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Abstract

Background: Targeted therapy and immunotherapy put forward higher demands for accurate lung cancer
classification, as well as benign versus malignant disease discrimination. Digital whole slide images (WSIs) witnessed
the transition from traditional histopathology to computational approaches, arousing a hype of deep learning
methods for histopathological analysis. We aimed at exploring the potential of deep learning models in the
identification of lung cancer subtypes and cancer mimics from WSIs.

Methods: We initially obtained 741 WSIs from the First Affiliated Hospital of Sun Yat-sen University (SYSUFH) for the
deep learning model development, optimization, and verification. Additional 318 WSIs from SYSUFH, 212 from
Shenzhen People’s Hospital, and 422 from The Cancer Genome Atlas were further collected for multi-centre
verification. EfficientNet-B5- and ResNet-50-based deep learning methods were developed and compared using the
metrics of recall, precision, F1-score, and areas under the curve (AUCs). A threshold-based tumour-first aggregation
approach was proposed and implemented for the label inferencing of WSIs with complex tissue components. Four
pathologists of different levels from SYSUFH reviewed all the testing slides blindly, and the diagnosing results were
used for quantitative comparisons with the best performing deep learning model.

Results: We developed the first deep learning-based six-type classifier for histopathological WSI classification of
lung adenocarcinoma, lung squamous cell carcinoma, small cell lung carcinoma, pulmonary tuberculosis, organizing
pneumonia, and normal lung. The EfficientNet-B5-based model outperformed ResNet-50 and was selected as the
backbone in the classifier. Tested on 1067 slides from four cohorts of different medical centres, AUCs of 0.970, 0.918,
0.963, and 0.978 were achieved, respectively. The classifier achieved high consistence to the ground truth and
attending pathologists with high intraclass correlation coefficients over 0.873.
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(Continued from previous page)

Conclusions: Multi-cohort testing demonstrated our six-type classifier achieved consistent and comparable
performance to experienced pathologists and gained advantages over other existing computational methods. The
visualization of prediction heatmap improved the model interpretability intuitively. The classifier with the threshold-
based tumour-first label inferencing method exhibited excellent accuracy and feasibility in classifying lung cancers
and confused nonneoplastic tissues, indicating that deep learning can resolve complex multi-class tissue
classification that conforms to real-world histopathological scenarios.

Keywords: Deep learning, Lung cancer, Cancer mimic, Whole slide image, Histopathological classification

Background
Lung cancer is the leading killer-cancer worldwide and
referred to either non-small cell lung cancer (NSCLC) or
small cell lung cancer (SCLC) customarily. Nowadays,
with the emerging targeted therapy and immunotherapy,
accurate morphological classification is in urgent need
[1]. Optical microscopic examination with eyes by pa-
thologists remains the routine in establishing a diagnosis
and determining cancer subtypes. However, the scarcity
of pathologists and the time-consuming procedure escal-
ate the conflict between clinical demand and actual
productivity. Moreover, inter- and intra-observer varia-
tions introduce additional bias and risk into histopath-
ology analysis [2, 3]. Fortunately, the digitization of
histopathological slides is shifting the way pathologists
work and allowing artificial intelligence (AI) to integrate
with traditional laboratory workflows.
Over the past few years, deep learning approaches

have shown promise in tumour histopathology evalua-
tions [4]. Labour-intensive tasks such as regions of inter-
est (ROIs) detection or segmentation [5, 6], element
quantification [7], and visualization [8] can be well exe-
cuted by deep learning approaches. Experience-
dependent problems including histological grading [9],
classification or subclassification [10, 11], and prognosis
inference [12] have also been solved to some extent with
AI approaches. Furthermore, researches on imaging gen-
omics, covering biomarker prediction or discovery [13, 14]
and tumour microenvironment (TME) characterization
[15] from digital histopathological slides, were explored
and demonstrated feasible.
Several deep learning approaches for lung cancer

histopathological classification have gained success, in a
supervision or weakly supervision manner, via single or
multiple convolutional neural network (CNN) models
[16–21] (Table 1). Computational tools have been devel-
oped for viewing, annotating, and data mining of whole
slide images (WSIs) [22–26] (Table 1). Notably, QuPath
[22], DeepFocus [23], ConvPath [24], HistQC [25], and
ACD Model [26] are referenced in Table 1 as general
WSI analysing tools, not specific for lung cancer. Add-
itionally, the relationships between molecular genotypes
and morphological phenotypes have been explored in

several pioneering studies [16, 17] (Table 1). However,
existing advances were confined either to NSCLC, single
cohort, or a small number of cases, still a long way to
make clinical effects. Furthermore, pulmonary tubercu-
losis (PTB) cases with nontypical radiographic features
require surgical inspections to be differentiated from
cancer for potential infectiousness [27]. Organizing
pneumonia (OP) is also difficult to be distinguished from
bronchogenic carcinoma and thus patients often
undergo surgical resection for high suspicion of a malig-
nant tumour [28, 29].
Here, we developed a deep learning-based six-type

classifier for the identification of a wider spectrum of
lung lesions, including lung cancer, PTB, and OP. Effi-
cientNet [30] and graphic processing unit (GPU) were
utilized for better efficacy. We also implemented a
threshold-based tumour-first aggregation method for
slide label inferencing, which was inspired by clinical
routine and proved to be effective through multi-centre
validation. Extended comparison experiments and statis-
tical analyses were conducted for the verification of
model efficiency, efficacy, generalization ability, and
pathologist-level qualification. We intended to test the
hypothesis that deep learning methods can identify lung
cancer and mimics histologically with high accuracy and
good generalization ability.

Methods
The study workflow is illustrated in Fig. 1. First, speci-
mens were scanned and digitized into pyramid-like
structured WSIs. Second, WSIs were reviewed and an-
notated by pathologists. Third, ROIs were extracted and
cropped into tiles for model development. Fourth, the
deep convolutional neural network was trained and opti-
mized to gain the optimum classification performance.
Fifth, tile-level predictions were aggregated into slide-
level predictions. Ultimately, multi-centre tests were
conducted for adequate validations of the model’s
generalization abilities.

