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Extreme phenotype sampling (EPS) is a popular study design used to reduce genotyping

or sequencing costs. Assuming continuous phenotype data are available on a large

cohort, EPS involves genotyping or sequencing only those individuals with extreme

phenotypic values. Although this design has been shown to have high power to detect

genetic effects even at smaller sample sizes, little attention has been paid to the effects

of confounding variables, and in particular population stratification. Using extensive

simulations, we demonstrate that the false positive rate under the EPS design is greatly

inflated relative to a random sample of equal size or a “case-control”-like design where the

cases are from one phenotypic extreme and the controls randomly sampled. The inflated

false positive rate is observed even with allele frequency and phenotype mean differences

taken from European population data. We show that the effects of confounding are not

reduced by increasing the sample size. We also show that including the top principal

components in a logistic regression model is sufficient for controlling the type 1 error

rate using data simulated with a population genetics model and using 1,000 Genomes

genotype data. Our results suggest that when an EPS study is conducted, it is crucial

to adjust for all confounding variables. For genetic association studies this requires

genotyping a sufficient number of markers to allow for ancestry estimation. Unfortunately,

this could increase the costs of a study if sequencing or genotyping was only planned

for candidate genes or pathways; the available genetic data would not be suitable for

ancestry correction as many of the variants could have a true association with the trait.

Keywords: association study, extreme phenotype sampling, population stratification, principal component

analysis, Type 1 error

1. INTRODUCTION

Extreme phenotype sampling (EPS)—also called selective genotyping, trait or outcome dependent
sampling—is a popular study design for increasing the power of genetic association studies.
Assuming a large cohort with continuous phenotype data is available, EPS involves only genotyping
individuals in the top and bottom extremes of the phenotype distribution. The rationale for this
design is that the phenotypic extremes are enriched for either deleterious or protective variants
(Kryukov et al., 2009) and so the power to detect genetic effects can be maintained even while
genotyping a smaller subset of a larger cohort (Lander and Botstein, 1989; Van Gestel et al., 2000;
Kryukov et al., 2009; Guey et al., 2011; Barnett et al., 2013).
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The EPS design has been used in the genetic mapping context
for some time. Lander and Botstein (1989) described how this
design could be used in linkage analysis to map QTLs. Darvasi
and Soller (1992) examined optimal proportions to genotype
and they demonstrated that for linkage studies it is not useful
to genotype more than the lower and upper 25th percentile.
The EPS design has been used in candidate gene association
studies (Morabia et al., 2003; He et al., 2006; Sims et al., 2008;
Boora et al., 2016) and in genome-wide association studies
(Versmissen et al., 2015). More recently, EPS has been proposed
as an approach to increase power of rare variant and exome
sequencing studies at a fixed sample size. For example, Barnett
et al. (2013) showed that EPS has higher power to detect rare
variants when compared to random sampling. The EPS design
has been applied to whole-exome sequencing studies in order to
find cystic fibrosis modifier genes (Emond et al., 2012), variants
associated with pulmonary disease (Bruse et al., 2016), and with
diabetic retinopathy (Shtir et al., 2016).

Although specialized methods accounting for the extreme
sampling have been developed (Slatkin, 1999;Wallace et al., 2006;
Huang and Lin, 2007; Liu and Leal, 2012; Barnett et al., 2013; Lin
et al., 2013), a simple analysis strategy of treating extreme group
membership as a binary trait is common (for example, Emond
et al., 2012; Zhou et al., 2016). Conventional methods such as
a Pearson chi-square test or logistic regression can be applied
to determine if group membership is associated with genotype;
specialized methods and software are not required to compute
these statistics. This analysis strategy is valid, though not optimal
(Lin et al., 2013), as the underlying continuous trait values are
effectively ignored after the subsampling.

As outlined above, there has been substantial work in
investigating the power of these designs for gene mapping and
in developing statistical methods that account for the extreme
sampling. However, there is little information available about
the confounding effects of population stratification when this
study design is used. Population stratification is known to cause
an increase in the rate of false positive associations for both
case-control studies and for quantitative trait analysis (Haldar
and Ghosh, 2012). However, the extent to which confounding
is a concern for EPS designs has not been established. Guey
et al. (2011) suggested that EPS could inflate confounding due
to population stratification, but they did not investigate the
extent of the inflation. Lin et al. (2013) investigated the bias
due to population stratification when the phenotype values
were erroneously analyzed using linear regression. They did not
evaluate the confounding effect when the data is analyzed as a
dichotomous trait.

