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VitTCR: A deep learning method
for peptide recognition prediction

Mengnan Jiang,1,5 Zilan Yu,1,2,5 and Xun Lan1,2,3,4,6,*
SUMMARY

This study introduces VitTCR, a predictivemodel based on the vision transformer (ViT) architecture, aimed
at identifying interactions between T cell receptors (TCRs) and peptides, crucial for developing cancer im-
munotherapies and vaccines. VitTCR converts TCR-peptide interactions into numerical AtchleyMaps using
Atchley factors for prediction, achieving AUROC (0.6485) and AUPR (0.6295) values. Benchmark analysis
indicates VitTCR’s performance is comparable to other models, with further comparative studies sug-
gested to understand its effectiveness in varied contexts. Additionally, integrating a positional bias
weight matrix (PBWM), derived from amino acid contact probabilities in structurally resolved pMHC-
TCR complexes, slightly improves VitTCR’s accuracy. The model’s predictions show weak yet statistically
significant correlations with immunological factors like T cell clonal expansion and activation percentages,
underscoring the biological relevance of VitTCR’s predictive capabilities. VitTCR emerges as a valuable
computational tool for predicting TCR-peptide interactions, offering insights for immunotherapy and vac-
cine development.

INTRODUCTION

T cell receptors (TCRs) are heterodimers immobilized on the surface of T cells that recognize antigenic peptides presented by the major his-

tocompatibility complex (MHC). Ninety-five percent of T cells are composed of highly variable a and b subunits linked by disulfide bonds,

which are named ab T cells. The remaining T cells are called gd T cells and consist of g and d subunits.1 The diversity of TCRs is mainly derived

from the V(D)J recombination of immunoglobulin genes, with a and g subunits arising from VJ recombination and b and d subunits forming

fromVDJ recombination. Due to somatic recombination and random insertion of nucleotides during T cell development, humans have a high-

ly diverse TCR repertoire, containing 1015 2 to 1061 3 possible receptors. The variable (V) region of the TCR subunits is responsible for the

recognition of peptide-MHCs (pMHCs). The V region contains three highly variable complementarity-determining regions (CDRs): CDR1,

CDR2, and CDR3. CDR3 is responsible for direct contact with antigenic peptides, which play an essential role in the recognition process.

CD4 and CD8 are proteins expressed on the membrane surfaces of helper T cells and cytotoxic T cells, respectively. They can enhance

the sensitivity and responses of T cells to pMHC.4,5 This study focused on the CDR3 region of the TCRs of cytotoxic CD8+ T cells.

Previous studies havemainly focused on the binding betweenMHCs and antigenic peptides, with methods such as ACME,6 NetMHCpan-

4.0,7 DeepLigand,8 MHCflurry,9 DeepSeqPan,10 MHCSeqNet,11 and DCNN,12 all of which are trained on the affinity data betweenMHCs and

antigenic peptides. Currently, there is increasing attention being focused on the issue of TCR and epitope recognition. However, effective

learning of TCR-pMHC recognition remains challenging due to the lack of a training dataset. Fortunately, with the development of

sequencing technology, many more experimental datasets have been generated, including VDJdb,13 IEDB,14 and McPAS-TCR.15 Several

studies have shown that TCRs with similar CDR3 sequences are more likely to recognize the same peptide. While TCR classification methods,

such as TCRdist,16 GLIPH,17 and TCRGP,18 mainly focus on TCR sequences, interaction prediction methods, such as NetTCR2.0,19 TITAN,20

ImRex,21 ERGO,22 pMTnet,23 and PanPep,24 take peptide sequences into account. Thesemodels encode the AA sequences of TCRs and anti-

genic peptides separately and then concatenate them for feature extraction to predict whether an interaction occurs in a TCR-peptide pair.

Building a precise and robust model to predict TCR-peptide interactions remains challenging due to the high diversity of the TCR reper-

toire and various technological limitations. For instance, an antigenic epitope can be recognized by multiple T cell clonotypes,16,17,25 while a

T cell clonotype can exhibit cross-reactivity to multiple antigenic epitopes.26 In addition, both a and b chains are considered to contribute to

the binding specificity of TCRpeptides.18,19 However, despite the advent of single-cell TCR paired-strand sequencing, currently available TCR

epitope binding data still mainly consist of single-strand (b-strand) information.
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In this study, we leveraged the architecture of ViT,27 initially designed for image recognition, to develop a novel model named VitTCR.

VitTCR encodes the CDR3b-peptide interactions into AtchleyMaps and then takes the AtchleyMaps as inputs and outputs the predicted bind-

ing probabilities. Our results suggest that VitTCR achieved comparable performance with existing models when predicting interactions be-

tween HLA-A*02:01-restricted epitopes and CDR3bs.
RESULTS

The architecture of VitTCR

We have developed VitTCR, a deep learning-based method specifically designed to predict the interactions between epitopes and the