WSI datasets
The initial dataset consisted of 741 haematoxylin and
eosin (H&E)-stained lung tissue slides with a confirmed

Yang et al. BMC Medicine           (2021) 19:80 Page 2 of 14



diagnosis of either LUAD, LUSC, SCLC, PTB, OP, or
NL from the First Affiliated Hospital of Sun Yat-sen
University (SYSUFH) (Table 2). The inclusion criterion
was that each slide should show typical lesions indicative
of one of the aforementioned diagnostic categories. Be-
fore the WSI annotation, two pathologists reviewed all
the histological slides of each case microscopically, in-
cluding immunohistochemistry and histochemical stain-
ing slides used for auxiliary diagnosis, and accessed to
patients’ medical reports when necessary. Cases with
confirmed diagnosis (one slide per case) were included
in this study. The slides were then scanned with a KF-
PRO-005-EX scanner (KFBIO, Ningbo, China) at × 40
equivalent magnification (0.25 μm per pixel) and digi-
tized into KFB format. In pursuit of an unbiased assess-
ment, the diagnostic annotations were reviewed by
pathologists with at least 7 years of clinical experience
from the Department of Pathology of SYSUFH

according to the 2015 World Health Organization
(WHO) classification criteria of lung tumours [1].

Data pre-processing
The raw gigabyte multi-layer WSIs from SYSUFH were
converted from KFB to TIFF format with the KFB_Tif_
SVS2.0 tool (provided by the scanner vendor KFBIO) for
compatibility with mainstream computer vision tools.
To retain both global overview and local details, the im-
ages of × 20 equivalent magnification (0.5 μm per pixel)
was adopted throughout the processing procedure. The
TIFF-format WSIs were manually annotated by the pa-
thologists using the ASAP platform [31], with separate
areas of coloured irregular polygons responsible for a
certain histopathological lung tissue type. Tumorous and
inflammatory regions were obtained by masking anno-
tated areas, and normal regions were retrieved by ex-
cluding the background of normal lung slides with

Table 1 Glance of deep learning-based lung cancer histological classification algorithms and general slide image analysing tools

Research Year Objective Cohort AUC Architecture Framework Language

Coudray
et al. [16]

2018 Classification between LUAD,
LUSC, and NL; mutation prediction
(STK11, EGFR, FAT1, SETBP1, KRAS,
and TP53)

TCGA (1634 slides); NYU (340
slides)

0.970
(classification)
0.733–0.856
(mutation)

Inception-V3 TensorFlow Python

Yu et al.
[17]

2020 Identification of histological types
and gene expression subtypes of
NSCLC

ICGC (87 LUAD patients, 38
LUSC patients); TCGA (427 LUAD
patients, 457 LUSC patients)

0.726–0.864 AlexNet;
GoogLeNet;
VGGNet-16;
ResNet-50

Caffe Python

Gertych
et al. [18]

2019 Histologic subclassification of
LUAD (5 types)

CSMC (50 cases); MIMW (38
cases); TCGA (27 cases)

Accuracy,
0.892 (patch-
level)

GoogLeNet;
ResNet-50;
AlexNet

Caffe MATLAB

Wei et al.
[19]

2019 Histologic subclassification of
LUAD (6 types)

DHMC (422 LUAD slides) 0.986 (patch-
level)

ResNet-18 PyTorch Python

Kriegsmann
et al. [20]

2020 Classification between LUAD,
LUSC, SCLC and NL

80 LUAD, 80 LUSC, 80 SCLC and
30 controls from NCT

1.000 (after
strict QC)

Inception-V3 Keras
(TensorFlow)

R

Wang et al.
[21]

2020 Classification between LUAD,
LUSC, SCLC, and NL

SUCC (390 LUAD; 361 LUSC; 120
SCLC; and 68 NL slides); TCGA
(250 LUAD and 250 LUSC slides
in good quality)

0.856 (for
TCGA cohort)

Modified
VGG-16

TensorFlow Python

QuPath [22] 2017 Tumour identification, biomarker
evaluation, batch-processing, and
scripting

Specimens of 660 stage II/III
colon adenocarcinoma patients
from NIB

/ / / JAVA

DeepFocus
[23]

2018 Detection of out-of-focus regions
in WSIs

24 slides from OSU / CNN TensorFlow Python

ConvPath
[24]

2019 Cell type classification and TME
analysis

TCGA (LUAD); NLST; SPORE;
CHCAMS

/ CNN / MATLAB;
R

HistoQC
[25]

2019 Digitization of tissue slides TCGA (450 slides) / / / HTML5

ACD model
[26]

2015 Colour normalization for H&E-
stained WSIs

Camelyon-16 (400 slides);
Camelyon-17 (1000 slides);
Motic-cervix (47 slides); and
Motic-lung (39 slides)

0.914 (for
classification)

ACD TensorFlow Python

Abbreviations: LUAD, lung adenocarcinoma; LUSC, lung squamous cell cancer; NL, normal lung; TCGA, the Cancer Genome Atlas; NYU, New York University; ICGC,
International Cancer Genome Consortium; CSMC, Cedars-Sinai Medical Center; MIMW, Military Institute of Medicine in Warsaw; DHMC, Dartmouth-Hitchcock
Medical Center; NCT, National Center for Tumor Diseases; QC, quality control; SUCC, Sun Yat-sen University Cancer Center; NIB, Northern Ireland Biobank; OSU, Ohio
State University; NLST, National Lung Screening Trial; SPORE, Special Program of Research Excellence; CHCAMS, Cancer Hospital of Chinese Academy of Medical
Sciences; H&E, haematoxylin and eosin; WSIs, whole slide images; ACD, adaptive colour deconvolution
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Otsu’s method [32]. The annotation guaranteed that no
non-lesion tissues were included in the annotated area,
and thus, some lesion areas that were difficult to be
marked clearly may be lost. These outlined areas were
annotated with their respective categories, including
LUAD, LUSC, SCLC, PTB, and OP. Normal lung slides
were derived from normal adjacent tissues of cases with
the above diseases. The selected normal lung WSIs re-
ferred to the tissues of the whole slides that were normal
without any lesions. Specifically, unannotated regions of
neoplastic slides were not considered normal due to the
rigorous labelling method that excluded minor areas of
tumour tissue surrounded by mostly normal tissues.
ROIs were traversed and tailored into non-overlapping
tiles at the size of 256 × 256 pixels with a sliding window
(stride = 256) to match the input scale of CNNs and
avoid overfitting. Tiles with over 50% background space
were removed to reduce noise and redundancy. The tile
distributions are detailed in Table 2.