Multiple approaches have been developed to correct for
ancestry in association studies, including Genomic Control
(Devlin and Roeder, 1999), STRUCTURE/STRAT (Pritchard
et al., 2000), Principal Components/EIGENSTRAT (Price et al.,
2006), and Linear Mixed Models (Kang et al., 2008, 2010; Lippert
et al., 2011; Listgarten et al., 2012; Zhou and Stephens, 2012).
In particular, principal component (PC) based corrections are
widely used when genome-wide data is available. For example,
in their study utilizing EPS, Emond et al. (2012) adjusted for
ancestry by including the top 3 PCs in a logistic regressionmodel.

However, there have also been published associations using EPS
designs where ancestry correction was limited to self-identified
ethnicity data. For example, in a replication study described
in Herbert et al. (2006), Polish and American samples were
combined and a previously associated SNPwas genotyped in both
the upper and lower extremes of BMI. Analysis was stratified
in the two groups, but no correction for hidden ancestry was
done. Boora et al. (2016) describe a recent candidate gene study
where an EPS design was used; the statistical analysis did not
include correction for ancestry though they did ensure that the
two groups were balanced in terms of proportion of Caucasians
and African Americans.

In addition to the quantification of the effects of confounding
under EPS, it is important to verify that existing methods
developed for quantitative traits or case-control studies also work
in the EPS setting. McVean (2009) demonstrated that uneven
sampling of underlying population can distort PC estimation.
When there is confounding due to population stratification,
EPS could result in unequal sampling from the underlying
populations. The effect that this could have on a PC-based
correction is unknown. We assume that PCs would provide the
same correction in EPS as in case-control sampling; however,
we are not aware of work confirming this assumption. In
addition, PC and linear mixed model approaches to correct
for confounding from population stratification with common
variants may not provide the same correction for rare variants
(Mathieson and McVean, 2012; Persyn et al., 2018). As in the
common variant case, neither the effects of confounding when
the candidate SNPs are rare nor a PC-based correction have been
evaluated under EPS sampling schemes.

The purpose of this work is 2-fold. We first evaluate whether
EPS inflates the false positive rate due to population stratification.
Using extensive simulations, we demonstrate that the false
positive rate under the EPS design is significantly higher than
a random sample of the same size from the same cohort when
the data is analyzed using the simplest method of analysis (a
Pearson chi-square test or ANOVA). The false positive rate is
also higher than a “case-control” like design where the cases are
from one extreme of the phenotype and the controls randomly
sampled. We also show that the false positive rate increases with
sample size and that we can expect an inflated false positive
rate even with parameter values selected to model European
population data. Using the procedure in Emond et al. (2012) as
a model analysis, we then verify that the widely-used PC based
correction adequately controls the type 1 error rate for common
variants. We conclude that population stratification correction is
especially important under the EPS design and that any studies
utilizing this sampling design must ensure that genotyping
includes a sufficient number of markers for ancestry estimation.

2. METHODS

Assume that we have large cohort comprised of two hidden
subpopulations, and that the phenotype of interest is normally
distributed within each subpopulation:

Yij ∼ N(µi, σ
2), j = 1 . . . ni (1)
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where Yij is the observed phenotype of the jth individual in
population i, i = 1, 2, and the sample size from the ith population
is ni. For simplicity, we assume that the phenotypic mean and
variances are µ1 = −µ2 and σ 2 = 1, respectively. Let ωi

be the proportion of the cohort from subpopulation i and so
ω1+ω2 = 1. The distribution of Y in the cohort, not conditional
on population, is a mixture of two normal distributions:

F(y) = ω18

(y− µ1

σ

)

+ ω28

(y+ µ1

σ

)

(2)

where 8 is the CDF of the standard normal distribution.
We will assume that we are testing for association between

the phenotype and a candidate SNP with alleles labeled A and
a. Let pi be the probability of allele A in the ith subpopulation
and assume that within subpopulation the genotype frequencies
follow Hardy-Weinberg Equilibrium (HWE). Therefore, the
genotype probabilities in the combined population are

pAA = ω1p
2
1 + ω2p

2
2; pAa = 2ω1p1(1− p1)+ 2ω2p2(1− p2);

paa = ω1(1− p1)
2 + ω2(1− p2)

2. (3)

The expected genotype counts are obtained by multiplying the
genotype probabilities by the size of the cohort, N. We will
assume that under EPS those in the top and bottom 10% of the
phenotype distribution are genotyped; the sample size for each
group is n = 0.1N.