CDR3b region of TCRs. Before making predictions for a specific pair of CDR3b and antigenic epitopes, it is essential to convert their

alphabetical sequence information into numerical representations. In this research, the Atchley factors28 were utilized as a method of

numerical embedding for this purpose. The Atchley factors comprise five factors that encompass diverse physicochemical characteris-

tics, enabling each amino acid (AA) to be effectively represented by these five factors. For each CDR3b-epitope pair, VitTCR translates it

into a 3-dimensional numerical tensor referred to as AtchleyMap (STAR Methods). The encoding method we adopted is inspired by In-

termap, as proposed by ImRex.21 Both methods encode the sequences of CDR3b and antigenic epitopes into a three-dimensional vec-

tor. The difference, however, lies in the selection of amino acid indexes: while ImRex manually selects these based on factors that might

affect the interaction, VitTCR adopts a broader range of Atchley Factors. As illustrated in Figure 1A, AtchleyMap has a width of 12 AAs, a

height of 20 AAs, and a channel of 5, capturing the relevant information from the CDR3b and epitope sequences. The selection of the

specific lengths (20 AAs for CDR3b sequences and 12 AAs for epitopes) is based on the results of statistical analysis (Figure S1), which

shows that approximately 98.89% of CDR3b sequences fall within the length range of 10–20 AAs, and 97.97% of MHC-I-presented epi-

topes fall within the length range of 8–12 AAs. Therefore, setting the lengths to 20 AAs and 12 AAs ensures that the majority of se-

quences are properly represented. To provide a more detailed description of the interactions, we partitioned the AtchleyMaps into

distinct patches and assigned numerical labels to each patch accordingly (Figure 1B, STAR Methods). As depicted in Figure 1C,

VitTCR takes AtchleyMaps as inputs and generates predicted probabilities for ‘‘binding’’ or ‘‘no binding’’, with the two predicted prob-

abilities summing to 1. Notably, the patches numbered in Figure 1B correspond to the patches numbered in Figure 1C to ensure consis-

tent interpretation.
Performance comparison with other methods

Following model optimization, we then conducted a comparative analysis between VitTCR and other published methods. To ensure a fair

comparison process, we employed the same training and test sets (Figure S2A), performed a 5-fold cross-validation with five iterations for

each method, and evaluated the classification performance of the trained models on the same independent test set. Thus, each method

produced 25 predicted values for the same test set, enabling us to statistically determine whether there are significant differences in the

performance of different methods. As shown in Figure 2A, VitTCR performs better than these methods, including NetTCR-2.0 and

ERGO_AE, in terms of the area under the receiver operating characteristic (AUROC) (median value: VitTCR = 0.6295, NetTCR-2.0 =

0.6040, ERGO_AE = 0.5816) and the area under the precision-recall curve (AUPR) (median value: VitTCR = 0.6485, NetTCR-2.0 = 0.5928,

ERGO_AE = 0.5735). This suggests that our predictive model shows potential in predicting interactions between epitopes and the

CDR3b region of TCRs.

After an exhaustive examination of the datasets, we found that the dataset used as an independent test set, VDJdb, contained a large

number of unseen epitopes, while the proportion of seen epitopes was relatively low (see Figure S3), despite our adoption of a pair-based

strategy for splitting the dataset. To enhance the accuracy of our results, we performed individual epitope-based comparisons and examined

themodel’s performance on both seen epitopes (see Figures 2B, 2D, and 2E) and unseen epitopes (see Figures 2C, 2F, and 2G). In Figures 2B–

2G, each data point corresponds to a subset of TCR-pMHC pairs in the test data involving a specific epitope. For one epitope, we generated

25 different AUPRs and AUROCs for each method with 5 repeated experiments of 5-fold cross validations. The mean values of these metrics

are shown as data points in these plots. Both training and testing data are the same for all methods tested. As shown in these figures, all

methods demonstrate better predictive performance with seen epitopes (Figure 2B) than with unseen epitopes (Figure 2C). In the case of

seen epitopes, although VitTCR shows the highest median (Figure 2B) andmore dominant antigenic epitopes (epitopes located in the upper

left of the diagonal line) compared to the other twomethods (Figures 2D and 2E), statistical analysis (t-test) indicates that this difference is not

significant. However, in the dataset of unseen epitopes, VitTCR showed improved performance compared to the other two methods (Fig-

ure 2C) and identified a higher number of epitopes (Figures 2F and 2G).

Furthermore, the field focusing on the mutual recognition of TCRs and epitopes has evolved, with an increasing emphasis on evaluating

models’ predictive capabilities for unseen epitopes. To reflect this shift, we have updated Figure 2H to include the performance evaluation of

additional models, such as DLpTCR, ImRex, TITAN and the more recent pMTnet and PanPep, specifically on datasets comprising unseen

peptides. The independent dataset utilized here originated from the independent test set (from which seen epitope-related samples

have been removed) of Figure 2, wherein samples that overlapped with the training sets of other models were removed. These non-overlap-

ping samples were then used as a unified test set containing only unseen epitopes for this benchmark. Figure 2H shows that VitTCR achieved

comparable AUPR and AUROC metrics to the evaluated models.
2 iScience 27, 109770, May 17, 2024



Figure 1. The architecture of VitTCR for predicting interactions between CDR3bs and epitopes

(A) Schematic diagram of AtchleyMap encoding. The value of each position was the absolute value of the difference in the Atchley factor of two corresponding

AAs. The subscript i (ranging from 1 to 20) represents the position of amino acids of CDR3bs, and j (ranging from 1 to 12) represents the position of amino acids of

epitopes.

(B) Strategy of patch division. Each AtchleyMap is partitioned into 15 patches.