Deep neural networks
A CNN with high accuracy and low tuning costs was
our aspirational framework. The EfficientNet networks
benefited from compound scaling and auto architecture
search, achieving state-of-the-art accuracy on ImageNet
[33] with fewer floating-point operations per second
(FLOPs). PyTorch supported the EfficientNet network
up to the B5 version at the time this study was con-
ducted. Hence, EfficientNet-B5 was adopted for the
histopathological classification task with its last fully

connected layer replaced by a Softmax layer that output
a six-dimension vector. To train and optimize the net-
works, we randomly divided the slides at the slide level
into the disjoint training, validation, and testing sets
(Table 2). ResNet is another popular CNN architecture
that frequently appeared in research articles. Therefore,
we also fine-tuned a ResNet-50 network using the same
data and settings as EfficientNet-B5 and threw the same
testing slides to conduct a fair comparison between the
two network models.

Network training
Limited by the reality of strict privacy policies and non-
uniform medical management systems, most medical
samples are inaccessible, especially labelled samples [34,
35]. Hence, transfer learning techniques were employed
to train the EfficientNet-B5 network given our relatively
moderate training dataset. The training process was
comprised of two steps. First, we initialized the network
with default weights transferred from the ImageNet
dataset, froze all the layers except the last fully con-
nected layer, and trained it with our data. Second, we
unfroze the frozen layers and finetuned the whole net-
work to fit the target best. The parameters of the train-
able layers were modified and optimized referring to the
cross-entropy between the predictions and the ground
truths. The initial learning rate was 0.0005, and the
optimizer was Adam [36], with both momentum and
decay set as 0.9. On-the-fly data augmentations, includ-
ing rotating between 0 and 30°, flipping horizontally or

Fig. 1 The data analysis workflow in details. ROIs of the H&E-stained slides were extracted by masking on the annotated regions and cropped
into 256 × 256 pixels tiles to train the EfficientNet-B5 networks. Tile-level predictions were aggregated to inference the slide-level diagnoses. Tile
numbers are in parentheses, and n is slide number

Table 2 Details of SYSU1 dataset for the development of six-type classifier

Number of slides (tiles)

Subsets LUAD LUSC SCLC PTB OP NL SUM

Training 210 (179,402) 77 (51,949) 65 (17,342) 43 (22,617) 46 (17,987) 70 (65,143) 511 (354,440)

Validation 45 (43,153) 18 (14,552) 16 (1077) 11 (3047) 10 (4170) 15 (12,526) 115 (78,525)

Testing 43 16 22 10 10 14 115 (276,247)

SUM 298 111 103 64 66 99 741 (709,212)
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vertically, random brightness or contrast or gamma,
zooming in or out, shifting, optical or grid distortion,
and elastic transformation, were performed to
aggrandize data varieties. Except for horizontal flipping,
all the other augmentation operations were conducted
with a certain probability, either 0.3 or 0.5. To improve
the learning properties on convergence, pixels were
rescaled from 0 to 255 to 0–1 by dividing 255, and then
Z-score-normalized with mean (0.485, 0.456, 0.406) and
std. (0.229, 0.224, 0.225). The training process lasted for
60 epochs, and the optimized model with the minimum
loss was saved and adopted.

Whole-slide label inferencing with threshold-based
tumour-first aggregation
Outputs of the network were tile-level predictions that
should be aggregated into slide-level diagnoses. Trad-
itionally, a tile would be inferred as the class with the
maximum prediction probability. Classical aggregation
approaches usually fell into two categories to draw the
slide-level inference. One is known as the majority vot-
ing method, which counts the tile number per class and
assigns a slide with the label corresponding to the most
numerous class, and the other is the mean pooling
method that adds the probabilities of each class and de-
duces the slide label from the maximum mean class
probability. In our datasets, compound tissue compo-
nents may coexist in one slide. For example, normal, in-
flammatory, and neoplastic components may scatter
across different regions of a tumorous slide; meanwhile
in this study, only one major type of neoplastic compo-
nent would appear in the tumorous slide label. Accord-
ingly, we proposed a two-stage threshold-based tumour-
first aggregation method that fused the majority voting
and probability threshold strategies. Pathologists often
encountered cases in which multiple lesions coexisted,
for example lung cancer and PTB or OP may coexist in
one H&E slide. If all lesion types were equally treated
and the type with the highest prediction probability
regarded as the slide-level diagnosis, the model output
may miss the cancer lesion due to its small size, which
could be much more harmful to patients. Therefore, we
aimed to improve the diagnostic sensitivity of cancer
and proposed the tumour-first approach. Our method
prioritized the tissue types according to the severity of
diseases and reported the most threatening tissue type,
especially tumorous types.
It is reasonable to set different thresholds for different

lesion types. For inflammatory diseases, the threshold
range of PTB was initially set slightly lower than that of
OP, because PTB is more characteristic morphology
microscopically. The threshold range of normal lung tis-
sue was set as high as possible to improve the diagnostic
precision. Because LUAD, LUSC, and SCLC are all