2.1. Estimating the False Positive Rate
Under EPS and Random Sampling
To assess the false positive rate due to confounding from
population stratification, we assume that conditional on
population membership there is no true association between the
candidate SNP and the phenotype. The phenotype distribution
within each genotypic category can also be written as a mixture
distribution of the two normal components:

F(y|g = AA) = Pr(i = 1|g = AA)F(y|i = 1, g = AA)

+ Pr(i = 2|g = AA)F(y|i = 2, g = AA)

=
ω1p

2
1

ω1p
2
1 + ω2p

2
2

8(
y− µ1

σ
)

+
ω2p

2
2

ω1p
2
1 + ω2p

2
2

8(
y+ µ1

σ
)

= p1|AA8(
y− µ1

σ
)+ p2|AA8(

y+ µ1

σ
) (4)

F(y|g = Aa) = p1|Aa8(
y− µ1

σ
)+ p2|Aa8(

y+ µ1

σ
) (5)

F(y|g = aa) = p1|aa8(
y− µ1

σ
)+ p2|aa8(

y+ µ1

σ
) (6)

where pi|g denotes the probability of being in population i given
genotype g. These conditional probabilities are easily found
by substituting the relevant expression from Equation (3) in
to the expression for the conditional probability: Pr(i|g) =

Pr(g|i) Pr(i)/Pr(g).
Population stratification is known to be a confounding factor

in population-based genetic association studies where the cohort

TABLE 1 | Genetic and phenotypic parameter settings for simulations to assess

confounding effect of population stratification.

Parameter Description Values

N Full cohort sample size 5000

n Sample size for each extreme 0.1N = 500

w1 Proportion of full sample from population 1 0.3, 0.4, 0.5, 0.6, 0.7

w2 Proportion of full sample from population 2 1−w1

p1 Frequency of A allele in population 1 0.5 to 0.9, by 0.1

p2 Frequency of A allele in population 2 0.5 to 0.9, by 0.1

µ1 Phenotype mean in population 1 0.1, 0.2

is a random sample of the population and the phenotype is
quantitative (Haldar and Ghosh, 2012). Therefore, it is important
to compare the false positive rate under EPS to the rate for
equally-sized random samples from the full cohort. For a
quantitive phenotype, the null hypothesis of equal phenotypic
mean across the different genotypic classes can be tested with
t-tests (dominant, recessive models), ANOVA (codominant
model) or linear regression (additive model). All assume that
the phenotype is normally distributed with equal variance,
conditional on the genotypic class. Equations (4)-(6) show
that this assumption is violated when there is population
stratification. Nevertheless, we can compute the F or t-test
statistics as tests of association, but their sampling distributions
will not be the usual F or t distributions since under both the
null and alternative hypotheses the phenotype conditional on
genotype is not a simple normal distribution. Because phenotype
conditional on genotype is not normally distributed, we cannot
use the non-central F distribution to compute the probability of
rejecting the null hypothesis when the means are not equal. This
makes it difficult to analytically compute the false positive rate
under random sampling and we therefore proceed by simulation.
Note that under the EPS design, we can compute the false positive
rate analytically. However, since our goal is to compare the rates
between the EPS and random design, we have used the same
simulations to estimate both rates. The method for analytically
computing the false positive rate for the EPS design is given in
the Supplementary Material.

We use simulation to estimate the false positive rate for the
random sampling, case-control like sampling and EPS designs.
We assume a phenotyped sample of N = 5, 000 individuals that
is a mixture of the two subpopulations, as described above. For
particular parameter values (p1, p2,µ1,ω1) we simulate genotype
data within each subpopulation with genotype frequencies under
HWE and phenotype data from the normal distributions given
in Equation (1). Note that the genotypes and phenotypes are
simulated independently; therefore, the genotype is not causally
associated with the phenotype. The parameter values chosen for
these simulations are provided in Table 1.

After the data for the full cohort has been simulated,
the subsamples are drawn. For the EPS design, the highest
500 individuals and lowest 500 individuals in the phenotype
distribution are selected, which corresponds to the 10% extremes.
For random sampling, we simply randomly sample 1,000
individuals from the full cohort. To simulate the case-control
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type design, we labeled the 500 individuals from the top
extreme as cases, and we randomly sampled the controls from
the remaining 4,500 individuals in the cohort. This would
correspond to a trait where an individual is considered to have
a disease if a quantitative variable exceeds a threshold.

We evaluated a codominant, an additive and a recessive
disease/trait model. Genotype is categorized as either (AA, Aa,
aa), (0,1,2), or (AA+Aa,aa) for the codominant, additive and
recessive models, respectively. For the EPS and case-control
samples, the data is cross-classifed on genotype and upper/lower
(EPS) or upper/random (case-control) group status. A Pearson
chi-square test, a difference of proportions test, or Cochran-
Armitage test is applied for the codominant, recessive and
additive disease models, respectively. For the random sample,
genotype is categorized as for the EPS samples and either
ANOVA (codominant, recessive) or linear regression (additive)
is performed.

For each combination of parameter values, we simulated
10,000 datasets and determined whether the null hypothesis of no
association would be rejected at level α = 0.05. The proportion
of the 10,000 datasets where the null is rejected is an estimate of
the false positive rate.