(C) The architecture of VitTCR. VitTCR takes AtchleyMaps as inputs and generates predicted probabilities for ‘‘binding’’ or ‘‘no binding’’, with the two predicted

probabilities summing to 1. AA: amino acid; CNN: convolutional neural networks; CLS: classification; MLP: multilayer perceptron.
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Figure 2. Comparison of VitTCR with other published methods on an independent test set

(A) Comparison of model performance in terms of AUPR (left) and AUROC (right): All methods were trained and validated using identical datasets. For each

method, five iterations of 5-fold cross-validation were conducted. Consequently, each model produced 25 predicted values for the same test set — five from

each round of the 5-fold cross-validation. These values are represented in the resulting plots, with dark gray lines connecting the dots corresponding to each

iteration. The values shown in the plots are medians.

(B) Performance of different methods on visible epitopes: In this analysis, each point represents an epitope and the values shown in the plots are medians.

(C) Performance of different methods on unseen epitopes, analogous to the analysis presented in Figure 2B.

(D) Model performance comparison between VitTCR and ERGO_AE on visible epitopes: Each spot represents an epitope, with the x axis representing the AUPR

(left)/AUROC (right) for ERGO_AE and the y axis representing the AUPR (left)/AUROC (right) for VitTCR.

(E) Model performance comparison between VitTCR and NetTCR-2.0 on visible epitopes, analogous to the analysis presented in Figure 2D.

(F and G) Model performance comparison between VitTCR and other methods on unseen epitopes, analogous to the analysis presented in Figures 2D and 2E.

(H) Comparison of the predictive performance of different models on the same test set (left: AUPR, right: AUROC).

Paired t-tests were conducted and the p-values are annotated at the the top of each figure.
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The influence of PBWM on model performance

To investigate positional bias and identify the crucial regions involved in the interactions between CDR3bs and epitopes, a set of 83 struc-

turally resolved pMHC-TCR complexes was downloaded from the PDB database. The interacting AA pairs in these complexes were labeled

using PyMOL (Figure 3A; Table S1). The next step involved counting the occurrences of interacting AA pairs within the downloaded com-

plexes and normalizing the counts for each patch (Figure 1B). This normalization was achieved by dividing the counts by the total number

of interacting AA pairs. This analysis provided a positional bias weight matrix (PBWM). Each value in the weight matrix represents the per-

centage of the total number of interacting AA pairs occurring in that particular patch, and a higher value in a specific patch indicated a greater

likelihood of CDR3b-epitope interactions occurring in that particular region. As displayed in Figure 3B, the sum of the percentages across the

15 patches equals 1, andmost interactions tended to occur between themiddle patch of the epitopes and the second to fourth patches of the

CDR3b regions. In other words, interactions aremore likely to occur between the fifth to sixteenthAAs of CDR3bs and the fifth to eighthAAs of

epitopes.

VitTCR provides a way of integrating PBWM (Figures 3C and S4, and STAR Methods). To determine whether the PBWM can improve the

prediction, we added the weight matrix into VitTCR and then compared the results of VitTCR with or without the PBWM. As illustrated in Fig-

ure 3D, the performance of VitTCR showed improvement on the testing set after adding the calculated weights, suggesting that the weight

matrix may capture the pattern of CDR3b-peptide interactions to a certain degree. To make the results more intuitive and detailed, we also

performed comparative analyses based on individual antigenic epitopes (see Figures 3E and 3F). Figure 3E, where each dot represents an

epitope, indicates that VitTCR with PBWM showed slight improvement in performance compared VitTCR without PBWM, in both AUPR

(left) andAUROC (right) comparisons. Additionally, as depicted in Figure 3F, VitTCRwith PBWM identified a higher number of epitopes (those

located in the upper left of the diagonal). However, the improvement in model performance with the addition of PBWM is limited at the

moment. With the availability of additional data, it is possible for further refinement and enhancement of the PBWM.
Cluster-based filtering can decrease false positives

For applications involving extensive experimental validation, it is essential to avoid false positive (FP) predictions since FP predictions will lead

to unnecessary downstream validation and increased labor and time costs. Model sensitivity is usually not the main concern in practical ap-

plications for identifying TCR-peptide interactions. Instead, our primary goal is to increase the positive predictive value (PPV) of the model.

The PPV is the proportion of true-positive (TP) results to the total number of predicted positive results (TP + FP). Thus, optimizing a model’s

PPV becomes critical. Dash et al.16 found that CDR3bs with higher sequence similarities tend to recognize the same epitope. Therefore, we

speculated that removing unclustered CDR3bs with distinct AA sequences from all other CDR3bs from the training dataset or testing dataset

could improve themodel performance. To test this hypothesis, we utilized iSMART29 for CDR3b clustering and removed unclustered CDR3bs

from the dataset (STAR Methods).

To investigate the effect of cluster-based filtering, we performed filtering operations on the training and test sets separately (Table S2).

