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Abstract: Device-to-device communications in underlay mode has emerged as a promising way to
enhance spectrum efficiency in cellular networks. Recently, relay selection in D2D communications
underlaying cellular networks is gaining more research interest. In this paper, we propose two
relay selection schemes for D2D communications underlaying cellular networks, Midpoint Relay
Selection using Social Trust and Battery Level (MRS-ST-BL) and Midpoint Relay Selection using
Social Distance and Battery Level (MRS-SD-BL). These proposed schemes utilize battery power
level information of devices together with social trust information of users in the network for relay
selection. For performance evaluation, initially we show that the throughput of state-of-the-art
schemes Hybrid Relay Selection (HRS) and our previously proposed schemes Midpoint Relay
Selection using Social Trust (MRS-ST) and Midpoint Relay Selection Using Social Distance (MRS-SD)
decrease, when relays have varying battery power. Then, we compare the performance of our
proposed schemes against existing schemes including HRS, MRS-ST and MRS-SD. The performance
comparison is done at various social trust scenarios and device densities. We show that our proposed
schemes can significantly improve the throughput of D2D communications, particularly when
relays have different battery power levels in weak social trust scenarios. Finally, we show that the
performance of our proposed scheme MRS-ST-BL varies with the change in battery power threshold.

Keywords: cooperative networks; device-to-device (D2D) communications; social-aware relay
selection; social trust; battery level; relay transmission power; throughput

1. Introduction

1.1. D2D Communications

Unlike traditional mobile communications in which mobile devices communicate with each other
via a base station (BS), device-to-device (D2D) communications allow mobile devices in proximity
to directly communicate, bypassing the BS [1]. Increase in spectrum utilization, enhancement in
transmission rate, data offloading, reduction in transmission delay, saving of power usage to improve
network capacity are some of the major benefits of D2D communications [2,3]. D2D communications
in underlay mode use the same frequency resources as that allocated for cellular communications as
opposed to D2D communications in overlay mode which use dedicated cellular frequency resources [1].
D2D in underlay mode is one of the most promising ways to handle the shortage of frequency
resources [2,4]. Recently research interest has increased to use a relay for D2D communications in
underlay mode [5,6]. The focus of this paper is also to find a relay that maximizes the throughput
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of D2D communications in underlay mode, utilizing social information of users and battery power
information of devices.

In this paper, we present the design of two midpoint relay selection schemes for D2D
communication which utilizes social trust information of users and battery power of devices for
relay selection. The design of two proposed schemes varies in the way they filter devices to select as
a relay. We show that, when D2D communications using relays have different battery power levels,
our proposed relay selection schemes significantly increase throughput.

1.2. Problems in Relay Selection

Generally, a relay is used to enhance performance of cooperative D2D communication networks.
The selection of a relay that maximizes throughput of D2D communications become difficult when
transmission power of the relay device is variable that is, when the relay is capable of choosing or
adjusting its transmission power. This is because the signal-to-noise-ratio (SNR) of D2D communication
depends upon the length of links from the source to the relay and that from the relay to the destination
as well as transmission power of the relay. Recent studies [5,7,8] have put forward the idea of utilizing
social information of users in the network for relay selection.

In our previous relay selection schemes [9–11] and other state-of-the-art schemes [7,12,13], it is
assumed that a relay device always transmits at a power proportional to the social trust it has for the
source. However, mobile devices being power constrained devices, may not always have full battery
power that is, the battery power on mobile devices may vary at different times. When the battery
power on a relay is low, the transmission power of the relay may not be proportional to the social trust.
This makes the relay selection more challenging. Even in co-operative networks, it is possible that a
relay having a low battery power may preserve its battery power by using a low transmit power while
relaying data for other devices. In such scenarios, throughput of existing relay selection schemes may
vary as compared to their performance when relay devices have full battery power. It is important to
analyze how the transmission behaviour of a relay with varying battery power impacts the throughput
of relay selection schemes in D2D communications. Additionally, designing a relay selection scheme
that enhances throughput in such network scenario is necessary.

1.3. Related Work

This section summarizes recent work in the field of D2D communications utilizing social
information of users. The survey papers, References [14,15], review the current advancements in D2D
communications and how social information can be used in the design of D2D systems. Social strength
estimation techniques are proposed in Reference [16,17]. Different energy efficient approaches for D2D
communications are proposed in References [1,13,18,19]. Multi-hop D2D communications are used in
References [20,21] and multicasting using D2D communications in Reference [22]. Social information
of network users is used for relay selection to improve throughput of D2D communications in
References [5,7,8,12] and in our previous papers [9–11]. These papers and issues are reviewed in
the remainder of this section.

Kar et al. [14] presented a brief overview of the standardization of D2D communication based
on 3GPP Release 12 and subsequent releases. They described the reference architecture for D2D
communication, channel structure and features of D2D communications. Additionally, they discussed
different challenges present in D2D communications and also highlighted some of the important areas
of interaction between 5G and D2D communications. Nitti et al. [15] presented a survey on D2D
communications focused on the utilization of social networks with the aim to explore and understand
how the integration of social-awareness benefits D2D communications. Their survey identified social
communities, social link/tie and social centrality as major social features of social network that can be
used in D2D communications. Furthermore, they identified the key issues in D2D communications.
The key issues are relay discovery and peer selection, communication mode selection, and spectrum
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resource allocation and management. Additionally, they summarized different proposed solutions
using social networking.

Social-interactions are now considered as a novel and imperative dimension in the design
of communication systems [23]. Social relationship information of users can be used in D2D
communications to reduce load on cellular systems [4]. The social relationship information obtained
from online social networks are more detailed and complex in structure as compared to offline social
networks [24].

Bandford et al. [16] proposed a method to estimate social tie strength in a network that consists
of small number of users. They found that for a network having less than hundred users, social tie
strength can be estimated using aggregated call duration. Xiang et al. [17] developed a social strength
estimation which is based on interaction information of network users (e.g., communication, tagging)
and similarities in account profile of users. The continuous-valued social strength estimated from the
model is capable to provide link weights with higher autocorrelation, leading to improved accuracy in
social trust estimation. However, in this paper we use Pareto distribution to model the social trust
among users. This approach is also used in other studies [6,12,19].

Generally, mobile devices have limited storage capacity and are power constrained. In relay
assited D2D communication networks, relay devices which are unselfish might always forward data
for others, and eventually run out of battery power. On the other hand, devices that are selfish might
always use a relay to enhance their D2D communications, without forwarding data for others [5].
Therefore, it is necessary to design a D2D relay selection mechanism that motivates devices to relay
data for others.

Datsika et al. [18] proposed energy efficient medium access protocol for cooperative D2D
communications that utilizes social information of users. They highlight some of the practical issues
when social information is used in D2D communications.

Rahman et al. [1] proposed energy efficient relay selection scheme for multi-relay D2D
communications underlaying cellular systems. They used adaptive neuro-fuzzy inference system
architecture for relay selection and a particle swarm optimization algorithm is used for power allocation
with the aim to maximize network energy efficiency. However, social information is not utilized to
select a relay.

Sun et al. [13] proposed social-trust and power-efficient relay selection (STRS) scheme for D2D
communications underlaying distributed shared network, which takes into account physical and
social information of users. In their scheme, initially candidate relay users are selected using location
and social trust information. Then among the candidate relay devices, a device having lowest power
consumption is selected as a relay.

Unlike References [1,13,18], we aim to maximize throughput by selecting a relay transmitting at a
high power and minimize the energy consumption by limiting the number of probes for the selection
of a relay.

Li et al. [19] proposed social-aware energy efficient relay selection (SERS) scheme for cooperative
D2D communications. Social trust, encounter history and node energy consumption are utilized for the
selection of a relay. They formulated power control game that maximizes data rate while minimizing
energy consumption and interference. The energy consumption and network interference is minimized
by using social distance as the penalty coefficient. Similar to Reference [19], we measure the average
throughput that can be achieved by our proposed schemes.

Ying et al. [20] developed an algorithm to select relays for content dissemination in multi-hop D2D
communications called PSRS which minimizes power consumption. They used frequency/duration
of interaction for sharing/downloading of content and social reciprocity to quantify social
relationship value.

Mishra et al. [21] proposed relay selection scheme for multi-hop D2D communication in which
two devices are selected as candidate relays. The relay is selected by the BS and instantaneous SINR
and neighbour discovery is done by D2D pair. When one of the devices is unable to relay, the second
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device is selected as a relay. The relays are chosen among the available devices which satisfy SINR
threshold, battery power threshold, reliability and buffer requirements. Their scheme increases success
probability and network throughput of D2D communications.

Chiti et al. [22] proposed multicasting in cooperative D2D communications using social-aware
relay selection. Both the propagation link conditions and social-trust level are used while selecting a
relay to minimize end-to-end content delivery delay.

While References [20–22] present schemes for D2D, none of them probes to know the physical
condition of the path from the relay to the destination and do not consider the time/cost involved for
probing during the selection of a relay.

The following papers are closely related to our work.
Chen et al. [8] developed a relay selection technique for cooperative D2D communications that

leverages social trust among mobile users while selecting a relay. Social and physical distances are used
for analysis of cooperative D2D communications. Their assumption is that a mobile device having
high social trust for a source device relays data for the source at a high transmission power. When the
mobile users do not have social relationship, relaying is done using social reciprocity. Their study
shows that a relay selection based on social trust and/or social reciprocity can significantly improve
average throughput of D2D communications. The improvement in the system increases with the
increment in number of users. Their proposed mechanism can provide up to 122% performance gain
over the case without D2D cooperation.