We also included limited simulation scenarios where the
candidate SNP was not a common variant. In particular, the
simulations described above were run with a minor allele
frequency (MAF) for the candidate SNP of 0.01 in population 1
(rare variant) and either 0.01, 0.05 (low frequency variant) or 0.10
(common variant) in population 2.

Finally, although we selected a wide range of parameter values,
we also wanted to ensure that the parameter values were realistic.
We therefore also computed false positive rates using parameter
values inspired by European population data. We simulated two
populations with allele frequencies set to the frequency of the
lactose tolerance variant in Italy and France (0.286 for Italy and
0.43 for France) (Sahi, 1994) and using data for female height as
our phenotype variable (means of 158.48 cm for Italy and 161.77
for France, both variances set to 6) (Onland-Moret et al., 2005).
We chose the lactose gene since it is known to vary between
European populations (Campbell et al., 2005).

All analysis was completed in R (http://cran.r-project.org/);
the Cochran-Armitage test was performed using the R package
DescTools (Signorell et al., 2018).

2.2. Assessment of PC-Based Correction
for Confounding
We also performed limited simulations to verify that adjustment
of the logistic regression model with the top principal
components (PCs) controls the type 1 error under an EPS
study design. For all the scenarios for evaluating the PC-based
correction, our parameter values were chosen to simulate a worst-
case situation where confounding due to population stratification
would be high. If the PC-based correction performs well under
the worst case scenarios, then we would expect it would work
when the sample consists primarily of only one subpopulation
or the allele frequency differences between the subpopulations
were quite small.

We simulated a cohort of N = 5, 000 individuals consisting
of two subpopulations of equal size (ω1 = ω2 = 0.5). The
phenotype values were again sampled from a normal distribution
within each subpopulation with means µ1 and µ2 = −µ1. We
varied the values for µ1 (given in Table 4). To simulate our
candidate SNP, we set the “A” allele frequencies to be p1 = 0.5
and p2 = 0.9 in the two subpopulations and sampled genotypes
assuming HWE within each subpopulation. This represents an
extreme difference in allele frequency for the candidate SNP.

For ancestry correction, we use genotype data on a large
number of SNPs. In practice, we would use genome-wide SNPs
and the majority of these SNPs would not be expected to be
associated with the trait. To simulate our ancestry SNPs, we first
used the Balding-Nichols model (Balding and Nichols, 1995),
which was also the approach used in Price et al. (2006). For each
dataset, we simulated genotype data on 5,000 SNPs as follows.
For a given marker, a generating allele frequency, p, for the “1”
allele was sampled from a uniform (0.1,0.9) distribution. For each
of the two subpopulations, their allele frequency was sampled
from a beta distribution with parameters α = p(1 − Fst)/Fst
and β = (1 − p)(1 − Fst)/Fst , where Fst is the fixation index
capturing population differentiation. We set Fst = 0.01, which
is higher than would be expected between continental European
populations (Nelis et al., 2009). The genotype for the ith SNP and
jth individual, gij, was sampled from a multinomial distribution
with probabilities determined by assuming HWE and using the
subpopulations allele frequency.

Following Price et al. (2006), we centered and scaled each
ancestry SNP genotype by subtracting the mean genotype across
both groups and dividing by

√

p̃i(1− p̃i) where

p̃i =
1+

∑n
k=1 gik

2+ 2n

is an estimate of the frequency of the “1” allele for the ith SNP.
The summation is taken over all n individuals in the subsample.
We then computed the principal component scores for the top
five principal components using the prcomp() function in R.

Logistic regression was used to test for association between
the candidate SNP and our extreme phenotype categories. The
disease model was assumed to be either codominant (genotype
coded as a factor) or additive (genotype coded as a numeric
variable). The model adjusting for ancestry included fixed effects
for each of the top five PCs. The proportion of simulated datasets
where a likelihood ratio test of association between group status
and candidate SNP genotype gives a p-value less than α = 0.05
was used to estimate the false positive rate. As the data was
generated to have no true causal association between candidate
SNP and phenotype, we would expect our estimate to be close to
0.05 if the type 1 error rate is controlled. For each different value
of µ1, a total of 2,000 simulations were performed.

Although the Balding-Nichols approach will generate allele
frequency differences that give the desired Fst value, the data
may not produce genotype data similar to human genotype
data. For this reason, we also ran a scenario where publicly-
available genotype data from the 1,000 Genomes project (Phase
1) (The 1000 Genomes Project Consortium, 2015) was used as
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reference data for simulating ancestry SNPs. We used data from
the unrelated individuals in the European-derived populations
consisting of the British (GBR), Finnish (FIN), Spanish (IBS),
and Italian (TSI) samples. We randomly sampled 200,000 SNPs
having MAF >0.05 from across the 22 chromosomes. For
each SNP, we computed the major allele frequency in each
subpopulation.We removed any SNPs where theminor allele was
not observed in one of the four subpopulations and where the
maximum allele frequency among all four populations was less
than 0.1, which left 158,781 SNPs.

