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Abstract
Background: Accumulating studies have suggested the airway microbiota in lung can-
cer patients is significantly different from that of healthy controls. However, little is
known about the relationship between airway microbiota and important clinical
parameters of lung cancer. In this study, we aimed to explore the association between
sputum microbiota and lung cancer stage, lymph node metastasis, intrathoracic
metastasis, and epidermal growth factor receptor (EGFR) gene mutation.
Methods: The microbiota of sputum samples from 85 newly-diagnosed NSCLC
patients were sequenced via 16S rRNA sequencing of the V3–V4 region. Sequencing
reads were filtered using QIIME2 and clustered against UPARSE.
Results: Alpha- and β-diversity was significantly different between patients in stages I
to II (early stage, ES) and patients in stages III to IV (advanced stage, AS). Linear dis-
criminant analysis Effect Size (LEfSe) identified that genera Granulicatella and
Actinobacillus were significantly enriched in ES, and the genus Actinomyces was signif-
icantly enriched in AS. PICRUSt2 identified that the NAD salvage pathway was signif-
icantly enriched in AS, which was positively associated with Granulicatella. Patients
with intrathoracic metastasis were associated with increased genus Peptostreptococcus
and incomplete reductive TCA cycle, which was associated with increased
Peptostreptococcus. Genera Parvimonas, Pseudomona and L-valine biosynthesis were
positively associated with lymph node metastasis. L-valine biosynthesis was related
with increased Pseudomona. Finally, the genus Parvimonas was significantly enriched
in adenocarcinoma patients with EGFR mutation.
Conclusion: The taxonomy structure differed between different lung cancer stages.
The tumor stage, intrathoracic metastasis, lymph node metastasis, and EGFR mutation
were associated with alteration of specific airway genera and metabolic function of
sputum microbiota.
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INTRODUCTION

Lung cancer is the second leading malignancy for morbidity
and the first for cancer deaths worldwide.1 Even with the
development of target therapy and immunotherapy, the†Equally contribution.
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5-year survival rate of lung cancer remains low, especially in
metastatic disease.2 Historically speaking, the lung has been
considered sterile in health. However, with the advent of
novel culture-independent techniques, subsequent studies
have identified that healthy lung is inhabited by distinct
commensal microbiota, which is altered in multiple lung
diseases.3 Therefore, exploring the relationship between the
lung microbiome and lung cancer is of great interest.

Accumulating studies have suggested that the airway
microbiota of lung cancer patients is significantly different
from healthy or benign controls,4–11 implying that airway
microbiota may contribute to the development of lung can-
cer, or be affected during lung cancer progression. More
specifically, the α-diversity,6,8,9,11 β-diversity,5,6,9–11 and
some specific genera4–11 are changed among non-small cell
lung cancer (NSCLC) patients. To date, the study of lung
microbiota and lung cancer is still in its infancy and in
depth knowledge of the interplay between lung cancer with
different clinical parameters and lung microbiota needs to
be explored further. TNM stage remains the most impor-
tant prognostic factor in predicting recurrence rates and
survival time. The 5-year-survival rate of lung cancer
patients is significantly affected by tumor anatomic stages,
from 87%–97% of stage I to 10%–23% of stage IV.12

Through the analysis of 165 cases with normal tissue adja-
cent to lung cancer, an earlier study found that α-diversity
and the genus Thermus was more abundant in the late
stage (stage IIIB and IV) than that in the early stage disease
patients13 suggesting that lung microbiota participate in
the development of different stages of lung cancer. How-
ever, the study only included seven stage IIIB patients and
seven stage IV patients. Therefore, more studies regarding
the association between tumor anatomic stage and lung
microbiota should be conducted to determine more poten-
tial bacterial markers linked with the stepwise change of
lung cancer from early to late stage.

Lung cancer staging traditionally relies on the TNM
staging system. Since the stage of lung cancer is associated
with lung microbiota, detailed understanding regarding the
association between N, M classifications and lung micro-
biota should be explored. Previous studies have suggested
that specific genera might be engaged with the metastasis of
lung cancer patients.13,14 In vivo mechanistic investigations
found that certain species might contribute to the develop-
ment of extra or intrathoracic metastasis via enhancement
of adhesion of lung cancer cells or regulation of lung
immune system.15–17 Therefore, it is plausible to hypothesize
that the lung microbiota may be identified as relevant to N
and M classification.

Epidermal growth factor receptor (EGFR) is a para-
mount therapeutic target for the treatment of lung cancer.
Tyrosine kinase inhibitors (TKIs), which target the kinase
domain of EGFR, are especially effective in NSCLC patients
whose tumors harbor activating mutations in the tyrosine
kinase domain of the EGFR gene. Bacteria that carry geno-
toxic markers have previously been reported to promote the
accumulation of genetic lesions and initiate cancer

development.18 Current studies have suggested that some
pathogens might play a role in driving EGFR gene mutation.
A retrospective study found lung adenocarcinoma patients
who had tuberculosis lesions had a higher probability of
having EGFR gene mutations.19 Another early study demon-
strated an association between human papillomavirus and
EGFR gene mutation in lung cancer patients.20 Conversely,
EGFR mutation might also regulate the lung microbiome
since it has previously been reported to play a role in
maintaining airway epithelial barrier via activation of
Claudin 1, a member of the tight junction protein.21 How-
ever, the association between EGFR gene mutation and lung
microbiota is unknown. Thus, it is plausible that lung
microbiota may have a connection with EGFR gene muta-
tion among NSCLC patients.