tumour types, their thresholds should be the same. Also,
the thresholds should be roughly inversely proportional
to disease severity in order to improve sensitivity. Conse-
quently, the thresholds were set to satisfy the criteria:
Tumour_threshold < PTB_threshold < OP_threshold <
NL_threshold.
Our expert pathologists agreed the threshold-based

tumour-first idea and suggested the threshold ranges ac-
cording to clinical experiences as following: Tumour =
[0.1, 0.5], PTB = [0.2, 0.5], OP = [0.3, 0.5], and NL = [0.7,
0.95]. We adopted these threshold principles and ranges
and applied a grid search method with a step of 0.05 to
obtain the optimal threshold settings on the first testing
dataset SYSU1 (Sun Yat-sen University dataset 1). Ac-
cordingly, we got 450 groups of thresholds and calcu-
lated their corresponding micro-average and macro-
average AUCs. By descending order micro-average AUC
first, descending order macro-average AUC as an add-
itional condition, the combination of Tumour (LUAD,
LUSC, or SCLC) = 0.1, PTB = 0.3, OP = 0.4, and NL = 0.9
satisfied the principles aforementioned and ranked the
top for SYSU1 testing cohort (Additional file 2: Table
S1); therefore, it was selected as the threshold setting in
the following work.
After the thresholds being defined, the two-stage ag-

gregation was implemented. In the first stage, the aggre-
gation principle was applied to draw each tile’s label and
formulated as following (Additional file 1: Figure S1): (i)
if the prediction probability of NL exceeded 0.9, the tile
was inferred as NL; (ii) otherwise, if the probability of
any neoplastic category was greater than 0.1, the label
was assigned with the neoplastic class of the maximum
probability; (iii) otherwise, if the prediction values of
PTB or OP were higher than other thresholds, the corre-
sponding class label was assigned; and (iv) if any of the
above conditions were unmet, the tile would be labelled
as the class with the maximum probability value. In the
second stage, a similar protocol was applied with the tile
number per class divided by the total tile number used
as the input vector (Additional file 1: Figure S2). We got
each tile’s label from the first stage and counted the
number of supporting tiles in each class; the number
was then divided by the sum of all tiles to obtain the
slide-level probability proportion of each class; and fi-
nally, we used the slide-level proportion as the input of
the second stage to inference the slide-level label. As re-
sult, the tile-level predictions aggregated to reach the
human-readable slide-level diagnoses in accordance with
medical knowledge.

Multi-centre model testing
To explore the generalization ability of our classifier,
further validations were conducted on four independent
cohorts, including two inner cohorts SYSU1 and SYSU2
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(Sun Yat-sen University dataset 2), and two external co-
horts SZPH (Shenzhen People’s Hospital dataset) and
TCGA (The Cancer Genome Atlas dataset) (Table 2,
Table 3, and Additional file 3: Table S2). Both SYSU1
and SYSU2 datasets came from the First Affiliated Hos-
pital of Sun Yat-sen University. All the slides were anon-
ymized to protect patients’ privacy. Different from and
without intersection with the slides subjected to the de-
velopment of the model, the slides for testing had clin-
ical diagnosis labels only and obtained an inferred
diagnosis from the model. Tiles were extracted from the
whole slide exhaustedly excluding the background,
allowing 10% overlapping with adjacent tiles, and those
with tissue proportion less than 20% were filtered for
computation efficiency. Appropriate measurements, in-
cluding recall, precision, F1-score, accuracy, and AUC
were computed to quantify and compare the models’
performances across these four testing cohorts.

Comparison between the deep learning model and
stratified pathologists
Four pathologists of different professional level diag-
nosed the WSIs with ASAP independently and blindly in
a single stretch and documented the time they spent.
Then, we collected their diagnosis results for perform-
ance evaluations and comparisons with our six-type clas-
sification model.

Visualization of the predictions
Heatmap is widely used for visualization due to its varie-
gated colours and expressive exhibitions. In this work,
heatmaps were plotted overlying the tiles, displaying
equivalent colours corresponding to the tile-level class
probability that ranged from 0 to 1. A more saturated
colour indicated a larger probability. As appropriate, the
coordinate system marked where specific tiles located
was omitted for integral aesthetics. Receiver operating
characteristic curves (ROCs) were plotted to show the
dynamic tendency in which sensitivity varied with speci-
ficity. Bar plot and Cleveland graph were plotted to illus-
trate tile distributions within slides and across cohorts.
Sankey figure was drawn to show the comparisons be-
tween our deep learning model and the most experi-
enced pathologist.

Statistical analysis
To evaluate the performances of our model and patholo-
gists, precision, recall, F1-score, AUC, micro-average
AUC, and macro-average AUC were calculated in Py-
thon with the scikit-learn [37] library using functions in-
cluding classification_report, auc, and roc_curve. Micro-
and macro-AUCs were computed as sample- and class-
average AUCs, respectively. 95% CIs were estimated for
categorical AUC, micro-average AUC, and macro-
average AUC by bootstrapped [38] resampling the sam-
ples 10,000 times. The intraclass correlation coefficient
(ICCs) were calculated with the ‘irr’ package [39] in R
using the ‘oneway’ model, the corresponding 95% CIs
were also given by 10,000-fold bootstrapping. ICC
ranges from 0 to 1, and a high ICC denotes good
consistency. Conventionally, when ICC > 0.75 and P <
0.05, high reliability, repeatability, and consistency were
indicated [40].

Hardware and software
The raw WSIs were viewed with K-Viewer (provided by
the scanner vendor, KFBIO). OpenSlide [41] (version
1.1.1) and OpenCV [42] (version 4.1.1) in Python (ver-
sion 3.6.6) were utilized for image extracting and analys-
ing. The main working platform was a high-performance
computing node equipped with dual NVIDIA P100
16GB Volta GPUs, and the deep learning model was
constructed, trained, and validated with PyTorch [43]
(version 1.2.0) on a single GPU. Scikit-learn (version
0.21.2) and Matplotlib [44] (version 2.2.2) in Python
undertook major estimation and visualization work co-
operatively. The ‘gcookbook’ and ‘tidyverse’ packages in
R (version 3.6.1) were adopted to draw bar plots and
Cleveland graphs.