We then generated a cohort of size N = 5, 000 with
equal proportion coming from each of the four subpopulations.
Phenotype data was simulated within each subpopulation from
a Normal distribution with unit variance and mean vector
µ = (0.3, 0.2, 0,−0.1) for the Italian (TSI), Spanish (IBS), UK
(GBR) and Finnish (FIN) samples, respectively. We excluded
all but the top and bottom 10% of the sample and stored
population of origin. The ancestry SNP data was generated for
each of the approximately 150,000 SNPs using the estimated
allele frequency for the subpopulation and assuming HWE.
Finally, we selected the candidate SNP from those SNPs
where the − log10 of the p-value from a Fisher exact test
of equal allele frequencies across subpopulations was greater
than 4. This ensured that there would be confounding due
to population stratification. For each dataset, we estimated
principal components using the centered and scaled genotype
data. Due to the large size of the genotype dataset, the function
bigcor() from the propagate package (https://cran.r-
project.org/web/packages/propagate/index.html) was used to
compute the covariance matrix; PCs were then calculated using
output from the eigen() function. Logistic regression was
used to test for association between group status (high or
low phenotype) and candidate SNP genotype in models both
with and without the top five PCs. Simulating the ancestry
SNPs and performing the principal component decomposition
was computationally intensive and so 1,000 simulations were
performed for this scenario.

Finally, we also investigated the PC-based correction when
the candidate SNP was rare. For the simulation scenarios
using the Balding-Nichols model, we set the minor allele
frequency of the candidate SNP to be 0.01 in population 1 and
either 0.05 or 0.1 in population 2. The full sample consisted
of an equal proportion from each subpopulation. For the
scenarios where genome-wide data was simulated using the
1,000 Genomes data, we set the minor allele frequency to be
q = (0.01, 0.02, 0.05, 0.1) for the Italian (TSI), Spanish (IBS),
UK (GBR) and Finnish (FIN) samples, respectively. No other
simulation settings were changed.

3. RESULTS

3.1. False Positive Rate Under the Different
Sampling Schemes
We estimated the false positive rate for the different
combinations of population mixing proportion (ωi), A allele
frequency (p1, p2) and mean phenotype value (µ1) listed in

Table 1. As similar conclusions can be drawn from the different
scenarios run, we restrict our attention to the sets of simulations
having population mixing proportions ω1 = 0.3 and ω1 = 0.5
and phenotypic mean µ1 = 0.1. Results for the other values of
ω1 and µ1 = 0.2 can be found in Supplementary Tables 1–5.

Figure 1 shows the false positive proportions for the nine
combinations of p1 and p2 run when µ1 = 0.1 and ω1 = 0.3
(that is, the mean in population 1 is 0.1, the mean in population
2 is –0.1, the proportion of the full sample from population 1 is
0.3 and the proportion of the full sample from population 2 is
0.7). For clarity, we have only plotted results with p1 = 0.5, 0.7
and 0.9; the false positive proportions for the other values of
p1 can be found in Supplementary Table 1. First, as expected,
there is no increase in false positive rate when p1 = p2; the false
positive rate equals the nominal type 1 error rate of α = 0.05.
As the difference in allele frequency between the two populations
increases, the false positive rate also increases for all sampling
schemes. However, the false positive rate increases much faster
for the EPS design than for the random sampling design. For
example, for the additive test with p1 = 0.5 and p2 = 0.7,
the false positive rate for the EPS design is approximately two
times higher than for the random sampling design (0.28 vs. 0.12;
Figure 1, top row, second column). Even with small differences
between the allele frequencies, the false positive rates of the EPS
design are higher than for random sampling. For example, for
the additive test with p1 = 0.7 and p2 = 0.8 the false positive
rates are 0.12 and 0.07 for the EPS and random sampling designs,
respectively (Figure 1, second row, second column). Under the
case-control type sampling, the false positive rates are very close
to those found under random sampling.

Figure 2 shows the false positive proportions for the nine
simulations run with µ1 = 0.1 and ω1 = 0.5; that is, an
equal proportion of the full sample comes from each of the
two subpopulations. The equal mixture presents the worst-case
scenario for population stratification since neither of the two
populations dominate the sample. As expected, the false positive
rates for both EPS and random sampling are higher than when
ω1 = 0.3. For example, for the codominant model with p1 = 0.9
and p2 = 0.7 the false positive rate of EPS is 0.26 when ω1 = 0.3
(Figure 1, bottom row, third column) and 0.38 when ω2 = 0.5
(Figure 2, bottom row, third column). We again see that the
false positive rate increases much faster for EPS than for random
sampling and case-control sampling; the rate is typically two
times higher for EPS.