In this study, we used next-generation sequencing to
identify airway microbiota in the spontaneous sputum of
NSCLC patients, aiming to characterize airway microbiota
in NSCLC patients at different tumor stages (including
tumor stage and TNM classification), and EGFR gene
mutation.

METHODS

Patients and samples

The study was approved by the Ethics Committee of
Nanfang Hospital, Southern Medical University. Patients
diagnosed with NSCLC were prospectively admitted into
the study at NanFang Hospital, Southern Medical Uni-
versity between April 2017 and September 2019. The
inclusion criteria were as follows: pathologically diag-
nosed with NSCLC; patients aged 30–80; did not receive
any antitumor therapy such as surgery, radiotherapy,
chemotherapy, targeted therapy or immunotherapy; no
evidence of community-acquired pneumonia, acute exac-
erbation of chronic obstructive pulmonary disease, bron-
chiectasis with infection, acute bronchitis or asthma; had
no fever or purulent or gray sputum; and without a his-
tory of other malignant diseases or multiple primary lung
cancer. We conducted a questionnaire and reviewed the
electronic medical records to obtain demographic and
clinical data including age, sex, smoking status, use of
antibiotics within 1 month, TNM stage, systemic or pul-
monary comorbidities and tumor EFGR mutation.
Tumor anatomic stage and TNM classification was based
on the NCNN clinical practice Guidelines of NSCLC
(Version 2020. V1). EGFR mutation was detected based
on the ARMS technology in the pathology department of
Nanfang Hospital.

Participants were asked to rinse their mouths before
sampling. The first mouthful of phlegm in the morning was
collected within 24 h of hospitalization and transferred into
�20�C refrigerators within 2 h and then stored at �80�C
within 1 week. A spontaneous sputum sample was identified
as qualified sputum based on the presence of bronchial cells.
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DNA extraction, 16S rRNA amplification, 16S
rRNA sequencing

Sputum samples kept on dry ice were transferred to Sagene
Biotechnology Company, GuangZhou. DNA was extracted
from samples using Hipure bacterial DNA kit using stan-
dard techniques. The V3–V4 region of the 16S rRNA gene
was amplified using specific primers (16S_341F:50-
CCTAYGGGRBGCASCAG-
30;16S_806R:5-GGACTACNNGGGTATCTAAT).
PrimeSTAR HS DNA polymerase was used for PCR reac-
tion. The concentration and length of the PCR products was
detected by 1% agarose gel electrophoresis. Samples with a
bright main strip were used for further experiments.
Sequencing libraries were conducted using the NEBNext
Ultra DNA Library Prep Kit for Illumina sequencing (New
England Biolabs). The quality of the library was evaluated
under a Qubit 2.0 fluorometer (Thermo Scientific) and
Agilent bioanalyzer 2100 system. Sequencing was conducted
to generate 250-bp paired-end reads using an Illumina
HiSeq 2500 sequencer according to the manufacturer’s
instructions.

Microbiota analysis

Raw data was obtained and then further filtered to eliminate
reads with adapter pollution and low quality to obtain clean
reads by using QIIME2.22 Clean sequences were clustered by
97% identity into operational taxonomic units (OTUs) using
UPARSE.23 A representative sequence of each OTU was
annotated into taxonomy against Greengenes database.24

We applied OTU data in an online microbiome data
analyses platform (MicrobiomeAnalyst) (https://www.
microbiomeanalyst.ca/) to compare microbiota community
structure at both intercommunity and α- and β-diversity
levels. For α-diversity, we chose Chao1 value, Simpson index

and Shannon index for evaluation. For β-diversity, we used
the Bray-Curtis distance for estimation and principal coor-
dinate analysis (PCoA) for visualization of data. Differential
taxonomy was identified by linear discriminant analysis
(LDA) Effect Size (LEfSe) analysis in an online platform
(GALAXY) (http://huttenhower.sph.harvard.edu/galaxy).
PICRUSt2 was used to predict the functional profiling of
microbial communities based on the 16S rRNA sequence.25

Metabolic function predictions were based on the
MetaCyc26 database. Differentially present pathways
between groups were analyzed with Welch’s t-test using
STAMP.27 The network analysis on the genus level was car-
ried out with SparCC.28 p-value ≤ 0.05 and SparCC correla-
tion scores ≥0.5 or ≤ �0.5 were included for network
inference.