Li et al. [5] proposed an optimal stopping relay selection scheme to enhance throughput of D2D
communications in a distributed network. The average contact duration and common friends are
used to represent social relationship weight coefficient. The candidate relay nodes are filtered using
social threshold. Then, a relay is selected using an optimal stopping approach. The proposed scheme
significantly reduces the time taken for probing of devices before selection of a relay.

Similarly, Zhang et al. [7] proposed a decode and forward relaying for a cooperative D2D
communications. The relay has a transmission power proportional to the social trust that is, the relay
transmits at a high power when it has strong social relationship with the source. They used optimal
stopping approach while probing socially trusted nodes sequentially to select a relay. This helps
to maintain the balance between relay probing cost and performance gain. The major setback
of their research is that the comparison of the proposed scheme is done with generic schemes
(direct communication and random relay selection). Uniform distribution is used to assume the
social trust among users, which is less realistic. Additionally, they analyzed the scheme only for a
specific distance (100 m) between source and destination. However, in reality, source-destination
distance can vary over time.

Pan and Wang [12] proposed a Hybrid Relay Selection (HRS) scheme in which social information
of users are utilized for selection of a relay. We compare the performance of HRS scheme with relay
selection schemes proposed in this paper. In HRS, mobile devices that have a strong relationship
with each other are assumed to have high value of social trust between them. Such devices having
strong social trust with a source can potentially relay data with high transmission power. Both link
characteristics and social trust between users are considered for relay selection.

HRS selects a relay around the source. To select a relay, a source probes devices that are
not engaged in communication and located within a circular region with the source at the center.
Only those devices which have social trust greater than a threshold value are probed. HRS assumes
the transmission power of a relay is linearly proportional to the social trust between the source and
the relay. The social trust between the users in the network is modelled using Pareto distribution.
The source calculates the data rate offered by each of the probed nodes and chooses the node that
offers maximum data rate as a relay. The authors show that the average throughput of HRS is higher
than two other schemes: Distance-based Relay Selection (DRS) and Social-based Relay Selection (SRS).
They also suggested that the relay selection region should neither be too small nor too large. The major
downside of HRS is that the throughput is low for small search radius due to frequent selection of long
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distance links. Also, the throughput is low for large search radius. This is because of the significant
time duration spent for probing. Furthermore, the performance of HRS is not compared against relay
selection schemes proposed by other researchers.

Our previous work [9] proposed a midpoint relay selection scheme that selects a socially trusted
device located around the midpoint of the distance between the source and the destination. The scheme
performs better than HRS. The drawback of the scheme is that it probes all the devices within the
circular region having social trust above a threshold value. We overcame the limitation by proposing
two relay selection schemes Midpoint Relay Selection Scheme using Social Trust and Midpoint Relay
Selection Using Social Distance in Reference [10]. In Reference [11], we proposed a midpoint relay
selection scheme that improves the throughput of D2D communications even when social trust among
the users are strong, provided that the BS can accurately estimate social trust information of users.

Different from all the papers above, this paper proposes midpoint relay selection schemes that
incorporates battery power of devices together with social trust information of users to select a relay
with the aim to maximize average throughput of D2D communications.

1.4. Our Contributions

The key contributions of this research are as follows:

• We show that the throughput of existing state-of-the-art schemes (HRS [12], MRS-ST and
MRS-SD [10]) reduce when relay devices have variable battery power levels.

• We propose new relay selection schemes MRS-ST-BL and MRS-SD-BL that optimize throughput
of D2D communications using a socially trusted relay whenever possible. The optimization
problem is formulated using social trust among users and battery power level on devices together
with physical location of the devices. Social trust among users are used for filtering of devices
for selection of a relay. Pareto distribution is used to model the social trust among users in the
network. According to the pre-defined policy, relay devices adjust their transmission power
depending upon social trust values for the source and battery power level on the devices to
maximize the throughput.

• We evaluate the performance of our newly proposed relay selection schemes extensively through
simulation by comparing with generic and state-of-the-art schemes. We show that our proposed
schemes achieve higher throughput when devices in the network have varying battery power
levels, in networks having different node densities and social trust scenarios. Additionally,
we compare the average number of probes and transmission power of relay of our proposed
schemes with various other schemes to show how our proposed schemes enhance throughput of
D2D communications.

This paper is an extension of our previous papers midpoint relay selection schemes (MRS-ST and
MRS-SD) [9,10]. We have significantly updated the design of relay selection by introducing battery
power level of devices, which is more realistic. We have analyzed the performance of proposed
schemes in various social trust scenarios and device densities by comparing with other schemes.

The rest of this paper is organized as follows. Section 2 introduces the D2D communication
system model used in this paper. It includes the network model, mobility model, social trust model,
battery model and communication link model. Section 3 presents details of our proposed schemes
MRS-ST-BL and MRS-SD-BL. Section 4 explains the exchange of probing messages for selection of a
relay in D2D communications. Section 5 presents the extensive analysis of our proposed schemes with
other state-of-the-art schemes. Section 6 presents the conclusion of this paper.
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2. D2D Communication System Model

2.1. Network Model

Consider a cooperative network which consists of ntotal mobile devices under the coverage of
a BS. When a source (s) mobile device wants to have D2D communications with a destination (d)
mobile device using a cellular channel, bypassing the BS, it can be done in two ways. The first way
is to send data packets directly from the source to the destination. This is referred to as direct D2D
communication. Another way is to initially send the data packets from the source to a relay (r) mobile
device in proximity. The relay receives the packets and forwards them to the destination. This is
referred to as D2D communication via a relay. Decode-and-forward (DF) relaying [7,8,12,25] is used for
D2D communications to forward data. All mobile devices which are not engaged in communication
are considered to be interested to act as a relay. The relay devices do not necessarily transmit at the
maximum power while relaying data for other devices [6,7,12].

Figure 1 illustrates the search location of a socially trusted relay device that improves the D2D
communication between mobile devices. The circles with n inside them represent devices in the
network, where n represents the device number. An arrow in a device represents the direction of
mobility and Vn underneath represents its velocity. The double-lined circles are source device s and
destination device d. The dashed circle with radius R represents a relay selection region which is
centered at the midpoint M of the distance between s and d. The circles (with white background) are
devices outside relay selection region. The circles (with green background) are friends of source with
high battery power levels within the circular region. Similarly, the circles (with red background) are
friends of source with low battery power levels. The circles (with yellow background) are devices
which are not friends of source. The social trust value that a device n has for the source s is represented
by βn,s.

Figure 1. A system model for device-to-device (D2D) communications.

We assume that the BS knows location information of devices. The devices in the network have
a Global Positioning System (GPS) or a location tracker that periodically updates the BS about their
location [3,21]. This helps the BS to locate devices within its coverage area and recommend a list of
devices that are located within a circular region for relay selection. A socially trusted relay device is
selected among the devices that are located within the circle.

Operator controlled link establishment is used for both direct D2D communication or D2D
communication via a relay as envisioned in Reference [26]. When a relay is selected for D2D
communications, the same frequency is used for communication between the source to the relay
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and that from the relay to the destination. The transmission power of D2D communication between
mobile devices is determined by the BS. The maximum allowable transmission power, Pmax, is based
on network parameters and to avoid interference to neighbouring cellular devices [7,8]. The mobile
devices having D2D communications transmit at a power Pi,j ≤ Pmax. A source always transmits at the
maximum allowable transmission power i.e. Ps,j = Pmax. However, a relay may not transmit at Pmax.
We assume the background noise is constant and there is no interference in the system due to high
frequency reuse factor [27].

We explain our proposed relay selections schemes in detail, supported by an example scenario,
in Section 3.1.

2.2. Mobility Model

This section describes the pattern of mobility of users in a network which includes change in
location of mobile users over time and the velocity and acceleration at which mobile users change their
positions to. In this research, Random Waypoint mobility model [28,29] is used to emulate movement
patterns of people in the network. In this mobility model, a node moves from a waypoint in a straight
line towards the next waypoint with a certain velocity having minimum velocity of vmin and maximum
velocity of vmax. After arriving at the waypoint, the node waits for a constant pause time before
selecting next waypoint. The waypoint is selected using Uniform distribution, which resembles the
movement of people carrying mobile devices [29,30].

This model is suitable for nodes having limited mobility [31]. For example: a scenario where
large number of people come together in a small confined area for specific time duration. This type of
scenario are generally present in educational institutions, organizations, industries, or special events
like concerts, conferences or exhibitions.

2.3. Social Trust Model

This section initially explains why relay devices do not always transmit at its maximum power.
Then, it presents social trust model that uses Pareto distribution. This trust model is used to determine
transmission power of a relay device.

Generally, mobile devices in communication networks are power constrained. These devices
tend to conserve their battery power whenever possible. Even in a cooperative D2D communication
network, a relay device may not always transmit at the maximum power possible. This is because
when the device transmits at a high power, it drains more of its battery power. A cooperative relay
device, which is capable of transmitting at a variable power, prefers to transmit at a low power that is
equal to or greater than a minimum threshold value of transmission power. This transmission power
is lower than the maximum allowable transmission power.

The transmission power of a relay is assumed to be linearly proportional to the social trust
strength between the relay and the source [12]. The transmission power of a relay can be expressed as

Pr = (Pmax − Pmin)× βr,s + Pmin, (1)

where Pmax is maximum allowable transmission power, Pmin is minimum allowable transmission
power and βr,s is social trust value that relay has for source.