The pattern of false positive rates shown in both Figures 1, 2
are the same for the three different association tests. However, the
false positive rate for the recessive tests are lowest while the false
positive rate for the additive tests are the highest. The lower false
positive rates for the recessive group may be explained by lower
counts in the recessive genotype category.

The results described above show an increase in false positive
rate for a range of population mixing proportions, means and
major allele frequencies. One might wonder, however, whether
the range of values are representative of real human populations.
We therefore also ran a simulation with parameter settings
motivated by real data from two European populations (Italy
and France). Table 2 shows results with various values for
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FIGURE 1 | False positive proportion for scenarios with ω1 = 0.3 and µ = 0.1. The solid, black line gives the false positive rate under EPS. The dashed, red line gives

the false positive rate under random sampling. The dotted, blue line gives the rate under case-control sampling. The first column corresponds to the recessive test,

the second column corresponds to the additive test and the third column corresponds do the codominant test. The first row corresponds to simulations with

p1 = 0.5, the second row corresponds to simulations with p1 = 0.7 and the third row corresponds to simulations with p1 = 0.9.

population mixing proportion. Even for the allele frequency
difference and phenotype distribution difference observed within
these two European populations, we observe that the false
positive rate is inflated to values that would lead to questionable
association results. Even with only 20% of the sample from one
of the two populations and the lower-powered recessive test,
the false positive rate for EPS is 0.16 while the rate for random
sampling is 0.08.

The high false positive rate was also observed when
the candidate SNP was rare in one population and either
low frequency or common in the second population
(Supplementary Table 6). For example, when ω1 = 0.3,
µ = 0.1 and the candidate SNP MAFs were 0.01 and 0.05,
respectively, the type 1 error rate was approximately 0.1 for the
EPS sample and 0.06–0.07 for the random and “case control"
sampling (Supplementary Table 6, second row). As seen
with the common candidate SNP scenarios, the false positive
rate increases faster with the EPS design than with the other
two designs. Note that when there is no confounding due to
population stratification, the codominant test appears to be

conservative, with a type 1 error rate of 0.03. This is likely due to
the fact that the expected counts in the least frequent genotype
category would be very small with such low MAFs.

Finally, increasing the sample size does not bring the false
positive rate back down to the nominal level. We simulated
scenarios under mild population stratification conditions (ω1 =

0.1, µ = 0.1, p1 = 0.7 and p2 = 0.6) and examined
the effect of increasing the cohort sample size from which the
extremes are drawn from 5,000 to 10,000, 20,000, and 50,000. The
corresponding subsample sizes were 2,000, 4,000, and 10,000,
respectively. As the size of the subsample increases, the estimated
false positive rate also increases (Table 3). For example, when
the subsample consists of 1,000 from each extreme, the false
positive rate is about 0.06 under EPS sampling (Table 3, first
row). When the subsample consists of 5000 from each extreme,
the false positive rate is between 0.11 and 0.14 (Table 3, third
row). Therefore, increasing the sample size increases the severity
of the problem. Note that this phenomenon also occurs when an
equal-sized random sample is taken; however, the false positive
rate increases more slowly. For example, when the subsample
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FIGURE 2 | False positive proportion for scenarios with ω1 = 0.5 and µ = 0.1. The solid, black line gives the false positive rate under EPS. The dashed, red line gives

the false positive rate under random sampling. The dotted, blue line gives the rate under case-control sampling. The first column corresponds to the recessive test,

the second column corresponds to the additive test and the third column corresponds do the codominant test. The first row corresponds to simulations with

p1 = 0.5, the second row corresponds to simulations with p1 = 0.7 and the third row corresponds to simulations with p1 = 0.9.

TABLE 2 | Estimated false positive proportions using parameter settings from Italy and France data.

Population proportion EPS Random sampling

Italy France Recessive Additive Codominant Recessive Additive Codominant

0.20 0.80 0.16 0.29 0.23 0.08 0.13 0.10

0.30 0.70 0.24 0.44 0.34 0.11 0.18 0.14

0.40 0.60 0.30 0.53 0.43 0.13 0.21 0.16

0.50 0.50 0.34 0.58 0.47 0.15 0.25 0.19

0.60 0.40 0.33 0.55 0.45 0.14 0.23 0.17

0.70 0.30 0.29 0.47 0.37 0.14 0.19 0.15

0.80 0.20 0.20 0.31 0.24 0.10 0.13 0.11

size is 10,000, the false positive rate is estimated to be 0.07–0.08
(Table 3, third row).