Statistical analysis

SPSS (V 23.0) software was used for statistical analysis. The
continuous variables were compared between two groups by
Mann–Whitney U test or independent t-test. The categorical
variables were compared by chi-square test, continuity-
adjusted chi-square test, and Fisher’s exact test. p-val-
ues < 0.05 were considered statistically significant.

RESULTS

Patient clinical characteristics and sputum
microbiota in NSCLC

Spontaneous sputum samples were preliminarily collected
from 116 NSCLC patients. After careful assessment,
85 patients who met the eligibility criteria were finally
analysed. The procedure of patient recruitment and exclu-
sion is shown in Figure 1. The average number of trimmed

F I G U R E 1 Study flow diagram of
patient recruitment and exclusion

860 HUANG ET AL.

https://www.microbiomeanalyst.ca/)
https://www.microbiomeanalyst.ca/)
http://huttenhower.sph.harvard.edu/galaxy


sequences reads number of the 85 subjects was 33 271
(7869, 44 193). An OTU rarefaction curve was constructed
to evaluate sequencing depth (Figure S1). The results indi-
cated that sequencing depth of sputum samples was suffi-
cient to reach a reliable estimate of microbiome structure.
The median age of all patients was 59.21 � 8.75 years. The
clinical characteristics of the 85 patients are listed in
Table S1. Among the 85 patients, 66 (78%) had adenocarci-
noma, 18 (21%) had squamous cell carcinoma, and one was
an unidentified type of NSCLC. Thirteen (15%) patients
were tumor stage I, nine (11%) were stage II, 11 (13%) were
stage III and 40 (47%) were stage IV.

Phyla and genera that were ≥1% were considered as
dominant. At the phylum level, the dominant phyla in the
sputum samples of NSCLC patients were Firmicutes (40%),
Bacteroidetes (20%), Actinobacteria (17%), Proteobacteria
(13%), Fusobacteria (6%), and TM7 (3%) (Figure S2(a)). At
the genus level, the dominant genera in the sputum samples
of NSCLC were Streptococcus (21%), Prevotella (12%), Rot-
hia (9%) and Neisseria (7%), Actinomyces (5%), Leptotrichia
(4%), Porphyromona (4%), Veillonella (4%), Granulicatella
(3%), Haemophilus (3%), Atopobium (2%), Peptostreptococcus
(2%), Capnocytophaga (2%), and Fusobacterium (1%)
(Figure S2(b)).

Association between sputum microbiota and
NSCLC clinical stage

Stage III and stage IV lung cancer patients are on a contin-
uum with respect to tumor burden. It is well accepted that a
great number of lung cancer patients with anatomical stage
III disease also harbor micrometastases. A previous study
found that the α-diversity of microbiota of nonmalignant
tissues adjacent to stage IIIB lung tumor tissues was similar
to that of stage IV,13 suggesting that the airway microbiota
may be similar between stage III and stage IV lung cancer
patients. To evaluate the similarity of microbiota between
stage III and stage IV patients, we compared the sputum
microbiota between these two groups via diversity analysis
and differential analysis. Among the 11 stage III NSCLC
patients, four were stage IIIA, five were stage IIIB, and two
were stage IIIC. Baseline information included age (indepen-
dent samples t-test, p = 0.21), BMI index (Mann–Whitney
U test, p = 0.536), smoking status (continuity-adjusted chi-
square test, p = 0.249), treatment with antibiotics before
sampling (continuity-adjusted chi-square test, p = 0.121),
and pathological type (continuity-adjusted chi-square test,
p = 0.191) was comparable between the groups. Chao1,
Simpson index, and Shannon index were selected to esti-
mate the α-diversity of the lung microbiome community.
α-diversity between stage III and stage IV patients was simi-
lar (Mann–Whitney U test, p = 0.519 for Shannon;
p = 0.783 for chao1; p = 0.261 for Simpson index) (-
Figure S3(a–c)). β-diversity based on Bray Curtis distance
was used to estimate the β-diversity of lung taxonomy com-
munity structure in different groups. The results showed

that there was no significant difference in taxonomy struc-
ture between stage III and stage IV patients (PERMANOVA
test, p = 0.905) (Figure S3(d)). LEfSe analysis was conducted
to identify whether differential taxonomy existed between
stage III and stage IV patients. Only the genus Paludibacter
was found to be significantly different between the two
groups (Figure S3(e)). The relative abundance of
Paludibacter was only 0.01% in stage III and 0.05% in stage
IV patients. Taken together, the results above suggested that
sputum microbiome of stage III and stage IV patients was
similar.

