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Background. Wilms tumor is the most common renal malignancy of children. Identifying factors that could predict the prognosis of
patients withWilms tumor is clinically meaningful. Many studies found tumors with elevated cholesterol synthesis that are featured
with dismal prognosis. Even in some clinical trials, people with excessive dietary cholesterol intake and high plasma low-density
lipoprotein levels are observed to have increased risk for cancer. However, the role of cholesterol biosynthesis in Wilms tumor
has not yet been well clarified. Methods. RNA sequencing transcriptome data and all corresponding clinicopathological
information used in our study were downloaded from the TARGET database. High-throughput sequencing (Fragments Per
Kilobase of transcript per Million fragments mapped) data sets of 130 tumor samples and 6 normal samples were obtained for
further analysis. Results. Wilms tumor samples with higher activity of cholesterol synthesis are characterized with worse overall
survival (P < 0:05). In addition, Wilms tumor samples with mitigated activity of cholesterol synthesis are featured with better
dendritic cell (DC) function and cytolytic activity (P < 0:05). Furthermore, we constructed a prognosis model based on
differential expressed cholesterol synthesis-related genes (DECSG), which could predict the OS of patients with Wilms tumor
accurately. KEGG and GO analysis of differential expressed genes between tumor samples with high and low cholesterol
synthesis indicated that DECSGs are highly enriched in “mitosis nuclear division,” “nuclear division,” “chromosome
segregation,” “cell cycle,” “Spliceosome,” and “RNA transport.” Conclusions. In conclusion, our study reported increased
cholesterol synthesis in Wilms tumor predicts a worse prognosis and mitigated cytolytic activity, DC function, and MHC I
signature in the tumor microenvironment. We also constructed a prognosis model for predicting the OS of patients with good
accuracy, which is promising in clinical translation. Future studies should focus on the detailed mechanism that caused
increasing cholesterol which promotes tumor progression and undermines patients’ survival.

1. Introduction

Wilms tumor is the most common renal malignancy of chil-
dren [1]. Although most of the patients have promising prog-
nosis thanks to the advances in modern treatment modalities,
10% of the children with Wilms tumor still die of this disease
[1–3]. Hence, the identification of factors that could predict
the prognosis of patients with Wilms tumor is essential in
daily clinical practice.

The accumulation of cholesterol is a general feature of
cancer tissues [4, 5]. Many studies found tumors with ele-
vated cholesterol synthesis that are featured with poor prog-
nosis [6, 7]. Even in some clinical trials, people with excessive

dietary cholesterol intake and high plasma low-density lipo-
protein levels are observed to increase the risk for cancer
occurrence [8–11]. However, the role of cholesterol biosyn-
thesis in Wilms tumor has not yet been well clarified.

Transcriptome sequencing has become a silver bullet to
identify genetic alterations in various malignancies [12–14],
which dramatically enriched our knowledge of tumor biol-
ogy. For example, Kandimalla et al. developed an accurate
prognosis model based on the transcriptome expression of
15 immune, stromal, and proliferation gene signatures, facil-
itating clinicians to predict the survival time of their patients
and adjust treatment modalities [15]. Similarly, a signature
consisted of glycolysis-related genes was screened to predict
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the metastasis and survival of patients with lung adenocarci-
noma [16]. However, a prognostic model based on
transcriptome sequencing of Wilms tumor has rarely been
reported.

In this context, we intend to investigate whether elevated
cholesterol synthesis in the transcriptome level might have
potential impact on the worse prognosis of Wilms tumor.
In addition, a recent pilot study revealed an immune-
engaged tumor microenvironment that exists within Wilms
tumor, suggesting that Wilms tumor may be susceptible to
immunotherapy as adult renal malignancies do [17]. There-
fore, we also explored the relationship between cholesterol
synthesis in Wilms tumor and immune microenvironment
in the present study, which could provide more valuable
information for future clinical studies.

2. Methods

2.1. Dataset Acquisition. RNA sequencing transcriptome data
and all corresponding clinicopathological information used
in our study were downloaded from the TARGET database
(https://ocg.cancer.gov/programs/target), and the gene
expression matrix were presented in the supplementary
material [18]. High-throughput sequencing (Fragments Per
Kilobase of transcript per Million fragments mapped, FPKM)
data sets of 130 tumor samples and 6 normal samples were
obtained for further analysis: FPKM = FPKM = total exon
fragments/ðmapped reads ðMillionsÞ × exon length ðKBÞÞ.