3.2. False Positive Rate After PC-Based
Ancestry Correction
We estimated the false positive rate after correcting for ancestry
using PCs. We considered extreme population stratification

scenarios; if the correction works for the most extreme settings,
then we would expect it to work well when population

stratification is less extreme. We first generated ancestry data

using the Balding-Nichols model and a 0.4 difference in allele
frequency for the candidate SNP between populations. Results

with and without the PC-based correction for a range of values

of µ1 are shown in Table 4. As we increase the difference in the
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TABLE 3 | Effect of false positive rate due to confounding when sample size is increased.

Sample size EPS Random sampling

Cohort Subsample Recessive Additive Codominant Recessive Additive Codominant

10,000 2,000 0.06 0.07 0.06 0.05 0.05 0.05

20,000 4,000 0.08 0.09 0.07 0.06 0.06 0.06

50,000 10,000 0.13 0.14 0.11 0.07 0.08 0.07

Simulations were run with µ1 = 0.1, ω1 = 0.1, p1 = 0.7 and p2 = 0.6. The size of the subsample is 2n = 2× 0.1× N, where N is the cohort size.

TABLE 4 | Estimated false positive rates before and after adjustment using the top five principal components.

Logistic regression (Unadjusted) Logistic regression (PC-adjusted)

µ1 µ2 Codominant Additive Codominant Additive

0.1 –0.1 0.819 0.880 0.056 0.056

0.15 –0.15 0.993 0.996 0.045 0.0495

0.175 –0.175 0.9995 0.9995 0.049 0.055

0.2 –0.2 1 1 0.059 0.057

Logistic regression was used to test the association with the putative disease locus using either a codominant or additive genetic model.

TABLE 5 | Estimated false positive rates before and after adjustment using the top five principal components for the rare variant case.

Logistic regression (Unadjusted) Logistic regression (PC-adjusted)

q1 q2 µ1 µ2 Codominant Additive Codominant Additive

0.01 0.05 0.1 –0.1 0.124 0.143 0.044 0.048

0.01 0.1 0.1 –0.1 0.2788 0.339 0.068 0.055

0.01 0.05 0.2 –0.2 0.385 0.437 0.043 0.047

0.01 0.1 0.2 –0.2 0.7718 0.845 0.064 0.054

Logistic regression was used to test the association with the putative disease locus using either a codominant or additive genetic model.

mean between the two groups from 0.2 standard deviation units
to 0.4 standard deviation units, the false positive rate without
correction approaches 100%. That is, we are very likely to declare
the association significant even though the candidate SNP is
not truly causal. However, even under these extreme population
stratification scenarios, the PC-based correction controls the false
positive rate so that it is close to the nominal value of α = 0.05.

Results with and without the PC-based correction for the
case of candidate SNPs with a rare allele are shown in Table 5.
As seen with the common variant scenarios, the false positive
rate increases as both the differences in phenotype means and
differences in MAF (q) increases between the two populations.
With a difference of close to 0.1 between the two MAFs, we
observed a slight increase in the type 1 error rate above the
0.05 level. We therefore increased the number of simulations
from 2,000 to 5,000 in order to estimate the rate more
precisely. However, the type 1 error rate remains slightly elevated,
particularly for the codominant model. For example, the type 1
error rate is estimated to be 0.068 under the codominant analysis
model with q1 = 0.01, q2 = 0.1 and phenotype means of µ1 =

0.1 and µ2 = −0.1.
The Balding-Nichols model generates data so that each

individual SNP only has a small allele frequency difference
between populations. In real data, some variants have quite

different allele frequencies between populations while others have
little differences due to the demographic forces that shaped the
genome of human populations. To better model real genetic data,
we used 1,000Genomes data on approximately 150,000 randomly
sampled common SNPs and four European populations to model
our allele frequencies for generating genotype data. Results were
similar to those seen under the Balding-Nichols model: the false
positive rate was approximately 0.4 without a PC adjustment and
close to the nominal rate of 0.05 with a PC adjustment. The
results were the same even when the candidate SNP was rare
in one subpopulation; the false positive rate with the PC-based
correction was approximately 0.05.

4. DISCUSSION

In this work, we have shown that the increased power of the
EPS design comes at a cost of a greatly inflated false positive
rate due to confounding by population stratification. Although
we showed that the other designs also have inflated false positive
rates, the EPS design was the most severely inflated. We also
observed false positive rates that were twice the specified type
1 error rate of 0.05 even with parameter values taken to be
similar to what would be observed in a European sample. This
implies that even stratifying analyses by continental population
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might not be enough for controlling the type 1 error rate if
an EPS design is used. Fortunately, we demonstrated that for
common variants even under extreme population stratification
a PC-based correction using a large sample of randomly selected
SNPs throughout the genome is sufficient in bringing the false
positive rate down to the specified value (typically 0.05). We
therefore recommend that if the EPS design is used then an
ancestry correction must be included in the analysis. In addition,
although we focused on population stratification, theoretically
our results would apply to any confounding variable.