The rationale behind this assumption is that when people carrying mobile devices have strong
social trust with each other, their willingness for mutual help is comparatively more than those with
weak social trust [6,7]. This behaviour of people can be utilized in designing a relay selection scheme
of D2D communications. The willingness of helping a device with high social trust is reflected by
transmitting at a higher power. The different ways to collect social information of users to estimate
social trust values are described in our previous paper [10]. In this paper, we use Pareto distribution to
model social trust among users in the network.
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Generally, social trust among majority of people in a community are weak. Only few people have
high social trust between them [12]. The users having strong social relationship with each other usually
have high social trust between them. A mathematical model of a social trust would therefore have
a heavy tailed distribution. The authors of References [6,12] have modeled social trust using Pareto
distribution to represent a heavy-tailed distribution. Pareto distribution has a probability density
function defined as

fX(x) =
αLαx−α−1

1−
(

L
H

)α , L ≤ x ≤ H, and α > 0, (2)

where α, L and H denote the shape, scale and upper limit parameters, respectively [32]. The value
of α determines how fast the distribution tail decays and L represents the lower limit of the support.
Social trust among devices in the network can be varied by varying α and L values, while H is kept
constant. The random variable X in Equation (2) is the same as the βr,s used to represent social trust in
Equation (1). Each node knows social trust value it has for other nodes.

In a survey [26], at least 75% of the time, social trust among users in the network are found to be
bidirectional. We assume that social trust among users are bidirectional in this paper. When a source
can estimate social trust values of other devices, this information helps to determine which devices
have the potential to transmit at a high power.

2.4. Battery Level Model

This section describes the way battery power level of a device affects its transmission power.
We assume that the mobile devices can get information of battery level of other devices in the network.
In case of a cellular network, battery level of devices can also be incorporated along with other
signalling information, from devices to the BS. The BS then sends the battery information to the source
along with other information required for D2D communications. Therefore, the source device is
assumed to know the battery power level of devices within its communication range.

We consider that relay mobile devices in the network do not always have full battery power.
The relay devices are modelled to have battery power levels ranging from 10% to 100% at an interval
of 10. All relay devices are equally likely to have any of the battery levels.

We assume that the transmission power of a relay device also depends upon its battery level.
The relay device transmits at a power proportional to the social trust (according to Equation (1)) only
when its battery level is greater than a battery threshold (Bthres). Otherwise, the relay device transmits
at a low power possible (Pmin).

Next, we present the communication link model used in this paper for the throughput calculation.

2.5. Communication Link Model

2.5.1. Signal-to-Noise-Ratio of a Link

Using SNR values in the probe replies, the source compares between the data rate offered by
direct link and D2D link, for the selection of a communication path. The SNR of a direct link can be
expressed as

γs,d =
Ps,dD−θ

s,d

N
, (3)

where, Ps,d is the transmission power of a signal from the source to the destination, Ds,d is the distance
between the source and the destination, N is the noise power and θ is the pathloss exponent.

2.5.2. Throughput of D2D Communications

According to Shannon’s capacity formula, the maximum reliable data rate of a direct link can be
expressed as

Cs,d = B log2(1 + γs,d), (4)
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where, B is the bandwidth of the channel.
The data rate of a D2D link having full duplex decode-and-forward (DF) relaying is given by

Cs,r,d = B min{log2(1 + γs,r), log2(1 + γs,d + γr,d)}, (5)

where, γs,r is SNR of the signal from the source to the relay, γs,d is SNR of the signal from the source to
the destination and γr,d is SNR of the signal from the relay to the destination [6,7,33].

Considering the time spent for probing of candidate relay devices, the throughput of a D2D
communication that uses TDMA mechanism can be expressed as

Ts,d =
Cs,r,d{t− (τ × p)}

t
, (6)

where, t is the time slot duration, τ is the probe duration and p is the number of probes [7,8,12].
The throughput decreases with the increase in duration and number of probes. However, to select a
relay transmitting with high power, multiple devices are required to be probed.

The source compares the throughput offered by the direct link and that offered by the D2D link to
improve performance of D2D communications by selecting a relay device whenever possible.

We consider there are no major obstacles in the propagation path from the source to the destination.
We assume the background noise is constant and is interference free. In reality, there might be obstacles
in the signal path. The SNR of signal through different candidate relay can be estimated by probing of
devices using the protocol presented in the next section.

3. Proposed Schemes: Midpoint Relay Selection Using Social Trust and Battery Level

We present the design of relay selection schemes for two-hop D2D communications utilizing
social information of mobile users and battery level of mobile devices in the network. A relay is
selected among the devices that are located around the midpoint of the distance between the source
and the destination. The key difference in the design of relay selection schemes proposed in this paper
compared to our previous papers in References [9–11] is that our new design also takes into account the
battery power of devices while selecting a relay for D2D communications. We propose two variations
of midpoint relay selection using social information and battery level of devices. They are:

1. Midpoint Relay Selection Using Social Trust and Battery Level (MRS-ST-BL)
2. Midpoint Relay Selection Using Social Distance and Battery Level (MRS-SD-BL)

This section is mainly focused on the set of tasks performed by different network entities to select
a relay for D2D communications, not on details of conventional cellular communications. We present
the information exchange between different entities of the network for relay selection, highlighting the
use of battery level information of devices during relay selection.

Algorithm 1 illustrates the tasks performed by a BS to select a relay. When a source wants to have
a relay for D2D communication, it sends a D2D communication request to the BS which contains the
source and the destination identity. In response, BS identifies location of the source and the destination,
and calculates the corresponding midpoint m using the location information. The BS then identifies
the idle nodes that are located within a circular region of radius R with the center at the midpoint,
and battery level of the idle devices. The BS also determines the maximum transmission power
Pmax that is allowable for D2D communication of based on the system parameters (geo-location)
and protection requirement of neighbouring cellular devices [7,8]. After that, BS sends maximum
allowable transmission power and the list of idle devices and their corresponding battery level to
the source. The additional information on battery power level of devices is used compared to MRS
probing protocol [10], to increase throughput of D2D communications when devices in the network
have varying battery power levels.

The social trust values that the source has for other devices provide an idea of which devices
have the potential to transmit at a high power as explained in Section 2.3. Therefore, among the list
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of idle devices received from the BS, the devices having social trust with the source are identified by
the source (e.g., comparing with its contact list). Only the devices that have social trust values above
certain social threshold are selected from the list. The way of filtering of devices for relay selection are
different for MRS-ST-BL and MRS-SD-BL, and are implemented as in Algorithm 2 for MRS-ST-BL and
Algorithm 3 for MRS-SD-BL.

In the proposed MRS-ST-BL, a source initially filters the socially trusted devices above social
threshold. The source sequentially probes at most l devices from the list having large social trust
values. The probed device transmits at a power proportional to the social trust only when the battery
level of the device is greater than or equal to battery threshold (Bthres). Otherwise, the device transmits
at a lowest power possible.

In the proposed MRS-SD-BL, a source initially filters at most l devices nearest to the midpoint
and probes the devices having social trust above social threshold. The transmission power of a probed
device also depends upon the battery level of the device and social trust as in MRS-ST-BL.

As a reply to a probe, each of the candidate relay devices, individually responds to the source with
SNR of the probe signal they have received and also forwards the probe message to the destination as
implemented in Algorithm 4. Each of the relaying devices transmits at a power proportional to the
social trust when the battery level on the device ≥ Bthres. Otherwise, the device transmits at the low
power possible.

The source receives the probe reply from the candidate relay devices and destination.
The destination sends SNR for each of the received probe packet and sends to the source as in
Algorithm 6 (according to Equation (3)). When the data rate offered by the direct link is less than that
by a D2D link, a relay is selected. Upon receiving user data from the source, the relay forwards the
user data to the destination as illustrated in Algorithm 5. The destination also sends user data to the
source via the selected relay.

3.1. An Example Scenario of Our Proposed Schemes

Let us consider that the mobile devices are under the coverage of a base station (BS) as shown in
Figure 1. Each mobile devices are moving with different velocities at random direction. We assume that
the BS knows location and battery level information of devices in the network. Suppose a mobile device
(source) wants to have D2D communication with another mobile device (destination). The source can
either have direct D2D communication with the destination or select a relay for D2D communication.
The source selects a direct D2D communication only when its data rate is higher compared to that
offered by a D2D communication via a relay. We propose MRS-ST-BL and MRS-SD-BL relay selection
schemes that maximizes throughput of D2D communications by taking location, battery level and
social trust information into account for relay selection.

Algorithm 1: Tasks performed at Base Station
// Given a source and a destination pair, BS determines candidate relay nodes and their

corresponding battery power level and maximum allowable transmission power.
Input: s, d, R and battery percentage of nodes

Output: ncircle along with battery percentage and location, and Pmax

1: Receive D2D request from s
2: Calculate Midpoint, m = Midpoint(s, d)
3: for radius = 1 : R do

4: Identify ncircle = NodesWithinCircle(m, radius)
5: Identify battery percentage of devices in ncircle
6: end for
7: Determine Pmax
8: Send ncircle along with battery percentage and location, and Pmax to s
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Algorithm 2: Tasks performed at Source for MRS-ST-BL
// This algorithm consists of sequence of tasks performed by a node for midpoint relay

selection using social trust and battery power. If a relay is to be used, it selects a relay that
maximizes the throughput of D2D communication.