2.2. Statistical Analysis

2.3. Evaluate the Activity of Cholesterol Synthesis in Wilms
Tumor. First, we acquired the genes involved with cholesterol
synthesis from The Molecular Signatures Database
(MSigDB) (https://www.gsea-msigdb.org/gsea/msigdb/
index.jsp), which is a collection of annotated gene sets for
use with gene set enrichment analysis (GSEA) software
[19]. The genes involved with cholesterol synthesis were
listed as follows: ACAT2, ARV1, CYP51A1, DHCR24,
DHCR7, EBP, FDFT1, FDPS, GGPS1, HMGCR, HMGCS1,
HSD17B7, IDI1, IDI2, LBR, LSS, MSMO1, MVD, MVK,
NSDHL, PLPP6, PMVK, SC5D, SQLE, and TM7SF2
(Table 1). Then, we calculated the relative activity of choles-
terol synthesis, referred to as Chole_score by single sample
gene set enrichment analysis (ssGSEA) of each tumor sample
[20]. Furthermore, we divided samples into Chole_high and
Chole_low groups based on the quartile of cholesterol
synthesis score. ssGSEA was conducted using R package
“GSVA” and “GSEAbase” [21].

2.4. Perform Survival Analysis and Cumulative Hazard
Analysis for Wilms Tumor with Different Activity of
Cholesterol Synthesis. Kaplan-Meier (KM) analysis was per-
formed to determine survival outcomes. The top and bottom
20% patients were compared in terms of the cholesterol
scores using the KM curve, and the statistical significance
was evaluated by the log-rank test. Cumulative hazard at a
specific time point (HðtÞ) is defined as “-log(SðtÞ)”, where S
ðtÞ means the survival probability at a specific time point.

The R packages to perform survival analysis and cumulative
hazard analysis are “survival” and “survminer” [21].

2.5. Explore Differentially Expressed Genes between Tumor
Samples with High and Low Cholesterol Synthesis Activity.
First, the R package of “Limma” was used to screen differen-
tially expressed genes [22]. Second, we used Cox propor-
tional hazard regression analysis to evaluate the association
of the differentially expressed genes in predicting overall sur-
vival (OS) in patients with Wilms tumor. Third, we selected
OS-related genes and performed lasso regression on these
genes. Then, Wilms tumor samples are divided into two
groups with high and low lasso risk based on the expression
level of these OS-related genes. The KM curve was plotted
to visualize the survival difference between two lasso risk-
based groups. The ROC curve was depicted to assess the
accuracy of the model we constructed using lasso regression.
The R package for Cox proportional hazard regression, lasso
regression, and survival analysis is “survival.” The R package
for the ROC curve is “survivalROC” [23]. We performed
Kyoto Encyclopedia of Genes and Genomes (KEGG) and
Gene Ontology (GO) analysis to annotate the potential
function of the differential expressed genes. The R package
“http://org.Hs.eg.db” was used to provide annotation infor-
mation of genes [24].

Table 1: The full name of cholesterol_synthesis genes.