Since the sputum microbiome of stage III and stage IV
was similar, we divided the lung cancer patients into two
groups: stage I and stage II (early stage, ES) and stage III
and stage IV (advanced stage, AS) and evaluated the micro-
biota difference between the two groups. Baseline informa-
tion including demographic and clinical characteristics were
comparable between the AS and ES groups (Table S2). The
relative abundance of the phylum and genus levels of the ES
and AS groups are shown in Figures 2(a) and (b). For the
α-diversity, there was a significant difference in the Chao1
index between the ES and AS groups. The Chao1 index was
221.529 (42.976) in the ES group and 198.752398 (42.20770)
in the AS group (Mann–Whitney U test, p = 0.038)
(Figure 3(a)). Simpson index was 0.907 (0.064) in ES
patients and 0.919 (0.050) in AS patients (p = 0.705)
(Figure 3(b)). The Shannon index was 3.398 (0.541) in the
ES group and 3.419 (0.448) in the AS group (p = 0.815)
(Figure 3(c). For β-diversity, Bray Curtis distance based on
genus level was performed. The results showed that there
was significantly different taxonomy structure between
patients in the ES and AS groups (genus level, PER-
MANOVA test, p = 0.045) (Figure 3(d)).

Differential analysis using LEfSe identified that phylum
Firmicutes, genera Peptoniphilus, Granulicatella,
Hylemonella, Actinobacillus, SMB53 and Gemella were sig-
nificantly enriched in ES group, and phylum Actinobacteria,
genus Actinomyces were significantly enriched in AS group
(Figure 4(a)). The relative abundance of phyla Firmicutes
and Actinobacteria, genera Granulicatella, Actinomyces and
Actinobacillus were ≥0.1% and are shown in Figure 4(b,c).

Functional analysis based on metaCyc database identi-
fied 29 differentially abundant pathways (Figure 4(d)). The
largest three pathways which had higher proportion in ES
patients were anhydromuropeptides recycling, gondoate bio-
synthesis (anaerobic) and L-lysine biosynthesis II. For the
differential abundant pathways had higher relative abun-
dance in the AS group, incomplete reductive tricarboxylic
acid (TCA) cycle, NAD salvage pathway I and phospho-
pantothenate biosynthesis I were the top three differentially
abundant pathways. Genus Actinomyces was positively cor-
related with the NAD salvage pathway (Spearman’s rank
correlation, p value < 0.0001, r = 0.547).

Coabundance analysis based on SparCC was conducted.
The sputum microbiota structure of ES lung cancer patients
was more complex and better organized than the taxonomy
structure inferred for patients in the AS group (Figure 5(a,
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b)). The taxonomy structure of ES group was composed of
33 genera while the structure inferred for AS group was
composed of 19 genera. The number of intergenus correla-
tions in ES group was 78, while only 44 in the AS group.
The interactions between genus Streptococcus and other gen-
era (Porphyromonas, Prevotella, Capnocytophaga,
Veillonella, Atopobium, Actinomyces, Rothia, Granulicatella)
were exclusively co-occurrence in the AS group. Co-
occurrence between Actinomyces and genera Rothia and
Atopobium was ubiquitous among two groups, while co-
occurrence between Actinomyces and genera Granulicatella,
Veillonella, Prevotella and Streptococcus were exclusive in AS
group.

Role of sputum microbiota on NSCLC
intrathoracic metastasis and lymph node
metastasis

Since tumor stage is associated with the organism metastasis
and lymph node metastasis, a further analysis was

conducted to explore the linkage between sputum micro-
biota and these clinical parameters.

Previous studies in mice suggested that the homeostasis
of commensal lung microbiota may affect intrathoracic
metastasis17 and extrathoracic metastasis15 and these two
phenomena may depend on different mechanisms. Thus, we
hypothesized that airway microbiota associated with intra-
thoracic (ipsilateral or contralateral lung metastasis or pleu-
ral metastasis) and extrathoracic metastasis was different.
Among the 85 NSCLC patients, 15 had intrathoracic metas-
tasis and without extrathoracic metastasis (Intra group),
only three patients had extrathoracic metastasis and without
intrathoracic metastasis, and 28 were without neither intra-
thoracic nor extrathoracic metastasis (Non_M group). We
further explored the characterization of sputum microbiota
among the Intra- and Non_M group patients. Baseline
information was comparable between the Intra- and Non_M
groups (Table S3). α-diversity index between the two groups
was similar (p = 0.6192 for chao1; p = 0.1668 for Simpson
index; p = 0.2193 for Shannon) (Figure S4(a–c)). ß-diversity
based on Bray Curtis distance was used and the result

F I G U R E 2 Taxonomic composition of sputum microbiota of the patients in the early stage (ES) and advanced stage (AS) groups. (a) Sputum phyla of
the patients in the ES and AS groups; (b) sputum genera of the patients in the ES and AS groups

862 HUANG ET AL.



showed that taxonomy structure between the Intra- and
Non_M groups was similar (PERMANOVA test, p = 0.197)
(Figure S4(d)).

LEfSe analysis showed that compared with Non-M
patients, genera Peptostreptococcus, Peptococcus, Para-
bacteroides, and Escherichia were significantly enriched in
the Intra group patients, while phylum Firmicutes and genus
Streptococcus were significantly decreased (Figure S5(a)).
The relative abundance of phylum Firmicutes and genera
Peptostreptococcus and Streptococcus were ≥0.1% and are
listed in Figure S5(b,c).