Input: s, d, ncircle, battery level of nodes listed in ncircle, location of nodes listed in ncircle, Sthres,
Bthres, Pmax, l, T and τ

Output: ts,r,d

1: if len(ncircle) = 0 then

2: Calculate Cs,d as in equation 4
3: ts,r,d = Cs,d
4: else

5: if Friends in ncircle = 0 then

6: Relay = Nearest to midpoint
7: ts,r,d = Cs,r,d
8: else

9: Identify nSthres
10: if len(nSthres ) = 0 then

11: Relay = Nearest to midpoint
12: ts,r,d = Cs,r,d
13: else

14: nbattery = Identify nodes having battery level above Bthres
15: if len(nbattery) > l then

16: nbattery = l nodes with high social trust values
17: end if
18: Sequentially probe nodes in nbattery and d
19: for i = 1 : len(nbattery ) do

20: Power of nSthres (i) = Transmission power proportional to social trust
21: Calculate Cs,r,d through each of nodes in nSthres as in equation 5
22: end for
23: Select maximum Cs,r,d = max(Cs,r,d)
24: if maximum Cs,r,d > Cs,d then

25: D2D via a relay is selected
26: ts,r,d = max(Cs,r,d)× (T − (τ × len(nbattery)))
27: else

28: Direct D2D is selected
29: ts,r,d = Cs,d × (T − (τ × len(nbattery)))
30: end if
31: end if
32: end if
33: end if

When a source (let us say device 1) wants to have D2D communication with a destination (let us
say device 7), it sends a D2D request to the BS. The BS sends list of devices (let us say 2, 5, 6, 10, 11,
14, 15) within a circular region of radius R centered at the midpoint between source and destination,
battery of the devices along with other necessary information for D2D communications.

In our proposed scheme MRS-ST-BL, the source initially filters the devices that have social trust
above social threshold (let us say Sthres = 0.3) and also have battery above battery threshold (let us
say Bthres = 30%). Let us consider devices 5 and 11 are not friends of source. These devices are not
considered as potential relays. Therefore, they are filtered out. Among the list of remaining devices,
let us consider devices 2 and 14 have battery level less than Bthres. These devices (2 and 14) are also not
considered for relay selection because they may not relay the data successfully. The source then filters
at most l (let us say probe limit = 10) devices that have large social trust values among the remaining
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devices in the list. In the considered scenario, devices 6, 10 and 15 are sequentially probed by the
source. The source compares the data rate offered by each of them. Let us say, device 6 offers the
maximum data rate. This data rate is compared against the data rate of direct communication. If the
data rate through the device 6 is higher than that of direct communication, then device 6 is selected as
a relay. Otherwise, the source communicates directly with the destination.

Algorithm 3: Tasks performed at Source for MRS-SD-BL
// This algorithm consists of sequence of tasks performed by a node for midpoint relay

selection using social distance and battery power. If a relay is to be used, it selects a relay that
maximizes the throughput of D2D communication.

Input: s, d, ncircle, battery level of nodes listed in ncircle, location of nodes listed in ncircle, Sthres,
Bthres, Pmax, l, T and τ

Output: ts,r,d

1: if len(ncircle) = 0 then

2: Calculate Cs,d as in equation 4
3: ts,r,d = Cs,d
4: else

5: if Friends in ncircle = 0 then

6: Relay = Nearest to midpoint
7: ts,r,d = Cs,r,d
8: else

9: nbattery = Identify nodes having battery level above Bthres
10: if len(nbattery) = 0 then

11: Relay = Nearest to midpoint
12: ts,r,d = Cs,r,d
13: else

14: if len(nbattery) > l then

15: nbattery = l nodes nearest to midpoint
16: end if
17: Identify node above social threshold, nSthres
18: if len(nSthres ) = 0 then

19: Relay = Nearest to midpoint
20: ts,r,d = Cs,r,d
21: else

22: Sequentially probe nodes in nSthres and d
23: for i = 1 : len(nSthres ) do

24: Power of nSthres (i) = Transmission power proportional to social trust
25: end for
26: Calculate Cs,r,d through each of nodes in nSthres as in equation 5
27: Select maximum Cs,r,d = max(Cs,r,d)
28: if max(Cs,r,d) > Cs,d then

29: D2D via a relay is selected
30: ts,r,d = max(Cs,r,d)× (T − (τ × len(nSthres )))
31: else

32: Direct D2D is selected
33: ts,r,d = Cs,d × (T − (τ × len(nSthres )))
34: end if
35: end if
36: end if
37: end if
38: end if
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Algorithm 4: Tasks performed at Candidate Relay Nodes
// This algorithm consists of sequence of tasks performed by candidate relay node for relay

selection.
Input: s, d, Pmax and probe

Output: SNR values

1: Receive probe message from s
2: Send SNR value of probe received to s
3: Check the battery power level
4: if battery < Bthres then

5: Transmission power = Minimum transmission power possible
6: else

7: Transmission power = Transmission power proportional to social trust
8: end if
9: Send probe to d with transmission power as calculated above

Algorithm 5: Tasks performed at a Relay Node
// This algorithm consists of sequence of tasks performed by a relay node in D2D

communications.
Input: s, d, Pmax and user data

Output: relay data

1: Receive user data from s
2: Check the battery power level
3: if battery < Bthres then

4: Transmission power = Minimum transmission power possible
5: else

6: Transmission power = Transmission power proportional to social trust
7: end if
8: Send probe to d with transmission power as calculated above

Algorithm 6: Tasks performed at Destination
// This algorithm consists of sequence of tasks performed by destination node for relay

selection.
Input: probe and data

Output: SNR values, data

1: Receive probe messages from s and r
2: Send SNR values of probe received from s and r to s
3: Send probe reply to s
4: Receive data from r sent by s
5: Send user data to s via r

In our second proposed scheme MRS-SD-BL, the source initially filters the devices that are friends
of source and have battery above battery threshold (Bthres). Let us say the selected devices are 6, 10
and 15. If the number of selected devices are more than a probe limit, it filters at most l (probe limit)
devices that are nearest to midpoint of the distance between source and destination. Then, the source
filters devices that have social trust above social threshold (Sthres) to probe sequentially. Let us say,
only devices 15 and 6 have social trust above social threshold. After probing them and the destination
directly, the source compares data rate offered by each of them. If data rate of device 6 is higher than
that of device 15 and direct communication, device 6 is selected as a relay.

Next, we illustrate the the communication protocol for the proposed relay selection schemes
explaining the information exchange between network entities during relay selection.
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4. Proposed Protocol: Probing of Devices

Probes are short messages sent across devices in the network to exchange information between
them. To select a relay, probing messages are exchanged between a source, a base station, other devices
in proximity, and a destination. The design of our communication protocol for relay selection in D2D
communications is shown in Figure 2. It consists of three phases: Initiation phase, Probing phase and
Data transmission phase.

Figure 2. Probing for relay selection.

The initiation phase begins when a source wants to have a relay for D2D communication.
The source sends a probe (D2D request) to the BS consisting of source and destination identity.
As a response, the BS sends a message to the source containing a list of idle devices that are located
within certain search radius (R) along with corresponding battery level and maximum allowable
transmission power (Pmax) that can be used for D2D communications as implemented in Algorithm 1.
The tasks performed by BS in this proposed scheme is similar to that of MRS-ST in Reference [10].
However, the difference in this paper is that the BS sends additional battery level information of
devices to the source.

Upon receiving message from the BS, the source determines the socially trusted devices in the list
using its contact list and initiates probing of those devices sequentially [7].

In the probing phase, a source probes the nearby socially trusted devices to learn about link
conditions for relaying data from the source to the destination as implemented in Algorithm 2 for
MRS-ST-BL and Algorithm 3 for MRS-SD-BL. The probe message contains source identity, destination
identity, probed device identity and maximum allowable transmission power. The message is also
received by the destination. As a reply to a probe, each of the devices which are available for relaying
data, individually responds to the source with SNR of the probe signal they have received and also
forwards the probe message to the destination. The destination calculates SNR for each of the received
probing packets and sends the SNR values to the source. The source calculates estimated data rate
offered by the probed devices based upon link conditions and transmission power, and selects a device
which offers maximum rate.
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The source takes into account time wasted while probing devices. The more candidate devices to
be probed, the more time is wasted for real communications. The source estimates the throughput
offered by that selected device and compares it with the direct communication. Data transmission
phase starts after the source decides whether to use the selected device as a relay or not. If a relay
is used for D2D communications, the source sends the data to the relay, which is then forwarded to
the destination.

Theoretical Probing Protocol Analysis

This section presents the probing overhead comparison of HRS, MRS-ST-BL and MRS-SD-BL.
The probing overheads of each of the schemes are compared by calculating the average number of
messages exchanged before user data transmission for each of them. The average probe number (p)
can be used to quantify the average time taken for probing. The less the time spent for probing in a
scheme, the higher the throughput can be achieved by the scheme.

Figure 2 shows the exchange of messages between a source, candidate relay nodes and a
destination in MRS-ST-BL and MRS-SD-BL. Similar messages are also exchanged in HRS. In all
these schemes, during the D2D initiation phase, a source sends a D2D request message to a BS. The BS
sends a D2D reply back to the source. During the probing phase, each candidate relay nodes are
probed to learn about physical link conditions. Probing of a candidate relay node requires exchange
of 4 messages: from source to relay, relay to source (for SNR value from s to r), relay to destination,
destination to source (for SNR value from s to d, and SNR value from r to d). HRS also requires
similar message exchange while probing. Therefore, the average number of messages exchanged in
MRS-ST-BL, MRS-SD-BL and HRS before D2D communication establishment are

M = 2 + 4× p, (7)

which shows that the number of messages exchanged is proportional to the number of devices being
probed. The graphical illustration of average number of probes for these schemes are in Section 5.3.2.