First, we classified the trainedmodels into fourmajor categories, includingOriginal (neither the training set nor the test set was filtered), Train-

set-only (only training set clustered and filtered), Testset-only (only test set clustered and filtered), andClustered (both training set and test set

clustered). Then, we conducted five repeated 5-fold cross validations under the four settings. These results suggest that performing cluster-

based filtering either on the training set or on the test set significantly improved the PPV of the model on the independent testing set (Fig-

ure 4A, left panel). In addition to PPV, cluster-based filtering of datasets also significantly improved the AUROC (middle panel) and AUPR

(right panel) for VitTCR. In addition, to ensure that this finding is not merely coincidental, we conducted the same analysis on other models,

includingNetTCR-2.0 and ERGO_AE. As shown in Figure S5, the application of cluster-based filtering to datasets appears to improve the PPV

for our models as well as for NetTCR-2.0 and ERGO_AE, suggesting a potential benefit across different models. Additionally, the trends

observed in AUROC and AUPR for NetTCR-2.0 and ERGO_AE seem to align with those observed for VitTCR.

Considering the possibility that cluster-based filteringmay result in data related to epitopes with fewer cognate CDR3b being filtered out,

thereby leading to improvedmodel performance, we performed statistical analyses (STARMethods) on the datasets before and after filtering

to rule out this possibility.We first counted theCDR3b for each epitope in the dataset before filtering, then ranked these counts in descending

order. The ranking was represented using percentiles, where lower percentile values indicate higher CDR3b counts (and higher epitope
iScience 27, 109770, May 17, 2024 5



Figure 3. The effects of PBWM on the performance of VitTCR

(A) Four pMHC-TCR complexes (PDB: 2BNQ, 4MNQ, 5D2L, and 5NMF) are labeled and colored using PyMOL. The complexes are visualized with specific color

schemes: yellow dotted lines represent polar interactions in CDR3b-peptide pairs, the CDR3 region of TCRb chains is colored pink, and the epitopes are colored

green.

(B) The left panel illustrates the count of interacting AA pairs, where one AA is from the CDR3b region of the TCR and the other is from the epitope. A total of 101

AA pairs with interactions were identified. In the right panel, thematrix from the left panel is normalized by dividing the count in each patch by the total number of

interacting AA pairs.

(C) Integration of PBWM with VitTCR.

(D) Comparison of the performance of VitTCR in the independent test set before and after integration of the PBWM.

(E) Performance comparison of VitTCR for each epitope before and after the integration of the PBWM. Each point represents an epitope, and the values shown in

the plots are medians.

(F) Performance comparison for each epitope, with the x axis representing the AUPR (left)/AUROC (right) of the original VitTCR, and the y axis representing the

AUPR (left)/AUROC (right) of VitTCR integrated with PBWM. This is analogous to the analysis presented in Figures 2D–2G.

All p-values were determined using paired t-tests.
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Figure 4. The influence of cluster-based filtering on model performance

According to the dataset configuration, themodel was divided into fourmain categories: Original, Trainset-only, Testset-only andClustered. And the significance

was determined using paired t-tests.

(A) The PPVs (left), AUROCs (middle), and AUPRs (right) of VitTCR under different dataset configurations were compared. Five iterations of 5-fold cross-validation

were conducted for the three configurations, and each dot in this figure represents a fold replicate, with dark gray lines connecting the dots corresponding to

each iteration.

(B) The distribution of percentile values for epitopes in the dataset before (Before, left panel) and after (After, right panel) filtering. Each point in the violin plot

corresponds to an individual epitope, and the values depicted in the figure represent the medians.
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rankings), and higher percentile values indicate lower CDR3b counts. After that, we extracted all epitopes from the post-filtering dataset, as-

signing them the percentile ranks based on the initial, unfiltered dataset. To visualize the impact of filtering, we plotted the distribution of

these percentile ranks for epitopes before and after filtering (Figure 4B). As shown in Figure 4B, contrary to expectations of a downward trend,

the median percentile value in the filtered dataset actually shows an upward trend, indicating no overall shift toward epitopes with more

CDR3bs after filtering. In summary, our analysis suggests that the observed improvement in model performance does not appear to be solely

attributable to the exclusion of epitopes associated with a smaller number of TCRs. It is important to note that the essence of filtering is to

make the dataset more simple, thereby aiding in the identification of TCRs specific to epitopes.
Correlation between model predictions and TCR clone fraction

To verify model performance from a novel perspective, we conducted an investigation into the correlation between the model predictions

and TCR clone fraction. Additionally, we conducted a comparative analysis of VitTCR with other methods, including ERGO_AE and NetTCR-

2.0, using the same dataset. We obtained the single-cell TCR sequencing data of CD8+ T cells of four healthy human donors from the 10x

Genomics platform (10x Genomics). Given that the training dataset for our model was limited to HLA-A02:01 data points and HLA-A02:01

expression was observed only in Donor 1 and Donor 2, we focused the analysis on the data from these two donors. The dataset included

a highly multiplexed panel consisting of 44 different pMHC multimers and 6 control pMHC multimers to determine the binding specificity

of each CD8+ T cell. The binding specificity between each T cell and each tested pMHC was quantified by counting the number of unique

molecular identifier (UMI) sequences associated with that specific pMHC in the T cell. For each T cell, if the UMI count for any of the 44

pMHC multimers exceeded 10 and was more than five times higher than the highest UMI count for the 6 negative controls, the cell was
iScience 27, 109770, May 17, 2024 7



Figure 5. Correlation between predicted probabilities and clone fractions for different methods