Functional analysis based on metaCyc database identi-
fied 31 differentially abundant pathways (Figure S5(d)). The
largest three pathways which had a higher proportion in
Intra patients were incomplete reductive TCA cycle, and tet-
rapyrrole biosynthesis II (from glycine), tetrapyrrole biosyn-
thesis I (from glutamate). The differential abundant
pathways had higher relative abundance in the Non_M
group, purine ribonucleosides degradation, lactose and
galactose degradation I, and L-lysine biosynthesis II were
the top three differentially abundant pathways. Genus
Peptostreptococcus was positively correlated with the incom-
plete reductive TCA cycle (Spearman’s rank correlation, p-
value = 0.017, r = 0.5779).

Next, we explored the association between sputum
microbiota and lymph node metastasis. Among 28 patients
at M0 stage, 12 were in N1-3 stage (LNM_Y) and 16 were in
N0 stage (LNM_N). Baseline information was comparable
between the LNM_Y and LNM_N groups (Table S4).
Alpha-diversity analysis indicated that Chao 1 (p = 0.0593),
Simpson (p = 1.000), and Shannon (p = 0.9818) index were
similar between the two groups (Figure S6(a–c)). Beta-
diversity analysis based on Bray Curtis distance showed that
there was no significant difference in the bacterial commu-
nity between the two groups (PERMANOVA test,
p = 0.091) (Figure S6(d)).

Compared with LNM_N, genera Parvimonas and Pseu-
domona were significantly increased in LNM_Y, while phy-
lum Proteobacteria and genera Neisseria, Actinobacillus,
Eikenella were significantly declined in LNM_Y (Figure S7
(a)). All the above mentioned differential taxonomy except
for genus Eikenella was ≥0.1%. The relative abundance of
each differential genus and phylum are listed in Figure S7
(b,c).

Functional profile prediction based on MetaCyc data-
base identified 23 differential metabolic pathways (Figure S7
(d)). L-valine biosynthesis, L-isoleucine biosynthesis I (from
threonine), L-isoleucine biosynthesis II were the top three

F I G U R E 3 Difference of sputum microbiota between NSCLC patients in the early stage (ES) and advanced stage (AS) groups. (a) Chao 1 index;
(b) Simpson index; (c) Shannon index among NSCLC patients in the ES and AS groups; (d) PCOA plot based on Bray-Curtis distance of sputum genus
among NSCLC patients in the ES and AS groups. *p < 0.05, p was calculated using the Mann–Whitney U test
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F I G U R E 4 Differentially abundant taxonomy and predicted metabolic function of sputum microbiota between NSCLC patients in the early stage
(ES) and advanced stage (AS) groups. (a) Differentially abundant taxonomy between patients in the ES and AS groups identified by LEfSe; (b) differentially
abundant phyla Actinobacteria, Firmicutes between the ES and AS groups; (c) differentially abundant genera Actinobacillus, Actinomyces and Granulicatella
between SCC_M1 and AD_M1; (d) differential predicted metabolic function based on the MetaCyc database between patients in the ES and AS groups.
*p < 0.05, calculated using the Mann–Whitney U test

F I G U R E 5 Genera co-occurrence network based on SparCC of patients in (a) the early stage (ES) group; (b) advanced stage (AS) groups. Only p-
value ≤ 0.05 and SparCC correlation scores ≥0.5 or ≤�0.5 were included for networks inference. The genus nodes are colored based on phylum level. The
size of each node was determined by the relative abundance of each genus
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differential pathways that were more abundant in the
LNM_Y group. Anhydromuropeptides recycling, 8-amino-
7-oxononanoate biosynthesis I, biotin biosynthesis I and
ppGpp biosynthesis were the top three differential pathways
that were more enriched in the LNM_N group. The genus
Pseudomonas was associated with L-valine biosynthesis
(Spearman’s rank correlation, p-value = 0.012, r = 0.468).

Association between sputum microbiota and
NSCLC EGFR gene mutation

Among the 65 lung adenocarcinoma patients, the results of
44 patients who had undergone EGFR mutation testing were
available in the subgroup analysis. The results confirmed
that 21 were EGFR mutation-positive (EGFR+), and 23 were
EGFR mutation-negative (EGFR�). Patients with EGFR
mutation were more likely to be never smokers (Fisher’s
exact test, p = 0.036) and female (Fisher’s exact test,
p = 0.031). Other baseline information included age, BMI,
tumor stage, and antibiotic usage was comparable between
both groups (Table S5).

Alpha-diversity between EGFR+ and EGFR� was simi-
lar (p = 0.1054 for chao1; p = 0.1532 for Simpson index;
p = 0.0820 for Shannon) (Figure S8(a–c)). Beta-diversity
based on Bray Curtis distance was conducted to estimate the
bacterial community composition in different groups. The
results showed that there was no association between EGFR

mutation and airway taxonomy structure (PERMANOVA
test, p = 0.212) (Figure S8(d)).