Now we calculate the number of nodes probed, by first defining the node density and number of
nodes in a circular region. Using width of a network W and ntotal number of devices in the network,
node density ndensity can be calculated as

ndensity = ntotal/W2. (8)

Within a circular region of radius R, the average number of devices that can be a relay are

ncircle = R× ntotal/W2 (9)

Let x be the fraction of devices which are friends of source and y be the fraction of friend devices
whose social trust values are above the social threshold. Its value can be calculated using the social
distribution discussed in Section 2.

In HRS, the number of devices having social trust above social threshold are

nHRS = x× y× R× ntotal
W2 (10)

which is the same as the average number of devices to be probed, pHRS.
In MRS-ST-BL, the number of devices above the social threshold are

nMRS-ST-BL = x× y× ncircle (11)
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Among the devices above social threshold, it will filter the devices having battery level above
battery threshold (Bthres). Let z be the fraction of devices having battery level above Bthres. Then the
number of devices within circular region having battery level above Bthres are

nMRS-ST-BL = x× y× z× ncircle (12)

At most l devices are probed in MRS-ST-BL. nMRS-ST-BL devices are arranged with their social
trust in descending order. Then, the average number of devices to be probed are

pMRS-ST-BL =

{
l if l < nMRS-ST-BL;

nMRS-ST-BL otherwise.
(13)

In MRS-SD-BL, friends having battery level above battery threshold (Bthres) are initially filtered as

nMRS-SD-BL = x× z× ncircle (14)

At most l devices are probed in MRS-SD-BL. Therefore, the filtered devices are arranged according
to distance from the midpoint in ascending order. At most l devices nearest to the midpoint are filtered
again as

nMRS-ST-BL-probelimit =

{
l if l < nMRS-SD-BL;

nMRS-ST-BL otherwise.
(15)

Then, the average number of devices above the social threshold is equal to average number of
devices to probed in MRS-SD-BL. It is expressed as

pMRS-SD-BL = nMRS-ST-BL-probelimit × y (16)

The average number of probes in MRS-SD-BL is less than that of MRS-ST-BL, when social trust
values for the link between source and the candidate relay nodes are low. This is because, when the
social trust values of at most l devices are low, number of devices having trust values above social
threshold obviously becomes less in MRS-SD-BL.

The probing frequency can be reduced for selection of a relay when devices in the network have
limited mobility and the link conditions are stable. However, if the devices in the network have high
mobility and link conditions are changing, the probing of devices should be done more frequently to
select a relay.

5. Performance Analysis of Proposed Schemes: MRS-ST-BL and MRS-SD-BL

5.1. Simulation Setup

Table 1 shows the details of the simulation setup used in our research. A custom simulation
model of HRS, M-Nearest, M-Nearest_MaxTx, MRS-ST and MRS-SD was developed in Octave [29].
One thousand devices are distributed uniformly at random across a square network area, with widths
of 100 and 1000 m. Random Waypoint mobility model is used to emulate movement patterns of people
as close as possible. The mobility model is implemented using BonnMotion [34].

We are considering a scenario where people carrying mobile devices are walking within a certain
area. Therefore, the speed of devices is varied between 0–2 m/s and have maximum pause time of 5 s.
The social trust value between two devices follow Pareto distribution. Different social trust scenarios
among devices in the network are achieved by varying the Shape and Scale parameters. Source and
destination are selected randomly from the 1000 devices. We set the transmission power of a source
device Ps,d = 20 dBm, noise power N = −114 dBm, pathloss exponent θ = 4 , bandwidth of channel
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B = 1 MHz as in References [12,35]. We assume the duration of a time slot for D2D communications
T = 1 s and that for a probe τ = 0.01 s [5]. The mobile devices are considered to have 10 different battery
percentage levels with the difference of 10 between them. The battery percentage of a device is selected
randomly. Each simulation runs for 1000 s. In this analysis, the maximum allowable transmission
power for a relay is considered to be equal to transmission power of source. The results reported for
each of the schemes are time average of the throughput.

Section 5.3 presents the results various relay selection schemes analyzed based on this
simulation setup.

Table 1. Simulation setup for analysis of MRS-RP.

Simulation Parameters

Simulation software Octave
Mobility model Random waypoint
Number of nodes, ntotal 1000
Network width, W 100 and 1000 m
Speed of nodes, S 0–2 m/s
Maximum pause time 5 s
Simulation period 1000 s
Channel bandwidth, B 1 MHz
Pathloss exponent, θ 4
Noise power, N −114 dBm
Social trust, β 0–1
Social threshold, Sthres 0.3
Battery threshold, Bthres 10, 20, 30, 40
Probe limit, l 10
Shape, α 1.001, 1.01, 1.1, 2
Scale, L 0.001, 0.01, 0.1, 0.2, 0.5
Upper limit, H 1
Transmission power, Ps,d 20 dBm
Max. allowable tx power, Ps,j 20 dBm
Time slot duration, t 1 s
Probe duration, τ 0.01 s
Search radius, R Upto 700 m

5.2. Schemes Compared

This section presents the short description of all schemes analyzed in this paper. The schemes we
have analyzed are as follows:

• Direct Communication (Direct): A scheme in which a source device directly transmits to a
destination device. This scheme does not use a relay to assist D2D communication between the
source and the destination.

• Hybrid Relay Selection with Full Battery (HRS-FB): A scheme same as HRS scheme proposed
by Pan and Wang [12]. The relay device always has a full battery level and transmits at a power
proportional to the social trust.

• Hybrid Relay Selection Without Full Battery (HRS-WFB): A modified version of HRS [12].
This scheme is used to analyze the performance of HRS when a relay has varying battery level.
In this scheme, a relay device transmits at a power proportional to the social trust only when the
battery level on the device is above certain threshold value (Bthres). Otherwise, the relay device
transmits at a lowest power (not proportional to the social trust). However, the battery level of
devices are not taken into account in the relay selection design.

• Hybrid Relay Selection with Different Battery Levels (HRS-BL): A modified version of HRS [12].
This scheme is also used to analyze the performance of HRS when a relay has varying battery level.
This scheme is similar to HRS-WFB, except the battery level of devices are taken into account in
the relay selection design.
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• Nearest to Midpoint with Full Battery (M-Nearest-FB): A scheme which selects a relay device
nearest to the midpoint. The relay device always has a full battery level and transmits at a power
proportional to the social trust.

• Nearest to Midpoint Without Full Battery (M-Nearest-WFB): A scheme which selects a relay
device nearest to the midpoint. It is used to analyze the performance of M-Nearest when a relay
has varying battery level. In this scheme, a relay device transmits at a power proportional to
the social trust only when battery level on the device is above certain threshold value (Bthres).
Otherwise, the relay device transmits at a lowest power (not proportional to the social trust).
However, the battery level of devices are not taken into account in the relay selection design.

• Nearest to Midpoint with Different Battery Levels (M-Nearest-BL): A scheme which selects a relay
device nearest to the midpoint. It is used to analyze the performance of M-Nearest when a relay
has varying battery level. This scheme is similar to M-Nearest-WFB, except the battery level of
devices are taken into account in the relay selection design.

• Nearest to Midpoint with Maximum Transmission Power (M-Nearest_MaxTx): A scheme which
represents an ideal relay selection (practically not feasible). It is used as a benchmark scheme that
provides the upper bound for the throughput of D2D communication. This scheme selects a relay
device nearest to the midpoint. The relay device always has a full battery and also transmits at
the maximum power.

• Midpoint Relay Selection using Social Trust with Full Battery (MRS-ST-FB): A scheme same as
MRS-ST [10]. The relay device always has a full battery level and transmits at a power proportional
to the social trust.

• Midpoint Relay Selection using Social Trust Without Full Battery (MRS-ST-WFB): A modified
version of MRS-ST [10]. It is used to analyze the performance of MRS-ST when a relay has varying
battery level. In this scheme, a relay device transmits at a power proportional to the social trust
only when the battery level on the device is above certain threshold value (Bthres). Otherwise,
the relay device transmits at a lowest power (not proportional to the social trust). However,
the battery level of devices are not taken into account in the relay selection design.

• Midpoint Relay Selection using Social Trust and Battery Level (MRS-ST-BL): Our proposed scheme
which considers battery level of devices together with location and social information in the relay
selection design. In this scheme, a relay device transmits at a power proportional to the social
trust only when battery level on the device is above certain threshold value (Bthres). Otherwise,
the relay device transmits at a lowest power (not proportional to the social trust).

• Midpoint Relay Selection using Social Distance with Full Battery (MRS-SD-FB): A scheme same as
MRS-SD [10]. The relay device always has a full battery and transmits at a power proportional to
the social trust.

• Midpoint Relay Selection using Social Distance Without Full Battery (MRS-SD-WFB): A modified
version of MRS-SD [10]. It is used to analyze the performance of MRS-SD when a relay has
varying battery level. In this scheme, a relay device transmits at a power proportional to the social
trust only when battery level on the device is above certain threshold value (Bthres). Otherwise,
the relay device transmits at a lowest power (not proportional to the social trust). However,
the battery level of devices are not taken into account in the relay selection design.