Spearman correlation coefficients between predicted probabilities and clone fractions were calculated for VitTCR, NetTCR-2.0, and ERGO_AE using different

healthy donor data. For all methods, five repetitions of 5-fold cross validation were performed. Each point of the boxplot represents the correlation

coefficient between the predicted probabilities of the model and the clone fractions for each fold, and the number on the right side of the boxplot indicates

the median correlation coefficient. The significance was determined using paired t tests.
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considered to exhibit significant specificity toward that pMHC. During the cell filtration process, T cells showing significant specificity toward

fewer than one pMHC or exceeding four pMHCs were excluded from the analysis. After the filtering of T cells, for each clonotype of TCR, we

calculated the percentage of T cells harboring that specific clonotype based on the total number of T cells measured in the donor, irrespective

of the HLA-A*02:01 restriction. This percentage represents the clone fraction associated with that particular TCR clonotype and provides in-

sights into the clonal expansion of T cells. Subsequently, for each TCR clonotype, the pMHCwith the highest UMI counts was chosen, and the

binding probability between the CDR3b of the TCR clonotype and the epitope of the pMHC was predicted. Finally, we calculated the

Spearman correlation coefficient between clone fractions and predicted binding probabilities.

To ensure a rigorous and unbiased comparison process, we performed five repetitions of 5-fold cross-validation for VitTCR, NetTCR-2.0

and ERGO_AE separately. Subsequently, we calculated the Spearman correlation coefficients between the predicted binding probabilities

and the TCR clone fractions for each fold. This approach enabled us to objectively evaluate the associations between the predicted proba-

bilities and the observed clone fraction for the methods mentioned above. As displayed in Figure 5, the predicted binding probabilities of all

methods appear to have a weak positive correlation with the clone fraction, suggesting a potential relationship between these variables.

While the correlation coefficients suggest a range from weak to medium, there appears to be a trend where higher predicted binding prob-

abilities are associated with stronger clonal proliferation of T cells in the dataset. Each TCR clonotype was assigned 25 different predicted

probabilities by VitTCR, NetTCR-2.0, and ERGO_AE. We calculated themean predicted probability for each predictionmethod as the repre-

sentative predicted probability for that particular TCR clonotype. Figure S6 displays the visualization of the mean predicted probabilities

against the clone fractions. The relevant metrics are summarized in Table 1. Specifically, the correlation coefficients between VitTCR’s pre-

dicted binding probabilities and clone fraction tended to be higher than those for NetTCR-2.0. The correlation coefficients for VitTCR and

ERGO_AE were similar, showing no significant difference. Generally, the predictions of all methods demonstrated a correlation with clone

fraction.
Correlation between model predictions and T cell activation

Furthermore, we sought to examine whether the predicted binding probabilities were positively correlated with the activation percentage of

T cells. In a previous study (manuscript submitted), we cocultured 15 T cell clonotypes with 11 immunogenic peptides of SARS-CoV-19 in a

pairwise manner and selected CD69 as a marker of T cell activation to quantify the percentage of T cell activation. Specific details on calcu-

lating the T cell activation percentage can be found in Methods. The analysis in this section is similar to that for clone fraction, with ERGO_AE

and NetTCR-2.0 also being selected for analysis. In total, we obtained 165 CDR3b-epitope pairs. The aforementioned steps of coculture and

quantification of T cell activation were repeated three times so that each CDR3b-epitope pair had three activation percentage values, and the

mean value was taken as its percentage activation in this study.

As depicted in Figure 6A, the Spearman correlation coefficient between the predicted binding probabilities and the activation percent-

ages of T cells was higher for VitTCR than for ERGO_AE, while there was no significant difference in performance between VitTCR and

NetTCR-2.0. As shown in Figure 6B, CDR3b-epitope pairs with higher T cell activation percentages tended to have higher predicted binding

probabilities by VitTCR.One thing to note is that only 4 bins are shown in Figure 6B. This may be due to the small sample size (comprising only

165 pairs), which resulted in the model’s predictions not covering the entire range from 0 to 1. This observation tentatively suggests that the

predicted results of VitTCRmay partially reflect cell activation, hinting at a potential role in reflecting the activation status of T cells, though this

interpretation is subject to further validation given the dataset’s limitations. The predictions from all methods appear to correlate with the
8 iScience 27, 109770, May 17, 2024



Table 1. The Spearman correlation coefficients and p values between the mean of predicted probabilities and clone fractions for different methods

Model

Donor 1 Donor 2

correlation coefficient p value correlation coefficient p value

VitTCR 0.47 1.1e-16 0.26 7.8e-07

NetTCR-2.0 0.40 1.9e-16 0.21 7.e7-05

ERGO_AE 0.46 1.3e-16 0.27 2e-07
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activation percentage to some extent, which could lend support to the utility of these predictive approaches, pending further investigation.

However, it’s important to acknowledge that the Spearman correlation coefficients are weak. This indicate that the association between T cell

activation and TCR-epitope recognition is not a simple linear process31 and that the progress of T cell activation is highly context-specific.

These findings point to the need for further analysis to better understand the implications of these correlations.
DISCUSSION

In this study, we developed a novel method named VitTCR to predict the interactions between epitopes and the CDR3b region of TCRs. The

encoding method we adopted is inspired by Intermap, as proposed by ImRex.21 For each CDR3b-epitope pair, VitTCR encodes it into a

3-dimensional numeric tensor named AtchleyMaps. The length of the tensor corresponds to the length of CDR3b (20 AAs), the width corre-

sponds to the length of the epitope (12 AAs), and the channels represent the 5 Atchley factors. Subsequently, VitTCR takes the AtchleyMaps

as inputs and outputs the predicted binding probability for each CDR3b-epitope pair.