Gene_
symbol

Full_name

ACAT2 Hydroxysteroid 17-beta dehydrogenase 7

ARV1 ARV1 homolog, fatty acid homeostasis modulator

CYP51A1 Cytochrome P450 family 51 subfamily A member 1

DHCR24 24-Dehydrocholesterol reductase

DHCR7 7-Dehydrocholesterol reductase

EBP Cholestenol delta-isomerase

FDFT1 Farnesyl-diphosphate farnesyltransferase 1

FDPS Farnesyl diphosphate synthase

GGPS1 Geranylgeranyl diphosphate synthase 1

HMGCR 3-Hydroxy-3-methylglutaryl-CoA reductase

HMGCS1 3-Hydroxy-3-methylglutaryl-CoA synthase 1

HSD17B7 Hydroxysteroid 17-beta dehydrogenase 7

IDI1 Isopentenyl-diphosphate delta isomerase 1

IDI2 Isopentenyl-diphosphate delta isomerase 2

LBR Lamin B receptor

LSS Lanosterol synthase

MSMO1 Methylsterol monooxygenase 1

MVD Mevalonate diphosphate decarboxylase

MVK Mevalonate kinase

NSDHL NAD(P) dependent steroid dehydrogenase-like

PLPP6 Phospholipid phosphatase 6

PMVK Phosphomevalonate kinase

SC5D Sterol-C5-desaturase

SQLE Squalene epoxidase

TM7SF2 Transmembrane 7 superfamily member 2
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2.6. Investigate the Relationship between the Activity of
Cholesterol Synthesis of Wilms Tumor and 29 Immune
Signatures. First, we estimated the infiltration of immune
cells of each sample using T to Estimate the Proportion of
Immune and Cancer cells (EPIC). Second, we performed
ssGSEA for 130 Wilms tumor samples based on 29 immune
signatures. Then, we compared the difference of immune sig-
natures between tumor samples with high and low activity of
cholesterol synthesis using Student’s t-test. All statistical data
and figures were analyzed using R software (version 3.6.2),
SPSS 23 (IBM, Chicago, USA), and GraphPad Prism 7.04
(GraphPad Software, San Diego, USA). Results with P <
0:05 were considered statistically significant. All the raw code
used in this study was listed as supplementary methods.

3. Results

3.1. Wilms Tumor Samples with Higher Activity of Cholesterol
Synthesis Are Characterized with Worse OS Period. Patients
withWilms tumor were divided into two groups (Chole_high
and Chole_low) based on the cholesterol synthesis score,
which was calculated by using ssGSEA (Figure 1(a)). The
baseline characteristics of the patients were summarized in
the supplementary Table 1. The raw data of gender,
subtypes, and stage for 130 patients with Wilms tumor was
summarized as supplementary Table 2. At a specific time
point, more patients with higher cholesterol synthesis in
their tumor tissue were dead (Figure 1(b)), suggesting the
unfavorable role of excessive cholesterol synthesis to
patients prognosis. To further confirm this hypothesis, we
conducted a survival analysis and plotted a KM curve. The
results showed that patients with higher cholesterol
synthesis are featured with worse overall survival (P < 0:05).
It is worth mentioning that the median survival time of
these patients was only two years (Figure 1(c)), which was
consistent with the cumulative hazard analysis (Figure 1(d)).

3.2. Wilms Tumor Samples with Mitigated Activity of
Cholesterol Synthesis Are Featured with Better Dendritic Cell
(DC) Function and Cytolytic Activity. Immunotherapy is
the hope of modern cancer therapy; however, the feasibility
of immunotherapy in treatment of Wilms tumor was rarely
discussed. Hence, we first estimated the infiltration level of
immune cells in each sample of Wilms tumor. The results
showed that the majority of Wilms’ tumor tissue harbored
20% nontumor cells in its microenvironment, suggesting that
Wilms tumor may be susceptible to immunotherapy as adult
renal malignancies do (Supplementary Figure 1).
Furthermore, we investigated whether the activity of
cholesterol synthesis could affect immune signatures in a
bulk tumor tissue. We found that the decreased score of
cholesterol synthesis was paralleled with higher cytolytic
activity, DCs function, MHC I, and HLA (Figure 2). We
also found that the score of cholesterol synthesis can divide
aDCs, cytolytic activity, DC, MHC I, and HLA all into two
groups (Supplementary Figure 2; P < 0:05). Given that
tumor samples with the mitigated activity of cholesterol
synthesis are characterized with better prognosis, enhanced

anticancer immunity in the tumor microenvironment of
Chole_high samples might be a reasonable explanation.

3.3. A Prognosis Model Based on Differential Expressed
Cholesterol-Synthesis-Related Genes (DECSG) Could Predict
the OS of Patients with Wilms Tumor. First, we identified
411 differential expressed genes between Chole_high and
Chole_low groups (Figure 3(a)). Then, we evaluated the asso-
ciation between each DECSG expression and the OS of
patients with Wilms tumor. A total of 63 (15.3%) genes were
associated with patients’ OS. We further conducted a lasso
regression to eliminate some genes, which may lead to over-
fitting phenomenon. Finally, we constructed a prognosis
model with nine left genes according to partial likelihood
deviance (Figure 3(b)). Each patient was labeled with a lasso
risk given by the constructed prognosis model. Survival anal-
ysis showed patients with lower lasso risk were featured with
prolonged OS ((Figure 3(c); P < 0:05). We further depicted
the ROC curve to assess the accuracy of the constructed prog-
nosis model. The results demonstrated this model harbored a
good predictive accuracy (area under curve ðAUCÞ = 0:746),
suggesting it has a promising value of clinical translation
(Figure 3(d)).