• Midpoint Relay Selection using Social Distance and Battery Level (MRS-SD-BL): Our proposed
scheme which considers battery power level of devices together with location and social
information in the relay selection design. In this scheme, a relay device transmits at a power
proportional to the social trust only when battery level on the device is above certain threshold
value (Bthres). Otherwise, the relay device transmits at a lowest power (not proportional to the
social trust). This scheme is different from MRS-ST-BL in the way it filters devices for selection of
a relay.
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5.3. Results

5.3.1. Impact of Different Battery Levels of Relays on Throughput

This section presents the impact analysis of different battery power levels of relays on the
throughput of various relay selection schemes in networks. The analysis is done for different social trust
scenarios and different node densities. The key observation from our analysis is that the throughput
of existing relay selection schemes decrease when the relays have different battery levels. In such
scenarios, our proposed schemes MRS-ST-BL and MRS-SD-BL significantly enhance the throughput of
D2D communications.

Figures 3–6 show the throughput comparison at different social trust scenarios for a high node
density network (having width of 100 m). In all these figures, average throughput is on the y-axis and
radius of search ring is on the x-axis. The search radius ranges from 2 m up to 60 m and simulation data
are recorded at an interval of 2 m. Each scheme analyzed is represented by a line. We also conducted
the analysis for different social trust scenarios in a network having width of 1000 m (low node density
network). The results are presented in Appendix A.1. Figures A1–A4 show the average throughput
variation for all the schemes are similar to that for a network having width of 100 m. The remaining of
this section presents the analysis for network having width of 100 m.

For each of the relay selection schemes, there are three variations analyzed. A line with squares
represents throughput of a scheme that has a relay with full battery power. A dashed line represents
throughput of the scheme that has a relay with varying battery level. A line with crosses represents
throughput of the scheme that has a relay with varying battery level, but we adjust the scheme to take
varying battery level of the relay into account.

The left graph in each of these figures show the average throughput comparison of each
scheme with and without full battery. We analysed the average throughput of MRS-ST and MRS-SD
(our previous paper [10]), HRS [12] and M-Nearest schemes using relays with full battery against the
schemes using relays with different battery levels. The right graph in each of these figures compares
the average throughput of our proposed schemes MRS-ST-BL and MRS-SD-BL, when the relay has
different battery power levels. The performance of the proposed schemes are compared against the
throughput of MRS-ST, MRS-SD, HRS and other generic schemes without battery awareness in relay
selection, but relays have different battery levels.

(a) (b)

Figure 3. Average throughput of different schemes when Shape = 1.001 and Scale = 0.001 in a network
having width of 100 m. (a) Different battery power levels not considered in relay selection; (b) Different
battery power levels considered in relay selection.
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Figure 3 depicts the average throughput of various schemes as the search radius increases for a
very weak social trust scenario (Shape = 1.001, Scale = 0.001) among users in a network with high node
density. Each line in the graph represents the average throughput of a scheme. The key result from
this figure is that the different battery levels of relays do not impact the performance of any of the
relay selection schemes analyzed, when social trust among the users in the network are very weak.
Additionally, the proposed schemes MRS-ST-BL and MRS-SD-BL, which take battery level of devices
into consideration while selecting a relay, do not show significant improvement in throughput of D2D
communications, when social trust among users in the network are very weak.

Figure 3a illustrates the average throughput comparison of existing schemes MRS-ST and MRS-SD
(our previous paper [10]), HRS [12] and generic schemes, with the increase in radius of search ring.
The average throughput of these schemes with relays having full battery are compared against
throughput of the schemes with relays having different battery levels. The graph shows the average
throughput of all schemes initially increases with the increase in search radius, except for Direct
scheme which remains constant. The throughput of MRS-ST with a relay having full battery power
(the blue line with square) and a relay having different battery power (the dashed blue line) gradually
decreases for large search radius as expected. The reason is that, with the increase in search radius,
more devices are being probed, and also the length of link from a source to a relay and that from
the relay to a destination increases. For large search radius, the throughput of MRS-ST and HRS
with varying battery level are reduced compared to the throughput of MRS-ST and HRS with full
battery. For other schemes, the throughput remains unchanged for large values of search radius. Next,
we present the performance of our proposed schemes MRS-ST-BL and MRS-SD-BL to overcome such
reduction in throughput.

Figure 3b illustrates the average throughput of various relay selection schemes as the search
radius increases. A relay for each of the schemes have different battery power levels. The proposed
schemes MRS-ST-BL and MRS-SD-BL, which take battery power of devices into consideration for
selection of a relay are compared against existing schemes MRS-ST, MRS-SD, HRS and M-Nearest
schemes with relays having different battery power levels. We also analyzed the performance of
modified version of HRS, HRS-RP, in which relay selection is done considering battery power of
devices. The important result is that the throughput of our proposed scheme MRS-ST-BL is greater
than that of MRS-ST-WFB for large values of search radius.

(a) (b)

Figure 4. Average throughput of different schemes when Shape = 1.01 and Scale = 0.01 in a network
having width of 100 m. (a) Different battery power levels not considered in relay selection; (b) Different
battery power levels considered in relay selection.
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Figure 4 depicts the average throughput of different schemes as the search radius increases for a
weak social trust scenario (Shape = 1.01, Scale = 0.01) among users in a network with high node density.
The key observation from this figure is that the varying battery power level of a relay significantly
affect the performance of all relay selection schemes, when social trust among the users in the network
are weak. Additionally, our proposed scheme MRS-ST-BL significantly increases the throughput of
D2D communications when relay devices have varying battery levels.

Figure 4a illustrates the average throughput comparison of existing schemes MRS-ST and MRS-SD
(our previous work [10]), HRS [12] and generic schemes, with the increase in radius of search ring.
The average throughput of these schemes with a relay having full battery power is compared against
throughput of the schemes with a relay having varying battery power.

Figure 4a shows that the average throughput of all schemes initially increases with the increase in
search radius, except for Direct scheme which remains constant. The blue line with squares represents
the throughput of MRS-ST with a relay having full battery and the dashed blue line represents
the throughput of MRS-ST with a relay having varying battery level. The green line with squares
represents the throughput of MRS-SD with a relay having full battery and the dashed green line
represents a relay with varying battery level. The red line with squares represents the throughput
of HRS with a relay having full battery and the dashed red line represents a relay having varying
battery level. The throughput of MRS-ST and HRS, that have relay with and without varying battery
power levels, gradually decrease for large search radius. This is because with the increase in search
radius, more devices are being probed and also the length of link from a source to a relay and that
from the relay to a destination increases. Interestingly, the throughput of MRS-ST, MRS-SD and HRS
significantly decreases when a relay has varying battery power compared to the schemes when relays
have full battery. The throughput of M-Nearest is not affected by battery level of a relay.

Figure 4b illustrates the average throughput comparison of different relay selection schemes
with a relay having different battery levels. Our proposed schemes MRS-ST-BL and MRS-SD-BL,
which take battery level of devices into consideration for selection of a relay are compared against
existing schemes MRS-ST, MRS-SD, HRS and generic schemes with a relay having different battery
power levels. We also analyzed the performance of modified version of HRS, HRS-RP, in which relay
selection is done considering battery level of devices.

The main result from Figure 4b is that the throughput of our proposed scheme MRS-ST-BL
is highest among all others. For small radius, the throughput of MRS-ST-BL is same as that for
MRS-ST-WFB when search radius is small. However, with the increase in search radius, the throughput
of the proposed scheme MRS-ST-BL is significantly higher than that of MRS-ST-WFB. When the search
radius is very large, the difference in throughput is reduced. This is because when search radius is
large, the link length from source to relay and that from the relay to destination affects more on SNR
values than transmission power of relay. All other schemes attains lower throughput than that of
MRS-ST-WFB. The throughput of our proposed scheme MRS-SD-BL is not improved compared to that
of MRS-SD-WFB. This is because of the way MRS-SD-BL filters devices to select a relay.

Figure 5 shows the same scenario as Figure 4, except the social trust scenario is stronger with
Shape = 1.1 and Scale = 0.1. The results are almost the same as in Figure 4.

Figure 6 depicts average throughput comparison of different schemes for a strong social trust
scenario (Shape = 2, Scale = 0.5) among users in a network with high node density. The key result
from this figure is that network with strong social trust between users have no significant difference in
the performance of all relay selection schemes, when the relays have different battery power levels.
Additionally, the figure shows that when social trust between the users are strong, our proposed
scheme MRS-SD-BL is better than others, but it does not outperform M-Nearest scheme.

Figure 6a illustrates the average throughput comparison of existing schemes MRS-ST and MRS-SD
(our previous work [10]), HRS [12] and generic schemes, with the increase in radius of search ring.
The average throughput of these schemes with relay having full battery power are compared against
throughput of the schemes with relay having different battery power levels.
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(a) (b)

Figure 5. Average throughput of different schemes when Shape = 1.1 and Scale = 0.1 in a network
having width of 100 m. (a) Different battery power levels not considered in relay selection; (b) Different
battery power levels considered in relay selection.

(a) (b)

Figure 6. Average throughput of different schemes when Shape = 2 and Scale = 0.5 in a network having
width of 100 m. (a) Different battery power levels not considered in relay selection; (b) Different battery
power levels considered in relay selection.

