent variable (b). The last model uses a
radial basis function as kernel type, a squared l2 PF, a value
of 1/ðCnσ

2Þ for γ parameter, and a value of 182 for C.
After finding the best hyperparameter values for each of

the models, the DTS set is employed to objectively compare
the performance of the ML models against each other using
the following metrics.

On one hand, the receiver operating characteristic (ROC)
curve is used to compare the performance of the classification
models by plotting two parameters true positive rate (TPR)
and false positive rate (FPR). These metrics are defined by

TPR =
TP

TP + FP
,

FPR =
FP

FP + TN
,

ð14Þ

where TP means true positives, FN: false negatives, FP: false
positives, and TN: true negatives. For this graph, the closer
the line is to the upper left corner, the better the classifier
is. The ROC curve is displayed in Figure 7.

On the other hand, besides the ROC curve, metrics such
as accuracy, precision, recall, and F1 score are computed with
the same purpose. These are defined by

Accuracy =
TP + TN

TP + TN + FP + FN
,

Precision = TPR,

Recall =
TP

TP + FN
,

F1score = 2 ×
precision · recall
precision + recall

� �
:

ð15Þ

To evaluate if the added extra seven features resulted in a
performance gain, the same data sets DTN, DVL, and DTS are
used for all the ML models but are trained, validated, and
tested with only the first seven features, respectively.
Table 1 shows that when models use 14 features, all models
increase their performance.

Table 2 shows all the metrics described before and the
values obtained by each model when using 14 features.

In this context, accuracy is a ratio of correctly predicted
observation to the total observations; it works better when
there is a symmetric data set and if FP and FN have similar
cost. When the cost of FP and FN negatives is different, pre-
cision and recall metrics need to be considered. The former is
the ratio of correctly predicted positive observations to the
total predicted positive observations; ergo, it is a good mea-
sure to use when the costs of FP are high. The latter, also
known as sensitivity, is the ratio of correctly predicted posi-
tive observations to all observations in actual class; hence,
recall calculates how many of the actual positives the model
captures through labelling it as TP. Finally, F1 score is the
weighted average of precision and recall, and it can be selected
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as the main metric to use when a balance between precision
and recall is required and there is an uneven class distribution.

Given that our data set is composed of symmetric quanti-
ties between C1 and C0 samples and assuming that FP and FN
have the same cost, accuracy metric could have picked to eval-
uate models at one sight. Consequently, the model that pre-
sents a better performance is MLP; furthermore, this model
also scored the highest on AUC, precision, and F1 score met-
rics. However, knowing that all these metrics evaluate models
from different perspectives and that the context, in a given
problem, plays an important part on deciding whichmodel fits
a better solution, the interpretation of the other metrics is
important when determining the better model. For this rea-
son, if there was a high cost associated with a FN, i.e., a model
predicting that a pixel is C0 when in fact it is C1, then recall
metric should be the main evaluation metric and for such sce-
nario, RBFN would be the best performing model.

4. Discussion

Although good results were obtained with a 7-D and a 5-D
feature vectors in the experiments by Marine et al. and Vega

et al., respectively, in our experiments, using a 7-D vector did
not provide good enough accuracy. This could be, unlike the
retinal images that were used in their work, due to the highly
variability of the characteristics of the images and the pres-
ence of other brain structures that are similar to the seeked
hippocampal shape. Nonetheless, when F was increased to
14-D, the experiments yielded an average accuracy increase
of 2.1285%. This performance increase is associated to the
more complete feature set that was generated with our pro-
posed method and the better pixel characterization.

The best ML models are described next. For our data set,
MLP model achieves the highest value in the accuracy metric
and correctly predicts C1 and C0 pixels 94.0481% of the time.
In contrast, when true positive rate needs to be considered
cautiously, only 92.5926% C1 pixels are correctly predicted
and when FN has a greater importance in predicting C1
pixels, MLP achieves a score of 95.7620%. In this regard,
RBFN model achieves the best rate with a 95.9658% value.
Finally, for properly predicting C1 and when an equilibrium
between FP and FN is sought, the F1 score metric is picked.
In this regard, the best balance is achieved again by MLP
model, with a value of 94.1506%.