VitTCR provides an option for adding PBWM. With the assistance of PBWM, VitTCR assigns greater weight to patches in regions more

likely to interact. The performance of VitTCR showed slight improvement on the independent test set after adding the PBWM, hinting at

the possibility that the physicochemical properties characterized by the Atchley Factors may influence the interaction process. Additionally,

it suggests that the weightmatrixmay capture the pattern of CDR3b-peptide interactions to some extent. Asmore data appear, we anticipate

that the positional bias weights could potentially improve the generalizability of the model. In this study, due to the insufficient paired data of

TCR, our focus was primarily on CDR3b, despite recognizing the importance of CDR3a in peptide recognition. Including CDR3a in future an-

alyses could potentially enhance the precision and reliability of predictions. Furthermore, we attempted to extend our model’s applicability

beyond the data range of HLA-A02:01, rather than restricting it to a single MHC type. However, initial results indicated that the model’s per-

formance other HLA types did not meet our expectations, highlighting the need for future efforts to gather more data for various HLA types
Figure 6. Correlation between predicted probabilities and activation percentages for different methods

(A) Spearman correlation coefficients between predicted probabilities and activation percentages of T cells were calculated for VitTCR, NetTCR-2.0, and

ERGO_AE. For all methods, 5-fold cross-validation was performed. Each point of the boxplot represents the correlation coefficient between the predicted

probabilities of the model and the activation percentages for each fold.

(B) The binding probabilities ranging from 0 to 1 were divided into five bins, with each bin representing an interval of 0.2. The x axis represents the bins of binding

probabilities predicted by VitTCR, while the y axis represents the activation percentages of TCR clonotypes.

The significance was determined using paired t-tests.
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and further refine themodel for better performance across diverse HLA contexts.We remain hopeful that an increase in training data on TCR–

pMHC interactions will not only make predictions more reliable but also provide an effective adjunct for vaccine design and tumor

immunotherapy.

Limitations of the study

We acknowledge several significant limitations of the proposed model. First, the effectiveness of the VitTCR model is contingent upon the

quality of the datasets utilized. High-quality datasets are essential for successfulmodel development, but our current dataset presents consid-

erable challenges for predictivemethodology development. These challenges stem fromboth its limited size and significant imbalances. Sec-

ond, although repeated 5-fold cross-validation has revealed significant differences (t-test, p-value <0.001), the observed improvements in

model performance with the integration of PBWM are modest (as shown in Figure 3D). This suggests that expanding the dataset might

be beneficial for refining PBWM and its role in improving prediction accuracy warrants further exploration with more diverse data. Third,

the construction of negative data from TCRs not exclusively linked to HLA-A02:01 raises concerns about the model’s potential bias toward

MHC restriction recognition rather than epitope-peptide interactions.32 Lastly, VitTCR model is currently optimized for HLA-A*02:01. Gener-

alization of the model will likely involve enriching the training data with a wider array of relevant features, including CDR3a, VDJ gene usage,

and various MHC-I subtypes, in addition to CDR3b.
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RESOURCE AVAILABILITY

Lead contact

Further information and requests for resources should be directed to and will be fulfilled by the lead contact, Xun Lan (xlan@tsinghua.edu.cn).
Materials availability

This study did not generate any new materials.
Data and code availability

� All data files for performing the analyses and generating the figures presented here are publicly available at theDOI provided in the key

resources table.

� All original code has been deposited at Github and is publicly available as of the date of publication. DOIs are listed in the key re-

sources table.
� Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.
METHOD DETAILS

Dataset processing

To train the model, we collected experimentally verified CDR3b-peptide pairs as positive samples from IEDB and McPAS. The data from

VDJdb were utilized as a testing dataset to validate the model. All negative samples were generated by mismatching the peptide in each

positive sample with a randomly selected CDR3b sequence from a healthy donor in TCRdb.33 Furthermore, we focused on the CDR3b se-

quences with 10-20 AAs, which started with ‘C’ AAs and ended with ‘F’ or ‘W’ AAs, and the peptides with 8-12 AAs that were presented

by humanMHC class I molecules. Therefore, we obtained an HLA-A*02:01-restricted training set with 38,712 data points before cluster-based

filtering and 28,584 data points after cluster-based filtering using iSMART according to our experimental needs. The number of data points in

the testing set was 5,250. Additionally, TCR sequences of CD8+ T cells acquired from healthy human donors (18,331 and 8,337 cells from

Donor 1 and Donor 2, respectively) were used to measure the generalization of VitTCR by calculating correlations between the predicted
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binding probabilities and clonal fractions. To demonstrate the reliability of VitTCR, a total of 165 experimentally validated CDR3b-peptide

pairs from COVID-19 recoverees were also used to display a positive correlation between the predicted binding probabilities and the acti-

vation percentages of T cells.