Results
Internal cohort testing
A total of 741 lung-derived digital WSIs, consisting of
512 tumorous tissues, 130 inflammatory tissues, and 99
normal tissues from the SYSUFH, constituted the initial
dataset and were randomly divided into the training
(n = 511 slides), validation (n = 115 slides), and internal
testing (SYSU1) (n = 115 slides) subsets (Table 2). The
WSIs for training and validation were annotated by ex-
perienced pathologists and reviewed by the head of the
Pathology Department at SYSUFH, and only ROIs were
extracted and tessellated into small 256- × 256-pixel tiles
at × 20 magnification as inputs of the EfficientNet-B5
network. As for the testing slides, simply diagnostic la-
bels were assigned and the whole excluding background
was utilized and pre-processed in the same fashion as
annotated slides. In total, 709,212 tiles yielded, of which
432,965 joined the training and validation processes and
276,247 were subject to evaluating the classification

Table 3 Multi-centre cohorts collected for model validation

Cohorts LUAD LUSC SCLC PTB OP NL SUM

SYSU2 56 64 52 30 25 91 318

SZPH 60 75 43 0 0 34 212

TCGA 141 134 0 0 0 147 422
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performance of the model. The tile distributions are de-
tailed in Table 2. With the training and validation data-
sets, we developed a deep learning-based six-type classifier
that can identify histopathological lung lesions of LUAD,
LUSC, SCLC, PTB, OP, and normal lung (NL).
Tested on the internal independent cohort of 115

WSIs, micro- and macro-average AUCs of 0.970 (95%
CI, 0.955–0.984) and 0.988 (95% CI, 0.982–0.994) were
achieved respectively (Fig. 2a). AUCs for all tissue types
were above 0.965, and the successes in SCLC (0.995),
PTB (0.994), and OP (0.996) suggested the model com-
petent in distinguishing cancerous and noncancerous
lung diseases. Precision, recall, and F1-score were
adopted for static assessment (Table 4). It was gratifying
that SCLC and noncancerous tissues tended to obtain
high precisions, and SCLC, NL, and OP even achieved 1.
This meant fewer false positives for SCLC and mild dis-
eases thus lower the risks of serious consequences of
missed diagnoses. Meanwhile, cancerous tissues were
observed to obtain high recalls, which coincided with
the purpose of high sensitivities of malignant tissues. In
brief, the deep learning-based six-type classifier exhib-
ited substantial predictive power in the internal inde-
pendent testing. The whole slide level confusion
matrixes (Additional file 1: Figure S3) for each testing
cohort illustrated the misclassifications by our method.

Multi-cohort testing
Another batch of specimens from SYSUFH (SYSU2)
(n = 318 slides), an external validation dataset from
Shenzhen People’s Hospital (SZPH) (n = 212 slides), and
a randomly selected subset of The Cancer Genome Atlas
(TCGA) (n = 422 slides) were collected for further multi-
cohort testing (Table 3 and Additional file 3: Table S2).
Notably, due to the limitation of the external data re-
source, data for PTB and OP were unavailable for SZPH
and TCGA, and data for SCLC was unavailable for
TCGA as well. Similarly, AUC, precision, recall, and F1-
score were computed for the evaluation of classification
performance (Table 4).
Our classifier attained micro-average AUCs of 0.918

(95% CI, 0.897–0.937) (Fig. 2b) and 0.963 (95% CI,
0.949–0.975) (Fig. 2c) for SYSU2 and SZPH, respectively,
showing consistent performances in dealing with data
from different medical centres. For the public available
TCGA subset, the micro-average AUC was 0.978 (95%
CI, 0.971–0.983) (Fig. 2d), which surpassed those ob-
tained from both internal and external cohorts. In terms
of precision, recall, and F1-score (Table 4), the model
performed best with SZPH dataset, followed by SYSU2,
and NL was the most accurately distinguished tissue
type with macro-average F1-scores of 0.94 across the
four cohorts, followed by LUAD with a macro-average
F1-score of 0.86. The inherent nature of TCGA and

SZPH had limited corresponding experiments to partial
categories of lung lesions in this study; meanwhile, the
results demonstrated our method’s robustness and in-
sensitivity to the influence of class imbalance. Overall,
the histopathological six-type classifier delivered consist-
ent answers to multi-cohort testing, and its flexibility of
data bias and applicability of a wider scale bridged the
distance between artificial intelligence and actual clinical
use. It was reasonable to believe that the model held
promise to relieve workloads of pathologists and cover
more extensive clinical scenarios.

Comparison between EfficientNet-B5 and ResNet-50
Table 5 illustrates that ResNet-50 performed comparably
with EfficientNet-B5 on the SYSU1 cohort, slightly less
accurate on SYSU2. However, EfficientNet-B5 exerted
obvious advantages on SZPH and TCGA cohorts.
ResNet-50 was competent in common tasks, but inferior
in generalization as shallower networks are naturally
weaker in learning abstract features which may be cru-
cial for distinguishing slides of multiple sources. Hence,
EfficientNet-B5 outperformed ResNet-50 in multi-
cohort testing and was selected as the backbone model.