3.4. KEGG and GO Analysis of Differential Expressed Genes
between Tumor Samples with High and Low Cholesterol
Synthesis Score. Although the constructed prognosis model
showed promising clinical implications, the detailed function
of these DECSG is still not clear. Hence, we conducted KEGG
and GO analysis to annotate their related signal pathways
and potential functions. The GO results showed that more
cell division-associated genes were upregulated in tumor
samples with increased cholesterol synthesis, such as “mitosis
nuclear division,” “nuclear division,” and “chromosome seg-
regation”, suggesting that activated cholesterol synthesis may
contribute to the proliferation of Wilms tumor cells
(Figure 4(a)). Similarly, KEGG analysis demonstrated that
DECSGs are highly enriched in “cell cycle,” “Spliceosome,”
and “RNA transport”, which are commonly activated in
tumor development. An interesting finding was genes
involved with “DNA repair” were upregulated in tumor sam-
ples with increased cholesterol synthesis, which implicated
that tumor cells may utilize enhanced cholesterol synthesis
to improve DNA repair system and further lead to chemo-
therapy resistance (Figure 4(b)).

4. Discussion

Although the majority of patients with Wilms tumor have
promising prognosis benefited from medical advances,
10% of all patients still die of this disease. Hence, early
identification of patients with dismal prognosis will
improve treatment stratification, which might lead to
reduction of the direct and late effects of chemotherapy.
The present study demonstrated that excessive cholesterol
synthesis in the Wilms tumor tissues is associated with
worse OS of patients. Besides, more samples with low
activity of cholesterol synthesis were FHWT (favorable
histology), while samples with high activity of cholesterol
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Figure 1: Wilms tumor samples with higher activity of cholesterol synthesis are characterized with worse overall survival. (a) Patients with
Wilms tumor were divided into two groups (Chole_high and Chole_low) based on the cholesterol synthesis score. (b) The distribution of the
survival status of patients with Wilms tumor along with increased Chole_score. (c) Survival analysis showed that Wilms tumors with
decreased Chole_score were featured with prolonged survival time. (d) Cumulative hazard analysis showed that Wilms tumors with
increased Chole_score were featured with expanded risk for worse survival.
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synthesis were DAWT(cellular diffuse anaplasia), suggest-
ing there might be an association between cholesterol syn-
thesis and different subtypes of WT. In addition, a
prognosis model based on the expression level of DECSGs
was developed with good accuracy (AUC = 0:746).

Cholesterol synthesis starts with the conversion of citrate,
derived from the tricarboxylic acid (TCA) cycle in the mito-
chondria, to acetyl coenzyme A (acetyl-CoA), followed by a
cascade of enzymatic reactions in the endoplasmic reticulum
known as the mevalonate pathway, where acetyl-CoA is con-
verted to lanosterol [25]. Excessive cholesterol synthesis
fueled tumor progression through multiple approaches. On
one hand, cholesterol is an essential precursor of estrogen
and androgen, high level of which are associated with an
increased risk of breast and prostate cancer, respectively
[26, 27]. On the other hand, cholesterol is a major compo-
nent of lipid rafts that regulate cancer cell migration and
invasion. Numerous reports have demonstrated that CD44
is located in lipid rafts and contributed to tumor progression
[28, 29]. Decreased cholesterol results in disordered CD44
localization, raft-dependent CD44 shedding, and the sup-
pression of tumor cell migration [30]. Decreased cholesterol
also enhances the CD44-mediated adhesion of lymphocytes,
suggesting that lipid rafts regulate lymphocyte interactions
under physiological flow conditions [30]. In the present
study, we performed KEGG and GO analysis to explore the
related signal pathways and potential functions of DECSGs.
The results revealed a potential association between
increased cholesterol synthesis and cell division, especially
nuclear division, but the underlying mechanism of the
altered cholesterol metabolism which affects the cell division
is yet to be discovered.