Statistical analysis of sequence length

CDR3b plays a crucial role in the recognition of antigens by directly binding to antigenic epitopes. Consequently, when encoding the inter-

actions between the TCR and antigenic epitopes, we focus solely on the CDR3b region of the TCR. Considering the specific attributes of

VitTCR, it is essential to maintain a consistent input shape for the model. To determine the optimal length threshold, a thorough statistical

analysis was performed on the lengths of CDR3b and antigenic epitopes within databases. As depicted in Figure S1, a substantial majority,

precisely 98.89%, of the entire set of CDR3b sequences exhibit lengths spanning from 10 to 20 amino acids. Likewise, a substantial proportion,

amounting to 97.97%, of all epitopes exhibited lengths within the range of 8 to 12 amino acids. Therefore, for CDR3b sequences shorter than

20 amino acids or epitopes shorter than 12 amino acids, zero padding will be applied from the N-terminal to the C-terminal end of the

sequences.

Statistical analysis of HLA

We conducted a statistical analysis of HLAs across the IEDB, McPAS, and VDJdb databases, which collectively comprise a total of 104 distinct

HLAs. Notably, the HLA-A*02:01 allele exhibited the highest frequency, with a count of 24,874 instances.We further examined the distribution

of the top 20 HLAs with the highest frequencies within these databases (Figure S2B).

Atchleymap encoding

Prior to predicting a pair of CDR3b and antigenic epitopes, it is necessary to convert their sequence information into numerical representa-

tions. The Atchley factors consist of five factors that represent different physicochemical characteristics, with each amino acid being charac-

terized by these five factors. For each factor, we encoded them using the principle shown in Equation 1: the subscript i (ranging from 1 to 20)

represents the position of amino acids of CDR3bs; j (ranging from 1 to 12) represents the position of amino acids of epitopes; and the co-

ordinates [i, j] correspond to the absolute difference between the values of the Atchley factor of the two amino acid residues. Each Atchley

factor generates a separate map, resulting in a total of five maps. These maps are then stacked together, and the resulting output tensor is

referred to as AtchleyMap.

AtchleyFactorij =
��AtchleyFactorCDR3b½i� � AtchleyFactorEpitope½j�

�� (Equation 1)

Patch division

To provide a more detailed representation of the interactions, we partitioned the AtchleyMaps into distinct patches and assigned numerical

labels to each patch accordingly (Figure 1B). Prior to the partitioning process, CDR3b sequences with fewer than 20 amino acids and epitopes

with fewer than 12 amino acids were zero-padded from theN-terminus to the C-terminus. Consequently, we obtained 15 patches, each with a

side length of 4 amino acids.

Architecture of VitTCR

As depicted in Figure 1C, VitTCR took the encoded AtchleyMaps as input and generated predicted probabilities as output. Initially, VitTCR

applied a two-dimensional convolutional layer with 256 kernels (size of 43 4 and stride of 4) to extract informative features fromAtchleyMaps.

This process can also be seen as dividing the encoded AtchleyMaps into 15 patches, where each patch was vectorized into a vector of size

[256] using the two-dimensional convolutional layer (size of 43 4 and stride of 4). After the convolution step, these vectors were concatenated

into a two-dimensional vector of size [15, 256]. Subsequently, the two-dimensional vector was concatenated with a randomly generated one-

dimensional vector (size of [1, 256]), which serves as a learnable classification (CLS) token. At this point, the concatenated vector, which con-

tained 16 tokens, had a size of [16, 256]. To retain the relative positional information, a position embedding of the same size as the concat-

enated vector was added to the vector. Afterwards, an encoder that consisted of a normalization layer, a multi-head attention layer, a dropout

layer, and a feedforwards layer was used to further encode the 16 tokens. Finally, a multilayer perceptron (MLP) layer with two units was added

on top of the encoder to extract features from the CLS token, and a softmax function was applied in the final output layer to export a vector P

of size [2, 1]. The shape of P is the number of classes, including ‘‘binding’’ and ‘‘no binding’’, with each element representing the probabilities

related to the class labels, and the predicted probabilities summed to 1.

Model training and selection

In order to train VitTCR, we employed binary cross-entropy between the model predictions and the actual values as the loss function (Equa-

tion 2). Themodel was optimized using the AdamOptimizer with a learning rate of 0.001. N represents the number of samples involved in the

loss function calculation. For the two categories, binding and non-binding, the probabilities predicted by VitTCR are pi and 1 - pi, with the

corresponding labels being yi and 1 - yi (in this classification task, yi is 1). The hyperparameters of the model were determined through cross-

validation, and the model’s generalization capability was assessed using an independent test set.
iScience 27, 109770, May 17, 2024 13
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LOSS =
1

N

X
i

� �
yi 3 log

�
pi

�
+ ð1 � yiÞ3 log

�
1 � pi

��
(Equation 2)

Self-attention mechanism of VitTCR

The self-attention mechanism plays a crucial role in enabling VitTCR to predict the specific recognition between a CDR3b-epitope pair. As

depicted in Figure 1, the Encodermodule in VitTCR is similar to the Encodermodule in Transformer.34 Each token, denoted as Token_i (where

i represents the token number, i˛ [CLS,1,2...,15]), was encoded by the encodermodule, obtaining a ScoreToken_i. ScoreToken_i is a list of length

16, where each element determines the level of attention that should be assigned to the other tokens during the encoding process of Token_i.