The key observation in Figure 6a is that choosing a relay node nearest to midpoint results in
higher throughput among all others, in a network having strong social trust among network users.
In addition to that, battery power on a relay device does not significantly affect the average throughput
of different relay selection schemes analyzed, except for MRS-ST. The throughput of MRS-ST with
varying battery power (the blue dashed line) is reduced for larger value of search radius compared to
the scheme with full battery power (the blue line with squares).

Figure 6b illustrates the average throughput comparison of different relay selection schemes with
a relay having varying battery power levels. Our proposed schemes MRS-ST-BL and MRS-SD-BL,
which takes battery power of devices into consideration for selection of a relay, are compared against
existing schemes MRS-ST, MRS-SD, HRS and M-Nearest scheme with a relay having different battery
levels. We also analyze the performance of modified version of HRS, HRS-BL, in which relay selection
is done considering battery power of devices.

The key observation in Figure 6b is that M-Nearest-WFB (the dashed pink line) has highest
throughput among all the schemes analyzed, when users in the network have strong social trust
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between them. Selecting a relay nearest to midpoint having battery power above battery threshold
(Bthres) reduces throughput of the communication because a relay with longer link lengths is selected if
the battery power of a device nearest to the midpoint is less than Bthres. In this social trust scenario,
our schemes perform worse than M-Nearest-WFB. The throughput of our proposed scheme MRS-ST-BL
(the blue line with crosses) is greater than that of MRS-ST-WFB (the blue dashed line) for large values of
search radius, but less than throughput of M-Nearest-WFB. The performance of our proposed scheme
MRS-SD-BL is same as that of MRS-SD-WFB.

In summary, from our analysis we see that average throughput of all schemes decreases when
relay has varying battery power levels. Our proposed scheme MRS-ST-BL significantly improves
the throughput compared to HRS in all of the analyzed network scenarios. MRS-ST-BL has higher
throughput among all others, particularly when social trust among the users in the network are
weak. This shows that throughput is improved when the battery power of device is also taken into
consideration during relay selection, together with social information of users in the network.

Next, we compare the average number of probes and average transmission power of relay of our
proposed schemes with different other schemes. This shows how the limitation in number of probes
and average relay power in MRS-ST-BL contribute to enhance throughput of D2D communications.

5.3.2. Comparison of Average Number of Probes of Proposed Schemes with Others

This section presents the comparison of average number of probes of our proposed MRS-ST-BL
and MRS-SD-BL schemes with various relay selection schemes. The analysis is done for different social
trust scenarios and different node densities. The key result from our analysis is that our proposed
schemes probe less number of devices for selection of a relay compared to existing schemes. As a
result, our proposed schemes significantly minimize total time spent for probing, which contributes
for the enhancement of throughput in D2D communications.

Figure 7 illustrates the average number of probes comparison of various schemes for different
social trust scenarios in square network having width of 100 m. The average number of probes is on
the y-axis and radius of search ring is on the x-axis in each of the graphs. Each of the schemes analyzed
are represented by a line.

(a) Shape = 1.001 and Scale = 0.001 (b) Shape = 1.01 and Scale = 0.01 (c) Shape = 2 and Scale = 0.5

Figure 7. Average probe number comparison of various schemes in different social trust scenarios
when network width is 100 m.

Figure 7a shows that the average number of probes of MRS-ST-FB (blue line with squares)
and MRS-ST-WFB (blue line with triangles) increase with the increase in search radius. From the
observation, we can see that MRS-ST-FB and MRS-ST-WFB probe equally with the change in search
radius. However, the our proposed scheme MRS-ST-BL (blue line with crosses) has less number
of probes compared to MRS-ST-FB and MRS-ST-WFB. This is because MRS-ST-BL only probe those
devices having battery level above battery threshold, from the list of devices in circular region that
have social trust above social threshold. The reduction in probe number compared to MRS-ST-FB and
MRS-ST-WFB contributes to increase throughput. However, the increment is not significant because
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this is a scenario where social trust among users in the network are very weak. Similar trend is
observed when compared between HRS-FB (red line with squares), HRS-WFB (red line with triangles)
and HRS-BL (red line with crosses).

Figure fig:Average number of probes of different schemes NW100mb depicts that the average
number of probes of MRS-ST-BL (blue line with crosses) is less than that of MRS-ST-FB (blue line with
squares) and MRS-ST-WFB (blue line with triangles). The difference in number of probes initially
increases with the increase in search radius. This is because, with the increase in search radius
more devices (within probe limit) are probed in MRS-ST-FB and MRS-ST-WFB. However, in case of
MRS-ST-BL, it filters out the devices with battery less than battery threshold. When the search radius
is further increased, the blue lines tend to converse as more devices are probed (up to probe limit) for
MRS-ST-FB, MRS-ST-WFB and MRS-ST-BL.

As there is no probe limit in HRS-FB, HRS-WFB and HRS-FB, these schemes probe more devices
with the increase in search radius. MRS-SD-FB, MRS-SD-WFB and MRS-SD-BL probe least among all
others because these schemes filter at most l (probe limit) devices which are nearest to the midpoint
before filtering devices that have social trust above social threshold. This is a scenario when social
trust among users in the network are weak. Therefore, less number of devices are probed, which helps
to increase the throughput of D2D communications.

Figure fig:Average number of probes of different schemes NW100mc shows that the average
number of probes for MRS-ST-FB, MRS-ST-WFB, MRS-ST-BL, MRS-SD-FB, MRS-SD-WFB and
MRS-SD-BL are indifferent and have number of probes equal to probe limit, with the increase in
search radius. This is because the social trust among the users in the network are high, all having
social trust above social threshold. However, HRS-FB and HRS-WFB probe more devices compared to
HRS-BL. The number of probes for HRS-FB, HRS-WFB and HRS-BL are significantly higher compared
to our proposed schemes. Therefore, our proposed schemes have significantly higher throughput
compared to HRS-FB, HRS-WFB and HRS-BL.

From the comparison of Figure 7a–c, we can also see that the number of probes for all the schemes
increase with the increase in social trust among users in the network (figures from left to right).
Figure A5 illustrates similar trend in change of probe number with the increase in search radius for
different social trust scenarios, when node density in network is low.

From the above analysis, we can see that taking battery level of devices into consideration while
selecting a relay, filters out socially trusted devices but with low battery power. It reduces the number
of devices to be probed. This helps to select only those devices with high social trust and battery level
above battery threshold, as candidate relay devices for D2D communications. As a result, our proposed
scheme MRS-ST-BL enhances throughput of D2D communications.

5.3.3. Comparison of Average Relay Power of Proposed Scheme MRS-ST-BL with MRS-ST-FB
and MRS-ST-WFB

This section presents the comparison of average power of relay device used in our proposed
scheme MRS-ST-BL with MRS-ST-FB and MRS-ST-WFB. The average power of relay selected in HRS
(HRS-FB, HRS-WFB, HRS-BL) schemes are not compared because we can see from results obtained in
Section 5.3.1 that the performance HRS (HRS-FB, HRS-WFB, HRS-BL) schemes are significantly lower
than that of MRS-ST-BL in all the scenarios considered. We show that our proposed scheme MRS-ST-BL
enhances the throughput by selecting relay with higher transmission power compared to MRS-ST-WFB,
and is the focus of this section. The analysis is done for different social trust scenarios and different
node densities. The main result from our analysis is that our proposed scheme MRS-ST-BL selects
relay with higher transmission power compared to that of HRS-ST-WFB. As a result, our proposed
scheme MRS-ST-BL significantly enhances the throughput of D2D communications.

Figure 8 shows the average transmission power of relay of MRS-ST-FB, MRS-ST-WFB and
MRS-ST-BL for different social trust scenarios in square network having width of 100 m. The average
transmission power of a relay is on the y-axis and radius of search ring is on the x-axis in each of
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the graphs. Each of the schemes analyzed are represented by a line. The blue line with squares
represents transmission power of relay for MRS-ST-FB scheme. This scheme is same as that proposed
in Reference [10] and has devices with full battery level in the network. The blue line with triangles
represents transmission power of relay for MRS-ST-WFB scheme. This scheme is also same that
proposed in Reference [10]. The only difference is that devices in the network have variable battery
levels and transmit at lowest power possible when their battery level is lower than battery threshold.
The blue line with crosses represents transmission power of MRS-ST-BL, a relay selection scheme
proposed in this paper.

(a) Shape = 1.001 and Scale = 0.001 (b) Shape = 1.01 and Scale = 0.01 (c) Shape = 2 and Scale = 0.5

Figure 8. Average transmission power comparison of various schemes in different social trust scenarios
when network width is 100 m.

Figure 8a shows that the average transmission power of a relay increases with the increase in
search radius for all the schemes. The transmission power of relay in MRS-ST-WFB (blue line with
triangles) is lower than that of MRS-ST-FB (blue line with squares), as expected. As our proposed
scheme MRS-ST-BL (blue line with crosses) also takes battery level into consideration while selecting
a relay, it selects a relay with high transmission power compared to MRS-ST-WFB. The selection of
higher transmission power can be observed only for large values of search radius. This is because the
scenario considered here has very weak social trust among users in the network. Therefore, most of
the devices do not transmit at high power even though their battery level is above the threshold value.

Figure 8b shows that the transmission power of all the schemes increases with the increase in
search radius. The transmission power of MRS-ST-BL gradually increases and becomes higher than
that of MRS-ST-WFB, which can be observed when the search radius is greater than 20 m. However,
for larger search radius, the difference in transmission power of MRS-ST-BL and MRS-ST-WFB
becomes small.