Visualizing predictions with heatmaps
To see the landscape of whole slide level predictions,
heatmaps were plotted as overlays on the tiles with vari-
ous colours standing for the predicted tissue types. One
representative of each tissue type was randomly selected
and is visualized in Fig. 3. The first row displayed the
WSIs with ROI annotations, and the second row illus-
trated the resulting probability heatmaps paired with the
first row. From left to right were the sample heatmaps
for LUAD, LUSC, SCLC, PTB, OP, and NL, respectively.
In Fig. 3, the predictions of tiles and subregions were
clearly observed and mapped to the in situ tissues. The
whole slide landscapes of predictions were generally a
mix of tissue components, among which the predomin-
ant component of the same priority contributed more to
the final diagnostic conclusion. Figure 3 also illustrates
that the suggested regions by our six-type classifier were
highly consistent with the ROIs annotated by the pathol-
ogists. For example, the highlighted regions of SCLC,
PTB, and OP heatmaps were perfectly matched to their
corresponding ROI annotations in the upper row, and
the predicted region of LUAD coincided with the main
ROI though missed about 30% of the actual lesions. Not-
ably, cancerous components merely appeared in noncan-
cerous slides, and the prominent components tended to
present like a gobbet. In addition, the margins of non-
cancerous slides seemed to be predicted as OP. We also
generated the heatmaps (Additional file 1: Figure S4) to
present the false-positive prediction cases. In these false-
positive cases, cancer cases were predicted as other types
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of cancer, and NL cases were predicted as PTB or OP
cases. In brief, the heatmaps allow to overview predic-
tions of the whole slides intuitively, discover the under-
lying histopathological patterns, and simplify the result
interpretations.

Contesting with pathologists
To compare our model with pathologists for the diagno-
sis of lung lesions, four pathologists from three different
training levels (senior attending, junior attending, and
junior) were invited to independently and blindly review

Fig. 2 High AUCs achieved across multiple cohorts. AUC was utilized to measure the performance of the model on different testing cohorts,
including a the subset of the initial cohort SYSU1, b an independent internal cohort SYSU2, c an external cohort from Shenzhen People’s Hospital
(SZPH) that contained 4 types of lung tissues, and d a public cohort from ‘TCGA’ which was actually a subset consisting of slides randomly
selected from the TCGA-LUAD and TCGA-LUSC projects. Blind tests were conducted on all the cohorts by four pathologists of three levels
(Pathologist1 is senior attending, Pathologist2 and Pathologist3 are junior attending, and Pathologist4 is junior); performance of each pathologist
on each cohort was depicted as a star in a–d, respectively
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all the H&E-stained slides from four testing cohorts by
manual inspection alone. True-positive rate (TPR) and
false-positive rate (FPR) were calculated for each path-
ologist and attached to the ROCs as different coloured
five-pointed stars (Fig. 2). We can see the NL curves
(cyan) over some stars, and LUAD curves (hot pink)
under or close to the stars in most cases. Pathologist3
reached the top rank in SYSU1, SYSU2, and TCGA, al-
beit at junior attending status. Disparities between at-
tending pathologists existed but not made much
difference. Roughly, our model accomplished

comparable performance with pathologists, and even
better in some cases.
Aiming at quantifying the performance consistency,

ICCs under 95% CIs among the pathologists and our
model were calculated. As listed in Table 6, our method
achieved the highest ICC of 0.946 (95% CI, 0.715, 0.992)
with the ground truth in TCGA, 0.945 (95% CI, 0.709,
0.992) with Pathologist3 in SYSU1, 0.960 (95% CI, 0.783,
0.994) with Pathologist2 in SYSU2, and 0.928 (95% CI,
0.460, 0.995) with Pathologist3 in SZPH, respectively. All
the ICCs were above 0.75 (P < 0.05), and the model be-
haved closest to Pathologist3 overall, who was the best
performing pathologist in point of blind inspection on
the four cohorts.
For further insight into the relationships of the result-

ing predictions, Sankey diagram (Fig. 4) was built to il-
lustrate the difference among the ground truth, the most
experienced pathologist (Pathologist1 in Table 6), and
our six-type classifier. Taking the ground truth (the mid-
dle column) as the benchmark, the spanning curves on
the left and right indicate misjudgements of Pathologist1
and our classifier, respectively. The model’s overall per-
formance was comparable with the pathologist and
highly consistent with the ground truths. Comparatively,
our model made relatively fewer mistakes for LUSC,
though more mistakes for LUAD and SCLC. Further,
the model was so tumour-sensitive that it tended to gain
false positives by predicting NL as suspicious lesions,
whereas expert pathologist had much more confident to
confirm a disease-free tissue. Table 7 summarizes the
cases that were misjudged by at least one pathologist,
and over half of the mistakes were corrected by the
model. Therefore, our model achieved excellent per-
formance comparable to those of experienced
pathologists.
Obviously, manual inspection is labour insensitive. For

example, the TCGA cohort cost a pathologist 6 to 10 h
to complete a full inspection, while the entire analysis
can be done within approximately an hour by the model.
Additionally, inter-rater and intra-rater variabilities of

Table 4 Model performances across SYSU1, SYSU2, SZPH, and
TCGA testing sets

Metrics LUAD LUSC SCLC PTB OP NL Macro-
avgCohorts

Precision

SYSU1 0.80 0.75 1.00 0.89 1.00 1.00 0.91

SYSU2 0.85 0.88 0.79 0.80 0.88 0.96 0.86

SZPHa 0.97 0.84 0.94 – – 1.00 0.94

TCGAb 0.82 0.70 – – – 1.00 0.84

Macro-avg 0.86 0.79 0.91 0.85 0.94 0.99* 0.89

Recall

SYSU1 1.00 0.75 0.77 0.80 0.60 0.93 0.81

SYSU2 0.84 0.72 0.94 0.93 0.84 0.95 0.87

SZPHa 0.93 0.97 0.67 – – 0.91 0.87

TCGAb 0.68 0.94 – – – 0.78 0.80

Macro-avg 0.86 0.85 0.79 0.87 0.72 0.89* 0.84

F1-score

SYSU1 0.89 0.75 0.87 0.84 0.75 0.96 0.84

SYSU2 0.85 0.79 0.86 0.86 0.86 0.95 0.86

SZPHa 0.95 0.90 0.78 – – 0.95 0.90

TCGAb 0.74 0.80 – – – 0.88 0.80

Macro-avg 0.86 0.81 0.84 0.85 0.81 0.94* 0.85
aFor the SZPH dataset, no PTB or OP WSIs were available
bFor TCGA dataset, only LUAD, LUSC, and NL WSIs were available
*Maximum Macro-avg value across the datasets of different diseases
Bold font: Maximum value of specific metrics across different data cohorts