The sum of these outputed ScoreToken_i is equal to 1 (Equation 3) (where j ˛ [CLS,1,2,...,15]). After that, the weighted average of the value

vectors vToken_j was calculated for all tokens based on their corresponding scores ScoreToken_i[j], as shown in Equation 4. The resulting

weighted average, denoted as EmbeddedToken_i, represents the encoded representation of the token Token_i based on the self-attention

mechanism. The functioning of the self-attention mechanism is elucidated in Figure S4. Taking the encoding process of a CLS token as an

illustrative example, the scores between the CLS token and the other tokens are visually represented by the thickness of the connecting lines.

A thicker line signifies a higher score, while a thinner line indicates a lower score. The objective is to assign higher scores and greater weight to

tokens that carry relevant information while assigning lower scores and lesser weight to tokens that contain irrelevant noise. This step is instru-

mental in preservingmeaningful informationwhile disregarding irrelevant noise. Although the SoftMax score between a token and itself tends

to be the highest, it remains important to consider other tokens that are interconnected with the current token to capture their contextual

relevance.

X½CLS;1;2;.;15�

j

ScoreToken i½j� = 1 (Equation 3)
Embedded Token i =
X½CLS;1;2;.;15�

j

�
ScoreToken i½j� 3 vToken j

�
(Equation 4)

PBWM integration

In VitTCR, the integration of PBWM involves the calculation of the mean value between ScoreToken_CLS and PBWM (Equation 5), followed by

the calculation of the embedded CLS token, as illustrated in Equation 6. To evaluate the influence of incorporating PBWM on the predictive

accuracy of the model, a comparative analysis was conducted between VitTCR with the inclusion of the computed PBWMand VitTCR without

the incorporation of this additional weight matrix.

ScoreCLS PBWM =
ScoreToken CLS½1; 15�+PBWM

2
(Equation 5)
Embedded Token CLS =
X½CLS;1;2;.;15�

j

�
ScoreCLS PBWM½j� 3 vToken j

�
(Equation 6)

Cluster-based filtering

iSMART was utilized for cluster-based filtering of CDR3bs. The CDR3b sequences in the training set and the test set were filtered indepen-

dently through separate clustering processes. The command line for iSMART is ‘‘python iSMARTv3.py -f cdr3b.txt -v ’’. During the clustering

process of N CDR3b sequences, iSMART calculated the pairwise alignment score based on the BLOSUM62 matrix and normalized the score

by the length of the longer CDR3b sequence. Then, an N-by-N pairwise scoring matrix was obtained. Finally, the cut-off value was set as 3.5

(default value of iSMART) to filter out all the unclustered CDR3bs.

Details of the validation of cluster-based filtering

Step 1: Assigning percentile ranks pre-filtering

Rank these epitopes based on their cognate TCR counts in descending order. The ranking is expressed in percentiles, where lower percentile

values represent epitopes with higher cognate TCR counts, implying a higher frequency or prevalence of these epitopes within the dataset.

Conversely, higher percentile values indicate epitopes with lower cognate TCR counts, suggesting these epitopes are less frequent. The dis-

tribution of percentile values for these epitopes is illustrated in the ’Before’ category in Figure 4B, with the values representing the median.

Step 2: Examine the distribution of percentile ranks for filtered epitopes

After filtering the dataset, we plotted the percentile values of all remaining epitopes using violin plots, keeping the percentiles consistent with

those obtained in the previous step. For example, before filtering, the dataset had six epitopes[A, B, C, D, E, F] with percentiles [0, 0.2, 0.4, 0.6,

0.8, 1.0]. After filtering, the dataset retained only three epitopes [A, C, E], and the percentiles for these epitopes remained [0, 0.4, 0.8]. These

are shown in the ’After’ category in Figure 4B.
14 iScience 27, 109770, May 17, 2024
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Step 3: Comparison

Figure 4B helps illustrate changes in the distribution, including any shifts in the median and alterations in the distribution’s spread (as indi-

cated by the waist of the violin plots).
T-cell activation percentage

First, we constructed a K562 cell line expressing TMG (Tandem Minigene). TMG is a concatenated series of peptides with 11 different anti-

genic peptides, one of which is a wild type antigen, and the remaining ten are antigenic peptides with single amino acid mutations. Then, we

used this cell line to stimulate Peripheral BloodMononuclear Cells (PBMCs) from individuals who had recovered fromCOVID-19, usingCD137

as a marker to sort T cells. The sorted T cells were then sequenced to identify their T Cell Receptor (TCR) sequences.We engineered T cells to

express these specific TCR sequences based on the sequencing data. Subsequently, we reconstructed each of the 11 antigenic sequences

from TMG, resulting in 11 different K562 cell lines, each expressing only one antigenic sequence. Finally, T cells expressing a single TCR

sequence were co-cultured with K562 cells, each expressing only one type of antigenic sequence. The co-culture was analyzed by flow cytom-

etry, using CD69 as a marker to determine activation. When calculating the activation proportion, the gating position was determined based

on a negative control (non-activated group). The proportion of CD69+ cells obtained represents the activation proportion after background

removal.
QUANTIFICATION AND STATISTICAL ANALYSIS

Statistical analysis for evaluating model predictions involved calculating Spearman correlation coefficients. These analyses aimed tomeasure

the association between VitTCR’s predicted binding probabilities and observed TCR clone fractions, as well as between predicted binding

probabilities and T-cell activation percentages. All statistical tests were two-sided t-tests, and results were considered statistically significant

at p-values less than 0.01.
iScience 27, 109770, May 17, 2024 15
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