A difficulty with recommending ancestry correction based
on genomic data is that the EPS design is often proposed as
a cost cutting measure when new technologies are introduced.
Addressing population stratification could therefore increase
study costs. For example, the study design might involve only
sequencing selected genes or pathways. If sequence data were
only available on the selected genes, then it would not be possible
to adjust for ancestry in the analysis since many of the genetic
variants could be hypothesized to have a true association with the
trait. Additional genotyping of a large number of phenotypically
neutral markers throughout the genome would need to be
included in order to account for population stratification.

The inflation was only made worse by increasing the sample
size. Although this might seem counter-intuitive it has a simple
explanation that has also been noted elsewhere (Devlin et al.,
2001). Basically, the confounding variable causes a true difference
in candidate SNP allele frequency between the upper and lower
extreme groups. Any aspect of the study design that increases
the power will therefore also increase the probability that this
true difference is detected. Augmenting the sample size increases
the power and therefore increases the probability that the true,
but uninteresting, difference is detected. Similarly, since the EPS
design itself increases power, it also increases the probability of a
false rejection.

There are some limitations with our work. First, in illustrating
the inflated false positive rate, we simulated a cohort that
consisted of only two subpopulations. This allowed a simple
quantification of the inflation, but may not be representative
of real samples from human populations, which may include
many subpopulations and admixture. In addition, cohorts
collected todaymight contain several subpopulations that are less
genetically differentiated (low Fst values) than in our simulations.
For this reason, we presented the false positive rate for EPS
in relation to the rate for random and case-control sampling.
Since genetic epidemiologists are concerned about confounding
from population stratification even for these other designs (i.e.,
for case control sampling and for quantitative traits), our work
suggests that the problem is even worse for the EPS design even
if the actual values do not reflect population stratification in
real populations.

A second limitation is that we used the Balding-Nichols
model to simulate variants to be used for ancestry estimation,
which also may not reflect real human data. With this model,
all allele frequencies differ between populations, but the actual
difference for a given SNP is actually quite small. With real
human data, some variants are known to have allele frequencies
that differ substantially between populations (see Kosoy et al.

(2009) for example), while other variants have similar frequency
values. We therefore also simulated genotypes using 1,000
Genomes genotype data as our reference population; however,
the number of individuals available from any one European
population is small, which could limit the genetic diversity of our
reference distribution.

Third, our investigation of confounding with rare variants
was limited. Using logistic regression modeling, we observed
a slight inflation of the type 1 error even after ancestry
correction when genotype data were simulated using the Balding-
Nichols model. However, logistic regression may not be the
most powerful analysis strategy for rare variants and so higher
inflation might be observed with statistical approaches designed
for rare variants. Since our model simulations included only a
single candidate SNP, we could not evaluate any rare variant
methods, such as SKAT (Wu et al., 2011), which can be
modified to correct for ancestry (Luo et al., 2018), or evaluate
any ancestry correction methods designed for rare variants,
such as Sha et al. (2016). Given the slight false positive rate
inflation that we saw even after including PCs in the logistic
regression model (Balding-Nichols simulation), a more in-depth
exploration of PC-based corrections under EPS when there are
rare variants is needed.

Many approaches have been developed for analyzing the
continuous trait data while accounting for the extreme sampling
(for example, Barnett et al., 2013; Lin et al., 2013). Although
we did not include any of these approaches in our comparison,
we would expect similar results as the increase in false positive
rate in our study is due to confounding from ancestry rather
than bias due to an inappropriate analysis of selected samples. As
approaches that account for selected sampling are typically based
on a linear model and can include covariates, researchers can also
include ancestry PCs using these methods.

Evaluation of mixed model approaches was beyond the scope
of this work. First, the popular linear mixed model is not an
appropriate method for analyzing the data as the phenotype
is not quantitative. If we erroneously analyze the quantitative
phenotypes without accounting for the selected sampling, we
expect biased estimation, as was demonstrated by Lin et al. (2013)
with a linear model. The linear mixed model would need to be
adapted for the sampling design—for example, using an approach
like Barnett et al. (2013)—and specialized software would need
to be developed. Recently, generalized linear mixed models have
been developed for substructure correction (Chen et al., 2016).
However, Luo et al. (2018) show in a comparison of a PC vs.
mixed model variance component correction for substructure
that the PC approach was comparable to the variance component
approach for detecting rare variants except under admixture. We
therefore again expect the mixed model approach to correcting
for population substructure will also adequately control the type
1 error rate.
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