Figure 8c depcits that the transmission power of relay increases with the increase in search radius
for MRS-ST-FB and our proposed scheme MRS-ST-BL. Our proposed scheme MRS-ST-FB selects relay
with high transmission power by probing devices having high social trust as well as device battery level
above battery threshold. The importance of the battery threshold is quite evident in the transmission
power of a relay in MRS-ST-WBL. Interestingly, the transmission power of relay in MRS-ST-WFB is not
improved for larger search radius. MRS-ST-WFB filters devices based on social trust, not based on
battery level. Therefore, when a device having high social trust but with low battery power is selected
as a relay, it transmits at a low power. As a result, throughput of D2D communication is reduced
compared to our proposed scheme MRS-ST-BL.

From the comparison of Figure 8a–c, we can see that the transmission power of relay increases for
all the schemes with the increase in social trust among users in the network (figures from left to right).
Figure A6 illustrates similar trend in change of relay transmission power with the increase in search
radius for different social trust scenarios, when node density in network is low.

From the above analysis, we can see that our proposed scheme MRS-ST-BL selects relays with
higher transmission power compared to MRS-ST-WFB. This increment in transmission power of
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relay contributed to improve average throughput of MRS-ST-BL in Figure 3b, Figure A1b, Figure 4b,
Figure A2b, Figure 6b and Figure A4b.

5.3.4. Impact of Battery Threshold on Throughput of Proposed Scheme MRS-ST-BL

This section presents the impact of change in battery threshold (Bthres) on average throughput of
the proposed scheme MRS-ST-BL. Figure 9 illustrates the change in average throughput of MRS-ST-BL
as the search radius increases for network widths of 100 m and 1000 m. The key observation from the
figure is that the maximum throughput attained by our proposed scheme MRS-ST-BL reduces with the
increase in battery threshold.

(a) Network width = 100 m (b) Network width = 1000 m
Figure 9. Average throughput of our proposed scheme MRS-ST-BL at different battery threshold when
Shape = 1.01 and Scale = 0.01.

Figure 9a shows the impact analysis of battery threshold on performance of our proposed scheme
MRS-ST-BL as the search radius increases in a network having width of 100 m. The black crossed line
represents the battery threshold of 10%, blue crossed line represents that of 20%, the red crossed line
represents that of 30% and the green crossed line represents that of 40%. The main result from this
figure is that the maximum throughput attained by our proposed scheme MRS-ST-BL reduces with the
increase in battery threshold. The throughput initially increases with the increase in search radius for all
battery threshold (Bthres) analyzed. With the further increase in search radius, the throughput gradually
decreases. Interestingly, the maximum throughput attained by the proposed MRS-ST-BL for each Bthres
is different. For Bthres = 10, the black crossed line, the throughput attained is maximum among the
others. However, for large values of search radius, its throughput is lower than others. When the value
of Bthres is high, the maximum throughput attained by MRS-ST-BL is reduced. However, for large
search radius, its throughput is greater compared to the scheme when Bthres has less value.

Figure 9b shows the impact analysis of battery power threshold on performance of our proposed
scheme MRS-ST-BL as the search radius increases in a network having width of 1000 m. The main
result from this graph is the difference in maximum throughput attained at various Bthres is larger
compared to that in Figure 9a. In addition to that, the throughput of MRS-ST-BL at various Bthres are
indifferent for large values of search radius as compared to that in Figure 9a.

This shows that the performance of proposed MRS-ST-BL also depends upon the battery threshold.
The proper adjustment of the battery threshold in our proposed scheme MRS-ST-BL results in increased
throughput of D2D communications.
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6. Conclusions

The devices in a network may have different battery power levels. When transmission power of a
device also depends upon its battery power, selection of a relay for D2D communications becomes
challenging. In this paper, we have designed midpoint relay selection schemes which selects socially
trusted relay that is located around the midpoint of the distance between the source and the destination.
Our relay selection designs incorporate battery power level of devices together with social trust
information of users. A relay is selected for D2D communications only when the throughput of D2D
communications via a relay is greater than that of direct D2D communications.

When the devices in a network have different battery power levels, the performance of all of the
schemes analyzed decreases. However, with the use of proposed relay selection selection scheme in
this paper, the performance can be significantly improved. We compared the performance of existing
relay selection schemes including HRS, MRS-ST, MRS-SD and other generic schemes, when relay
devices have different power levels. The results showed that the performance of the schemes are
not as good as originally claimed. Then, we compared the average throughput of our proposed
schemes against state-of-the-art schemes including HRS, MRS-ST, MRS-SD and other generic schemes,
when devices in the network have different battery power levels. We analyzed the performance for
different social trust scenarios and device densities. The proposed relay selection scheme MRS-ST-BL
significantly improved throughput of D2D communications in networks with weak social trust among
users compared to others. The results show that performance is improved by minimizing number of
probes and by selecting a relay with high transmission power. Additionally, we also show that the
battery power threshold impacts upon the performance of proposed scheme MRS-ST-BL.

In summary, our proposed relay selection scheme MRS-ST-BL significantly improves throughput
of D2D communications compared to other schemes when relay devices have different battery power
levels, particularly in networks that have weak social trust among users.
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Appendix A

Appendix A.1. Impact of Different Battery Levels of Relays on Throughput in Low Node Density Network

This section presents additional analysis comparing average throughput of our proposed
MRS-ST-BL and MRS-SD-BL schemes with various relay selection schemes, when network width is
1000 m. We analyzed average throughput of each schemes, where search radius ranges from 5 m upto
700 m. The simulation data are recorded at an interval of 25 m.

Figure A1–A4 show the throughput comparison at different social trust scenarios for a low node
density network.

Figure A1 depicts a very weak social trust scenario (Shape = 1.001, Scale = 0.001) among users in
a network with low node density. The change in throughput with the increase in radius of search ring
for all relay selection schemes are similar to those in Figure 3.

Figure A2 shows the same scenario as Figure 4, except the density of devices are less in Figure A2.
The throughput response is about the same as in Figure 4.

Figure A3 depicts average throughput comparison of different schemes for a social trust scenario
(Shape = 1.1, Scale = 0.1) among users, which is stronger than in Figure A2, in a network with low
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node density. The trend of change in throughput of all the schemes analyzed are similar to those in
Figure A2.

(a) (b)

Figure A1. Average throughput of different schemes when Shape = 1.001 and Scale = 0.001 in a
network having width of 1000 m. (a) Different battery power levels not considered in relay selection;
(b) Different battery power levels considered in relay selection.

(a) (b)

Figure A2. Average throughput of different schemes when Shape = 1.01 and Scale = 0.01 in a network
having width of 1000 m. (a) Different battery power levels not considered in relay election; (b) Different
battery power levels considered in relay selection.

Figure A4 depicts average throughput comparison of different schemes for a strong social trust
scenario (Shape = 2, Scale = 0.5) among users in a network with low node density. The change in
throughput with the increase in search radius for all the schemes analyzed are not different to those in
Figure 6.

In summary, our proposed schemes MRS-ST-BL and MRS-SD-BL provide higher throughput
compared to existing art-of-the-state schemes in a low node density network having devices with
varying battery levels.
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(a) (b)

Figure A3. Average throughput of different schemes when Shape = 1.1 and Scale = 0.1 in a network
having width of 1000 m. (a) Different battery power levels not considered in relay selection; (b) Different
battery power levels considered in relay selection.

(a) (b)

Figure A4. Average throughput of different schemes when Shape = 2 and Scale = 0.5 in a network
having width of 1000 m. (a) Different battery power levels not considered in relay selection; (b) Different
battery power levels considered in relay selection.

Appendix A.2. Average Number of Probes Comparison of Different Schemes in Low Node Density Network

This section presents additional analysis comparing average number of probes of our proposed
MRS-ST-BL and MRS-SD-BL schemes with various relay selection schemes, when network width is
1000 m. The analysis is done for different social trust scenarios. We analyzed average number of probes
of each schemes where search radius ranges from 5 m upto 700 m and simulation data are recorded at
an interval of 25 m.

Figure A5 shows that the change in average number of probes with the increase in search radius
for all the schemes analyzed are similar to those in Figure 7. This result shows that our proposed
schemes perform better by probing comparatively lower than other schemes in a network having low
node density.
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(a) Shape = 1.001 and Scale = 0.001 (b) Shape = 1.01 and Scale = 0.01 (c) Shape = 2 and Scale = 0.5

Figure A5. Average probe number comparison of various schemes in different social trust scenarios
when network width is 1000 m.

Appendix A.3. Average Power of Relay Comparison of MRS-ST-FB, MRS-ST-WFB and MRS-ST-BL in Low
Node Density Network

This section presents additional analysis comparing the average relay power of our proposed
scheme MRS-ST-BL with MRS-ST-FB and MRS-ST-WBF, when network width is 1000 m. The analysis
is done for different social trust scenarios. We analyzed average relay transmission power of each
schemes where search radius ranges from 5 m upto 700 m and simulation data are recorded at an
interval of 25 m.

Figure A6 shows that the change in average transmission power of relay with the increase in
search radius for all the schemes analyzed are similar to those in Figure 8.

(a) Shape = 1.001 and Scale = 0.001 (b) Shape = 1.01 and Scale = 0.01 (c) Shape = 2 and Scale = 0.5

Figure A6. Average transmission power comparison of various schemes in different social trust
scenarios when network width is 1000 m.

From the results, we can conclude that our proposed scheme MRS-ST-BL performs better by
selecting relay with higher transmission power compared to MRS-ST-WBL, when node density in the
network is low.
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