LEfSe analysis identified that EGFR mutation was associ-
ated with a significantly enriched level of phyla Bacteroidetes
and Tenericutes, genera Sharpea, Prevotella, Porphyromonas,
Parvimonas, Desulfovibrio, Mycoplasma, Actinobacillus,
Dialister, and Eikenella (Figure 6(a)). Subgroup analysis lim-
ited to nonsmoker subjects was conducted. The result
showed similarly that phylum Bacteroidetes and genera
Parvimonas and Actinobacillus were associated with EGFR
mutation (Figure 6(b)). The relative abundance of both gen-
era Parvimonas and Actinobacillus and phylum Bacte-
roidetes were ≥0.1% and are shown in Figures 6(c,d).

PICRUSt2 based on Metacyc prediction identified that
superpathway of L-aspartate and L-asparagine biosynthesis,
preQ0 biosynthesis and queuosine biosynthesis were the
three most significantly abundant pathways in the EGFR
mutation nonsmoking group and L-isoleucine biosynthesis
II, L-isoleucine biosynthesis II III and superpathway of
branched amino acid biosynthesis were the top three path-
ways that were significantly enriched in the EGFR negative
nonsmoking group (Figure 6(e)).

DISCUSSION

There is growing evidence which suggests that the develop-
ment of cancer is affected by human commensal microbiota

F I G U R E 6 Differentially abundant taxonomy and predicted metabolic function of sputum microbiota between lung adenocarcinoma patients with and
without EGFR mutation. (a) Differentially abundant taxonomy between EGFR- lung adenocarcinoma and EGFR+ lung adenocarcinoma identified by LEfSe;
(b) differentially abundant taxonomy between EGFR- nonsmoker lung adenocarcinoma and EGFR+ nonsmoker lung adenocarcinoma identified by LEfSe;
(c) differentially abundant phyla Bacteroidetes between EGFR- nonsmoker lung adenocarcinoma and EGFR+ nonsmoker lung adenocarcinoma;
(d) differentially abundant genera Actinobacillus and Parvimonas between EGFR- nonsmoker lung adenocarcinoma and EGFR+ nonsmoker lung
adenocarcinoma; (e) differential predicted metabolic function based on the MetaCyc database between EGFR- nonsmoker lung adenocarcinoma and EGFR+
nonsmoker lung adenocarcinoma. *p < 0.05, calculated using the Mann–Whitney test
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through inflammation, and the immune and metabolic
pathways.29 Recently, various studies have identified the
alteration of airway microbiota among NSCLC patients.4,5,7–
9,11,30–32 The interplay between microbiota and lung cancer
is complex. However, only a few studies have focused on the
association between airway microbiota and tumor clinical
parameters, including tumor anatomic stage, metastasis, and
gene mutation. In this study, we report the characterization
of sputum microbiota among NSCLC patients with early
stage (stage I and stage II) and advanced stage (stage III and
stage IV) disease. The association between sputum micro-
biota and tumor N stage and intrathoracic metastasis was
explored in depth. In addition, we investigated the linkage
between EGFR mutation of lung adenocarcinoma and spu-
tum microbiota.

Using 16S rRNA sequencing to profile the sputum
microbiota in NSCLC patients, we found that the most
abundant phylum and genus in NSCLC sputum samples
were Firmicutes (40%) and Streptococcus (21%), consistent
with two previous studies which analyzed sputum micro-
biota in lung cancer patients.8,11 TNM stage is the most pre-
dominant factor in predicting NSCLC survival time.33 The
stepwise development of NSCLC from early- to late-stage
has been reported to be the result of various genetic and epi-
genetic alterations,34,35 which may be associated with alter-
ation of airway microbiota. The lung cancer staging system
is categorical; however, stages III and IV lie on a continuum
with respect to tumor burden.36 A great proportion of stage
III patients have occult metastasis. The difference in stage
III and IV lung cancer patients lie on the tumor burden of
distant sites, instead of the tumor burden of local reginal
sites.36 Among the 11 stage III NSCLC patients enrolled in
this study, seven (63%) patients were stage IIIB or IIIC. We
found that the α- and β-diversity between stage III and IV
patients was not significantly different, suggesting that the
sputum microbiota might not sensitively reflect the tumor
burden of distant site. Similarly, Yu et al. collected adjacent
tumor tissues from lung cancer patients and found that the
α-diversity among NSCLC patients in IIIB and IV stage was
similar.13 However, considering that III stage NSCLC is a
heterogeneous disease, the difference of sputum or lung tis-
sue microbiota between stages III and IV lung cancer should
be interpreted in a larger scale study in the future.