Table 5 EfficientNet-B5 outperformed ResNet-50 across four testing cohorts

Cohort Model Micro-AUC Macro-AUC Accuracy Weighted-F1-score

SYSU1 ResNet-50 0.966 0.985 0.860 0.860

EfficientNet-B5 0.970 0.988 0.860 0.860

SYSU2 ResNet-50 0.887 0.953 0.780 0.770

EfficientNet-B5 0.918 0.968 0.870 0.870

SZPH ResNet-50 0.713 0.733 0.540 0.520

EfficientNet-B5 0.963 0.971 0.890 0.900

TCGA ResNet-50 0.967 0.973 0.690 0.680

EfficientNet-B5 0.978 0.962 0.800 0.810
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manual inspection influenced the final consensus. Com-
pared with pathologist’s manual inspection, our six-type
classifier approach is a more stable and cost-effective
choice.

Discussion
Histopathological evaluation has until now been the
cornerstone of final cancer diagnosis, directing further
examination, treatment, and prognosis. The transition
from glass slides under an optical microscope to virtual
slides viewed by computers enabled the automatization
of inspection and quantitative assessment. Medical AI is
demonstrated favourable for improving healthcare qual-
ities and lessening the inequality between urban and
rural health services [45]. Lung cancer is threatening
millions of lives every year. Though important discover-
ies have been made during recent years, accurate histo-
pathological classification remains challenging in clinical

practice. Certainly, distinguishing LUAD from LUSC is
necessary; however, SCLC deserves more attention for
its high malignancy and poor survival rate [46]. In
addition, tumour generally appears as a mixture of neo-
plastic and inflammatory lesions, and extensive inflam-
matory lesions may shield local tumour changes thus
contributing to false-negative diagnosis. On the contrary,
mistaking nonneoplastic tissues as neoplastic tissues
gave rise to the risk of overdiagnosis and overtreatment.
Therefore, in order to tackle real clinical problems, we
designed the six-type classifier for wider coverage of
lung diseases, including lung cancers as well as inflam-
matory lung diseases.
The histological assessment of lesions involves differ-

ent staining techniques to make a final diagnosis. In all
histological diagnoses, H&E staining must be first and
indispensable. In the routine diagnostic procedure for
clinicopathological work, pathologists firstly evaluate

Fig. 3 Visualization heatmaps of tissue predictions of LUAD, LUSC, SCLC, PTB, OP, and NL from left to the right, respectively. The top row shows
the raw slides with closed blue curves delineating the ROIs annotated by expert pathologists, and the bottom row illustrates the corresponding
resulting heatmaps

Table 6 High ICCs between the model and pathologists across four independent testing cohorts indicate high consistency and
comparable performance

Raters Six-type classification model (ICCa with 95% CIb)

SYSU1 SYSU2 SZPH TCGA

Ground truth 0.941(0.691, 0.991) 0.959 (0.776, 0.994) 0.927 (0.453, 0.995) 0.946 (0.715, 0.992)

Pathologist1+++c 0.938 (0.677, 0.991) 0.957 (0.767, 0.994) 0.878 (0.215, 0.991) 0.918 (0.592, 0.988)

Pathologist2++c 0.873 (0.422, 0.981) 0.960 (0.783, 0.994) 0.909 (0.356, 0.994) 0.928 (0.633, 0.989)

Pathologist3++c 0.945 (0.709, 0.992) 0.945 (0.709, 0.992) 0.928 (0.460, 0.995) 0.922 (0.608, 0.988)

Pathologist4+c 0.944 (0.707, 0.992) 0.800 (0.200, 0.969) 0.905 (0.538, 0.986) 0.754 (0.086, 0.961)

P valued < 0.05 < 0.05 < 0.05 < 0.05
aICCs were computed with the ‘irr’ package for R v3.6.1 using the ‘oneway’ model to measure the reliability and consistency of diagnoses among raters
bCIs were given by bootstrapping the samples 10,000 times
c‘+’ symbols indicate the levels of pathologists, + means junior, ++ means junior attending, and +++ means senior attending
dICC ranges from 0 to 1, and a high ICC suggests a good consistency. Conventionally, when ICC > 0.75 and P < 0.05, high reliability, repeatability, and consistency
were indicated
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lesion with benign or malignant using H&E-stained sec-
tions. If the lesion is suspected of malignancy, subse-
quent typing will be conducted using complex
immunohistochemistry or molecular detection. If it is
benign, especially suspected with inflammatory lesions,
such as evaluation of infection with mycobacteria, Ziehl-
Neelsen (ZN) staining is needed to confirm the diagno-
sis. It is true that H&E staining cannot directly identify
the pathogens such as mycobacterium; however, lung
tissue infected with mycobacterium results in character-
istic histological changes, including the granulomas for-
mation which consists of epithelioid macrophages and
multinucleated giant cells, often with caseous necrosis
centrally. Therefore, we believe that morphology is the
first step to recognize disease microscopically. Based on

morphological characteristics, our model performed the
task of the six-type classification for diagnostic purpose
using the H&E-stained tissue.
Our six-type classifier was compatible to other rele-

vant state-of-the-art tools (Table 1) and gained advan-
tages in dealing with complex application scenarios. For
example, DeepPath [16] accomplished micro- and
macro-average AUCs of 0.970 (95% CI, 0.950–0.986)
and 0.976 (95% CI, 0.949–0.993) respectively for the
classification of NSCLC, which were not significantly dif-
ferent to ours. Notably, our model performed better in
distinguishing NL (0.999 versus 0.984) and LUSC (0.974
versus 0.966), and comparable in LUAD (0.965 versus
0.969 for LUAD). Yu et al. [17] also implemented mul-
tiple network architectures to subclassify NSCLC using
the TCGA data and achieved an AUC of 0.864, which
was 0.114 lower than our TCGA result. Moreover,
Kriegsmann et al. [20] adopted Inception-V3 to classify
LUAD, LUSC, SCLC, and NL, accomplishing an AUC of
1.000; however, that was achieved after strict quality
controls in their data pre-processing phase. Further-
more, Wang et al. [21] conducted a similar classification
task without PTB and OP using different feature aggre-
gation methods and compared their efficiencies. Their
CNN-AvgFea-Norm3-based RF method achieved an