Many studies correlated the tumor cell metabolism with
the altered immune microenvironment [31–34]. For exam-
ple, mounting evidence suggested that tumor glycolysis also
played a significant role in forming immunosuppressive net-
works that are important for cancer cells to escape immune
surveillance (“immune evasion”) [35]. Extracellular accumu-
lation of lactate derived from glycolysis alters the TME by
generating acidic pH, which is detrimental to immune cells.
Such low-pH TME has been reported to suppress the physi-
ology of cytotoxic and antigen-presenting cells [36]. Addi-
tionally, cancer cells have been known to modulate the
metabolic phenotype of cancer-associated factors from oxi-
dative phosphorylation to glycolysis and vice versa [37–39].
Similarly, many studies have investigated the influence of
cholesterol on the anticancer immunity. The metabolite of
cholesterol, 27-hydroxycholesterol, functions as a biochemi-
cal mediator of the metastatic effects of hypercholesterolemia
in breast cancers through its actions on γδ-T cells and poly-
morphonuclear neutrophils. ATP-binding cassette trans-
porter G1 (ABCG1) promotes cholesterol efflux from cells
and regulates intracellular cholesterol homeostasis [40]. Sag
et al. reported that deletion of ABCG1 dramatically sup-
pressed subcutaneous bladder carcinoma and melanoma
growth and prolonged survival [40]. They also showed that
reduced tumor growth by deleting ABCG1 is myeloid cell
intrinsic and is associated with a phenotypic shift of the mac-
rophages from a tumor-promoting M2 to a tumor-fighting
M1 within the tumor [40]. In our study, samples with low
cholesterol synthesis were featured with higher levels of cyto-
lytic activity, DC function, and MHC I signature, suggesting
that low cholesterol synthesis was associated with robust
anticancer immunity in Wilms tumor. Very recently, a
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Figure 2: Wilms tumor samples with mitigated activity of cholesterol synthesis are featured with better dendritic cell (DC) function and
cytolytic activity.
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well-conducted study reported inhibition of PCSK9, a key
enzyme upregulates the cholesterol synthesis, that could
enhance the antitumor immunity in the tumor microenvi-
ronment, which partially confirmed our results.

The present study has some strengths to declare. First, it is
the first study to report a role of cholesterol synthesis in
Wilms’ tumor prognosis, which filled a blank in the landscape
of the correlated metabolism with tumor development.
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Figure 3: A prognosis model based on differential expressed cholesterol synthesis-related genes (DECSG) could predict the OS of patients
with Wilms tumor. (a) Volcano plot presented differentially expressed genes between Chole_high and Chole_low groups. (b) Lasso
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Second, we developed a prognosis model that is of great accu-
racy to predict patients’ OS, which could be utilized in clinical
practice. Third, we correlated lower activity of cholesterol syn-

thesis with the robust anticancer immunity for the first time in
Wilms tumor. Given these findings, we could image the feasi-
bility of using inhibitors of cholesterol synthesis like statins to
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treat Wilms tumors. In fact, many clinical trials have investi-
gated whether the use of statins could affect cancer prevalence,
progression, and relapse [41–44]; however, the results were
still inconclusive. Another obstacle limited to the efficacy of
statins in cancer therapy was the local dosage in tumor tissues
that may not be sufficient to interfere the cholesterol synthesis
of tumor cells. Hence, acknowledging how much dosage of
statins can inhibit the growth of cancer cells is a topic worth
studying in future experiments. Besides, a combination of sta-
tins and immune checkpoint inhibitors could also be launched
in future clinical trials because we revealed a negative relation-
ship between cholesterol synthesis and robust anticancer
immunity. Nevertheless, this study also has many limitations
to confess. First, this is an in silico study that lacks of valida-
tions from laboratory experiments and other published
cohorts due to no other RNA sequence data that could be
acquired except for the TARGET cohort. Second, a common
shortcoming of bioinformatic studies is a lack of mechanism
exploration, especially the approach of how increased choles-
terol synthesis in tumor cells determined worse prognosis for
patients with Wilms tumor. Third, the clinical information
in the TARGET database lacks many valuable factors for
WT prognosis like postoperative complications; however,
these factors may not be confounding of the present study
but the resultant phenomenon caused by the variation of
intratumoral cholesterol synthesis. For example, more DAWT
cases were presented in chole_high samples, and it is not clear
whether overactivation of cholesterol synthesis mediated
DAWT and worse survival, or the observed survival benefits
in the chole_low group were just caused by the inequality of
distribution of pathological tissue types.

In conclusion, our study found that elevated cholesterol
synthesis indicated a worse prognosis and mitigated cytolytic
activity, DC function, and MHC I signature in the tumor
microenvironment in Wilms tumor. Furthermore, we con-
structed a prognosis model with good accuracy to predict
the OS of patients, which is useful in the clinical translational
prospect. Future studies should focus on the underlying
mechanism of the increased cholesterol synthesis, which
helps to reveal the mask that causes tumor progression and
shortens patients’ survival.
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