SVM RBF kern 0.9571
MLP 0.9828
RBFN 0.9779

1.0

0.8

0.6

0.4

1.0

0.0
0.2 0.60.4 1.00.8

False positive rate

Tr
ue

 p
os

iti
ve

 ra
te

Random Forest 0.9656
SVM Lineal 0.9579
SVM Poly feat 0.9617
SVM Poly kern 0.9564

Figure 7: ROC curve. Dotted line from bottom left to upper right represents a strictly random classifier.

Table 2: Model performance.

Model Accuracy AUC F1 score Precision Recall

MLP 0.940481 0.982761 0.941506 0.925926 0.957620

RBFN 0.931512 0.977904 0.933413 0.908565 0.959658

Random forest 0.937627 0.965623 0.938579 0.924842 0.952730

SVM lineal 0.918875 0.957855 0.920368 0.904088 0.937245

SVM poly feat 0.931512 0.961692 0.932934 0.914319 0.952323

SVM poly kern 0.935997 0.956352 0.937325 0.918623 0.956805

SVM RBF kern 0.939462 0.957067 0.940683 0.922444 0.959658
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Despite that techniques such as deep learning can pro-
duce models that achieve higher performance on pixel-wise
classification tasks [17, 48], and the architecture for these
models tends to be of a much larger size, requiring a vast
amount of information and special hardware, as GPUs, to
account for the complexity and the computations needed in
the training and inference phase execution, in a reasonable
amount of time. In this regard, the model studied here
already achieves and exceeds the accuracy needed by the sub-
ject matter expert to locate the hippocampus and can be
probably increased by using ensemble methods [45] and fea-
ture engineering techniques [41]. The simplicity of the model
means it can do, in a timely manner, fast inferences without
the need of special hardware, and for its small size, it can even
be implemented in portable devices, such as cell phones or
tablets.

Even though this paper is for pixel-wise classification,
one could argue that having labelled and located the position
of hippocampal pixels, it can be considered as segmentation
task. Also, knowing that the work from Mesejo et al. [30] is
about hippocampus segmentation and that of Senyukova
et al. [32] is for brain structure segmentation, with the hippo-
campus among them, and that both of them use histological
images, we could present a second table to easily compare the
results. However, Mesejo et al. use a different definition of
accuracy of metric that only takes TP % values; Senyukova
et al. present just the result of precision metric without giving
further information. For these reasons, a fair comparison
table cannot be elaborated but their results are written here
for the reader’s convenience. Mesejo et al. achieve an accu-
racy of 92.11% and Senyukova et al. accomplish a precision
of 60.7194% for hippocampus structure.

5. Conclusions

We showed the robustness of the proposed method by eval-
uating it with different ML models. Furthermore, by adding
samples of every image in the data set, we are increasing
the exposure to varying styles of histological images. Like-
wise, by splitting our data set in 70% for training, 20% for val-
idating, and 10% for testing, we can objectively verify that
ML models are not overfitting. Hence, we can conclude that
the method will be able to generalize when new images are
to be presented.

Not only this, the proposed method described in this
work showed that it is possible to do pixel-wise classification
for histological images and achieve a remarkable good per-
formance too. Furthermore, the described method can signif-
icantly reduce the lengthy effort employed by the subject
matter expert on identifying and delimiting the hippocampal
region and be considered an adequate operation for
substituting a manual classification task.

However, there are some aspects that could be considered
for future work. One likely way that performance could be
improved is by using an ensemble method algorithm. The
shown advantage obtained through the use of a 14-D feature
vector could be made more efficient by using PCA or a fea-
ture engineering technique that reduces the dimensionality
of the feature vector and still obtains a good performance.

The current method could also be leveraged by fully auto-
mating the pixel-wise classification task by integrating an
algorithm that locates the hippocampus bounding box.
Another direction for future research could be on the gener-
ation of a hippocampus segmentation method to further
facilitate the measurement of this area and help automating
the quantification of hippocampal volume.

Data Availability

Source images, image pixel labels, data set, and code can be
found at the following repository: https://github.com/
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