Compared with ES stage patients, we found a significant
reduction of α-diversity in AS patients. More precisely, we
found that only the Chao1 index, not the Simpson or Shan-
non index, was significantly different between ES and AS
patients, which meant that the community richness of ES
and AS patients was significantly different, while the even-
ness was similar. The significant decrease of α-diversity in
lung cancer patients compared with healthy or non-
malignant control is evident in several studies, among which
two studies used sputum samples;11,37 one study used
protected brush samples8 and one study used surgical lung
tissues.7 These results suggest that the reduction of
α-diversity might be a potential marker indicating the devel-
opment and progression of lung cancer. β-diversity between

ES and AS lung cancer patients was significantly different in
our study, indicating that the taxonomy community struc-
ture differed during the progression of lung cancer. The
results of the genus network analysis also supported the dif-
ference of taxonomy community structure. The SparCC
results indicated that the sputum microbiota structure of ES
lung cancer patients was more complex and better organized
than the taxonomy structure inferred for AS patients.

We report differential abundant taxonomy among
NSCLC patients at the AS and ES stage. More precisely,
phylum Firmicutes, genera Granulicatella, Actinobacillus
were significantly enriched in the ES group, and phylum
Actinobacteria, genus Actinomyces were significantly
enriched in the AS group. Granulicatella has been previously
identified as a member of the normal bacterial flora of the
respiratory tract38 and has previously been implicated in
clinical infection such as sinusitis.39 A study enrolled female
lung cancer patients in China and found significantly
enriched genus Granulicatella in the sputum samples of lung
cancer patients compared with healthy controls.11 Another
pilot study using metagenomic sequencing technology iden-
tified Granulicatella adicens, a species belongs to genus
Granulicatella, in the sputum of lung cancer patients com-
pared with benign diseases.4 Taken together, our results and
the previous studies mentioned above suggest that the genus
Granulicatella might play a role in the early development of
NSCLC. Actinobacillus is a common member of human oral
commensal microbiota. Previous studies have found that
Actinobacillus might influence the production of inflamma-
tory cytokines16 and is associated with COPD.40 COPD is a
widely recognized risk factor of lung cancer. Chronic
inflammation is a key feature of COPD and could be a
potential driver for lung cancer development.41Thus, the
genus Actinobacillus might serve as a link between COPD
and lung cancer. It is plausible that the inhabitation of
Actinobacillus led to a chronic lung inflammation thus
enhancing the initiation and early development of lung can-
cer. The genus Actinomyces has been identified as a com-
mon anaerobe which colonizes in the airway of lung cancer
patients.42 It is interesting to note that in our study the co-
occurrence of Actinomyces and the genus Veillonella existed
exclusively in the AS group. Thus, in AS lung cancer
patients, the increase in the genus Actinomyces could
increase the abundance of genus Veillonella. A previous
study found that the lower airway of lung cancer patients
was enriched for genus Veillonella, and was further found to
be associated with upregulation of the ERK and PI3K signal-
ing pathways.5 It has previously been recognized that PI3K
and ERK pathway activation is involved in lung cancer
metastasis.43 In addition, we found that the genus Actinomy-
ces was positively related with the NAD salvage pathway,
which was significantly enriched in AS patients. Cancer cells
have enhanced glycolysis for sustaining rapid proliferation.
Increased NAD levels enhance glycolysis and fuel cancer
cells and are associated with cancer cell survival and
enhanced invasion capacity.44,45 In fact, rate-limiting
enzymes, such as nicotinamide phosphoribosyltransferase,
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are frequently amplified in several cancer cells.44 Thus, in
addition to its possible indirect influence on cancer related
signaling pathway, the genus Actinomyces might enhance
lung cancer progression partly via enhanced NAD
production.

Lung microbiota has been reported to have an influence
on proliferation or metastasis of intrathoracic cancer via regu-
lation of the immune system.17,46 In this study, we report that
intrathoracic metastasis was associated with the enriched spu-
tum genus peptostreptococcus and decreased Streptococcus.
Peptostreptococcus has previously been reported to be associ-
ated with colon cancer progression.47,48 However, its relation-
ship with lung cancer remains largely unknown. The genus
Peptostreptococcus are obligate anaerobes. It has been
suggested that a tumor microenvironment condition such as
hypoxia may enhance tumor invasion and metastasis.49

Therefore, it is plausible to speculate that the anoxic lung
tumor condition, which can facilitate intrathoracic metastasis,
may favor the growth of some obligate anaerobes, such as the
genus Peptostreptococcus. It is of interest to note that the
incomplete reductive TCA cycle of sputum microbiota was
significantly enriched in the Intra group and was positively
related with the genus Peptostreptococcus. The reductive TCA
cycle existence in anaerobes, including some deeply rooted
bacteria, is one alternative strategy for fixing CO2.