Fig. 4 Sankey diagram illustrates the difference among ground truth, best pathologist, and our six-type classifier. From left to right are the
predictions by the best pathologist, the ground truth, and the prediction by our six-type classifier

Table 7 Misjudges from pathologists were corrected by the six-
type classifier

Cohorts SYSU1 SYSU2 SZPH TCGA

Error(s)a 31 84 21 120

Correction(s)b 22 59 18 90
aErrors denote the number of slides misjudged by at least one of
the pathologists
bCorrections denote the number of those misjudged slides corrected by our
six-type classifier
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AUC of 0.856 and an accuracy of 0.820 on the TCGA
dataset, which was 0.122 loss in AUC and 0.020 gain in
accuracy compared with our classifier. Notably, the in-
put dataset in Wang’s study was manually picked up
from TCGA and only composed of LUAD (n = 250
slides) and LUSC (n = 250 slides). These suggested that
our classifier could adapt to more complicated situations
in real clinical scenarios.
Moreover, we overcame some challenges in data pre-

and post-processing. The first challenge was to reduce
the class-imbalance of the initial dataset, which needed
proper separation at slide- and tile-level. The ROIs var-
ied in size and a slide can have different numbers of
ROIs. Hence, we divided the slides into training, valid-
ation, and testing sets according to the ROI areas per slide
per class, roughly following a ratio of 4:1:1. Nevertheless,
some tiles were filtered for low tissue coverage before
model training. We examined the distribution of ROI
areas by counting the number of tiles per slide (Additional
file 1: Figure S5). The general trend in the distribution was
that the slide number declined with the tile number in-
creased in both training and validation sets. A majority of
the slides got ROIs within 2000 tiles, and the largest tile
number was no more than 4000, which suggested cautious
annotation strategies and a low chance of excessive pres-
entation of a certain slide, thereby avoiding overfitting in
the model training phase to some extent.
Then came the challenge of the aggregation from tile-

level prediction to slide-level inference. Note that multiple
tissue components usually coexist in a slide. Therefore,
the slide-level label should not be determined only based
on the tissue type with the most supporting tiles, and tu-
morous class should be reported first even with fewer can-
cerous tiles. Most recently, scientists experimented to
append heuristic algorithms (e.g., logistic regression, ran-
dom forest, and support vector machine) which input fea-
tures based on the tile probability scores generated by
CNNs [47, 48]. Campanella et al. applied a random forest
algorithm for selecting top suspicious tiles and then
trained an RNN model to draw slide-level predictions
[49]. However, the feature engineering and extra
optimization procedures complicated the classification
work and introduced uncertainty to some degrees. In this
study, we preferred to testify if a more convenient AI solu-
tion could accommodate to clinical use. Accordingly, a set
of thresholds advised by expert pathologists conforming
to clinical experience was defined and integrated with the
majority voting method for the slide-level label inference.
Validated on both the inner and inter testing datasets, the
thresholds were proved feasible and effective.
Ultimately, we tried to interpret the differences in pre-

diction effectiveness observed in the multi-centre valid-
ation experiments. First, we checked and compared the
distributions of ROIs across testing cohorts (Additional

file 1: Figure S5). Although a similar pattern of tile ag-
glomeration in the testing slides, quite a few slides fell
into the interval of 0–500, especially in the SYSU2 and
SYSU1 cohorts. The tile distribution of misjudged slides
was plotted as a Cleveland graph grouped by cohort
(Additional file 1: Figure S6). Not surprisingly, errors oc-
curred intensively in the slides with a tile number less
than 500. This happened because small slides were most
susceptible to individual tile errors. A closer inspection
of the testing set of SYSU1 showed approximate 24.3%
of the slides were small specimens, which may partially
explain the relatively lower AUCs in SYSU1. SYSU2 co-
hort was collected due to the substantial number of
small sample slides and the imbalance of SYSU1 testing
cohort. As a result, the model obtained an improved
performance on SYSU2. SZPH cohort was best pre-
dicted, which may lie on a relatively even distribution of
tiles. When reviewing the TCGA slides, we found some
obvious artefacts such as pen marks, margin overlap,
and defocus. In addition, staining differences were ob-
served between TCGA and the other three cohorts,
which also contributed to the performance diversities.

Conclusions
The efforts presented in our work highlighted the possi-
bility of predicting a wider spectrum of confusing lung
diseases from WSIs using a deep learning model coupled
with threshold-based tumour-first aggregation method.
With the broad coverage of lung diseases, the rigorous
validations on multi-centre cohorts, the improved inter-
pretability of the model, and the comparable consistency
with experienced pathologists, our classifier exhibited
excellent accuracy, robustness, efficiency, and practic-
ability as a promising assistant protocol, which was close
to the complex clinical pathology scenarios.
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and TCGA. Rows are the true labels, and columns are the predicted labels.
Values in red on the diagonal represent true positive rates (TPRs) or sensi-
tivity, and values elsewhere represent false negative rates (FNRs). A darker
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first row shows the raw slides of SCLC, LUAD, LUSC, NL, NL, and PTB, re-
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and the labels inferenced. Figure S5. Bar charts displaying the relation-
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charts for the training set, validation set, and testing cohorts, respectively.
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and the vertical axis represents the corresponding slide number. Each
colour bar stands for a specific tissue type as the legend shows. Figure
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