50 During
this reaction, oxaloacetate is finally produced51 and may par-
ticipate in yjrTCA cycle in cancer cells. Current studies have
demonstrated that certain cancer cells, including lung cancer
with a specific genome subtype,52,53 rely heavily on the TCA
cycle for energy production.54 A recent study reported that
enhanced TCA cycle might promote lung metastasis of cer-
tain cancers.55

In the absence of distant metastasis, the existence of lung
cancer spread to a regional lymph node affects clinical treat-
ment options and prognosis. In this study, we found that
the α- and β-diversity were similar between LNM_Y and
LNM_N, indicating that the sputum taxonomy structure did
not vary during progression of lymph node metastasis.
LEfSe analysis revealed the genera Parvimonas, Pseudomona
was positively correlated with lymph node metastasis, while
the genera Neisseria and Actinobacillus was associated with
depression of lymph node metastasis. The genus Pseudomo-
nas showed a correlation with adenocarcinoma.56 A clinical
study identified that genus Pseudomonas was positively
associated with matrix metalloproteinase in transplant lung
patients,57 which was associated with metastasis and inva-
siveness of cancer cells.58 The genus Neisseria was found to
be negatively associated with lymph node metastasis. A pre-
vious study discovered that compared with healthy controls,
the relative abundance of salivary Neisseria was significantly
decreased among lung cancer patients, suggesting that it
might serve a protective role in lung cancer progression.59

Metabolic function prediction identified L-valine biosynthe-
sis and L-isoleucine were increased in sputum microbiota of
LNM_Y patients. Valine and isoleucine belong to branched
chain amino acids, which play a critical role in the regula-
tion of energy homeostasis, nutrition metabolism, immunity

and disease in humans.60 They can act as signaling mole-
cules regulating glucose metabolism, lipid, and protein syn-
thesis and serve as potential biomarkers in cancer.60 Since
the genus Pseudomona is positively associated with L-valine
biosynthesis, it is plausible that Pseudomona might apply
valine for lung cancer cells and enhance its proliferation and
invasiveness.

EGFR mutation is a strong prognostic factor among lung
adenocarcinoma patients. The data presented here showed
that certain sputum bacterium had a close link with EGFR
mutation among lung adenocarcinoma patients. Both in the
overall and subgroup analyses limited to nonsmoker sub-
jects, the results showed that the relative abundance of phy-
lum Bacteroidetes and genera Parvimonas and Actinobacillus
were positively associated with EGFR mutation. The
increased EGFR signaling pathway has previously been iden-
tified as relevant to airway mucin production and epithelial
cell repair,61 thus it may have an influence on the abundance
of phylum Bacteroidetes, genus Parvimonas and genus
Actinobacillus. On the other hand, other studies have
suggested that specific bacterium such as genus Parvimonas
may cause EGFR mutation. Currently, several studies have
suggested that Parvimonas micra, a member of the genus
Parvimonas, is enriched in patients with colon cancer.62,63

Interestingly, an in vitro study demonstrated that infection
of Parvimonas micra could enhance the ability of human
inflammatory cells to generate reactive oxygen species and
caused DNA damage of human cells,64 which could cause
oncogene mutation and carcinogenesis.

Our study provides a novel insight into the association
between sputum microbiota, its predicted metabolic func-
tion and lung cancer stage, intrathoracic metastasis, lymph
node metastasis and EGFR mutation. However, we acknowl-
edge that there are some limitations in our study. First, the
number of patients enrolled in our study is not high enough,
so there may be heterogeneity. Second, the use of sputum
cannot surrogate lung cancer tissue and lower airway. Cau-
tion is therefore advised in the interpretation of intratumor
microbiota using our results. However, as the upper and
lower airways are continuous, a previous study has
suggested that sputum is compositionally similar to bron-
chial microbiota and is superior to nasal brush or oral wash
for assessing bronchial microbiota65 . What is more, another
study which compared the microbiome of spontaneous
sputa and transplanted lung tissues in patients with cystic
fibrosis showed that the relative abundance of the dominant
genera in sputum were similar to that of lung tissue.66

Therefore, in our study, we speculated that spontaneous
sputum can partly reflect the taxonomy composition of
lower airway or even lung cancer tissue, not only because
that spontaneous sputum is a mixture of lower and upper
airway secretion, but also that the migration of microbiota
from the upper airway partly shaped the microbiota of the
lower airway. Further studies are needed to investigate the
similarity and difference of different sample types among
lung cancer patients. Third, the discovery of specific bacte-
rial genera to distinguish lung cancer with various important
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clinical parameters hypothesis lacked validation cohorts,
which may result in false positive values and unreliability.
Fourth, this was a cross-sectional study and only illustrates
the phenomenon from microbiology. The mechanism of the
microbiota and the causal relationship therefore need fur-
ther exploration.

In conclusion, collectively, the data in our study showed
an association between important clinical parameters of
lung cancer and airway microbiota. The taxonomy structure
differed between patients in early and advanced stages. The
tumor stage, intrathoracic metastasis, lymph node metasta-
sis, and EGFR mutation were associated with alteration of
specific airway genera and predicted metabolic function of
sputum microbiota. Our study sheds light on the fact that
airway microbiota might participate in various pathophysio-
logical processes that are importantly related to lung cancer
development. Further studies with large scale and multi-
omics are needed to achieve a better understanding of the
role of microbiota in the development and progression of
lung cancer which could pave the way for exploring new
therapeutic options and biomarkers in the future.
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