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Introduction

Colorectal cancer (CRC) ranks as the third most prevalent 
cancer and is responsible for the second highest number of 
cancer-related fatalities globally (1). CRC consists of two 

primary types: rectal adenocarcinoma (READ) and colon 
adenocarcinoma (COAD). The majority of CRC cases 
are COADs, accounting for 80–90% of all pathological 
subtypes (2,3). Despite the fact that screening techniques are 
meant to increase early CRC identification, 25% of patients 
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are already in an advanced state at the initial diagnosis (4). 
A higher cancer stage is connected with a higher risk of 
death in colon cancer, compared to Stage I patient, Stage IV 
patient has an 8.86 times greater risk of death (5). 

Long non-coding RNAs (lncRNAs) are a class of RNA 
molecules that are longer than 200 nucleotides in length, 
influence a number of biological functions, including tumor 
development and immune cell infiltration (6,7). More and 
more research shows that the dysregulation of lncRNAs is 
important in many malignancies, including CRC (8-11). 
For instance, SP1 transcriptionally activates the cancer-
causing lncRNA THAP7-AS1 while METTL3-mediated 
m6A modification stabilizes it post-transcriptionally (9). 
Through integrin-mediated focal adhesion signaling, the 
lncRNA ITGB8-AS1 encourages CRC development and 
migration (11).

However, the mechanisms regulating lncRNA expression 
are yet unclear. Numerous studies have demonstrated that 
changes to m6A influence lncRNAs (12,13). The most 
frequent epigenetic methylation of mRNAs and non-
coding RNAs (ncRNAs), N6-methyladenosine (m6A), 
has a significant effect on RNA translation, splicing, 
transportation, and stability (14,15). M6A regulators, which 
are made up of methyltransferases (writers), RNA-binding 
proteins (readers), and demethylases (erasers), control 
invertible and dynamic RNA epigenetic modification (16). 
Writers are made up of METTL3, METTL14, KIAA1429, 
RBM15, WTAP, and ZC3H13. Readers are made up of 
the proteins YTHDF1/2/3, YTHDC1/2, IGF2BP1/2/3, 
HNRNPC, and HNRNPA2B1.  Erasers  are  made 

composed of ALKBH3, ALKBH5, and FTO to perform 
demethylation activity (17).

M6A enzymes and lncRNAs are both excellent 
prognostic and diagnostic biomarkers. In previous studies, 
m6A-related mRNAs and lncRNAs were found to be useful 
in predicting the prognosis for multiple cancers (18-20). 
For instance, Wang et al. created a signature to predict the 
prognosis of gastric cancer (GC) that contained 11 m6A-
related lncRNAs with variably elevated levels (21). The area 
under curve (AUC) for 5-year overall survival (OS) was 0.94, 
indicating that the lncRNA signature has good predictive 
accuracy for GC. Additionally, Zhang et al. created the 
m6A-related lncRNA prognostic score (m6A-LRS), which 
predicted a poor prognosis for bladder cancer patients (22). 
The receiver operating characteristic (ROC) curves of 
m6A-LRS for 5-year OS prediction was 0.67, showing that 
the risk model was effective. LncRNA signature showed 
promising prognostic potential, but it was not perfect. 
To lessen batch effects between various testing platforms, 
specific levels of lncRNAs should be standardized prior 
to clinical use of the signature. Additionally, by pairing, 
iterating, and employing a novel modeling approach, 
Tang et al. discovered a ferroptosis-related lncRNA pair 
predictive signature in pancreatic ductal carcinoma (8).

In the current research, we created a brand-new m6A-
related lncRNA pair predictive model for COAD. The 
model’s relationships with clinicopathological traits, 
immune-related variables, and medication sensitivity analysis 
were exhibited. We present this article in accordance with 
the TRIPOD reporting checklist (available at https://tcr.
amegroups.com/article/view/10.21037/tcr-23-1883/rc).

Methods

Data collection

Data for the COAD cohort, including mRNA sequencing 
data, lncRNA sequencing data, and clinical features of 
patients, were downloaded from the TCGA website (version 
13-03-2022) (https://portal.gdc.cancer.gov). Patients with 
complete survival data in TCGA website were included. 
The training cohort and validation cohort were attained 
with a 8:2 ratio based on cases having survival data. Using 
information from a recent study, we were able to derive the 
expression matrix for 23 m6A RNA methylation regulators, 
including writers (METTL3, METTL14, METTL16, 
WTAP, VIRMA, RBM15, RBM15B, and ZC3H13), erasers 
(FTO and ALKBH5), and readers (YTHDC1, YTHDC2, 
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IGF2BP1, IGF2BP2, IGF2BP3, YTHDF1, YTHDF2, 
YTHDF3, HNRNPC, LRPPRC, HNRNPA2B1, FMR1, 
and RBMX) (16). Annotation of lncRNAs was acquired 
from GENCODE (https://www.gencodegenes.org/). The 
study was conducted in accordance with the Declaration of 
Helsinki (as revised in 2013).

Investigation of m6A-related lncRNAs and matching of 
m6A-related lncRNAs with differential expression

Pearson correlation was used to determine the lncRNAs 
linked to m6A from the connection between m6A-related 
genes and long non-coding RNAs. The absolute value of 
the correlation coefficient greater than 0.4, and P less than 
0.001 was considered statistically significant. |log2FC| 
more than 1.0 and false discovery rate (FDR) less than 
0.05 were selected as significant criteria for differentially 
expressed m6A-related lncRNAs. After that, based on 
these differentially expressed m6A-related lncRNAs, we 
constructed m6A-related lncRNA pairings, as previously 
described (8). All m6A-related lncRNAs that were differently 
expressed were paired cyclically and assigned a value based on 
pairwise comparisons: assuming that lncRNA A and lncRNA 
B were coupled to form lncRNA pair C, which was assigned 
a value of 1 if lncRNA A’s expression level was higher than 
lncRNA B’s, and a value of 0 otherwise. An lncRNA pair 
was filtered if it had a 0 or 1 ratio of less than 20% or more 
than 80% across all samples. Cox regression analysis was 
used to determine the prognostic importance of m6A-related 
lncRNA pairs (P<0.01).

Building and evaluating a predictive signature for m6A-
related lncRNA pairs

In the training cohort, prognostically correlated m6A-
related lncRNA pairings were utilized to build the least 
absolute shrinkage and selection operator (LASSO) 
regression model. Then, for these m6A-related lncRNA 
pairings, we built a risk score model and computed the risk 
score for each patient as follows: Risk score = coefficient 
lncRNA pair1 × expression lncRNA pair1 + coefficient 
lncRNA pair2 × expression lncRNA pair2 + coefficient 
lncRNA pair3 × expression lncRNA pair3 +……+ coefficient 
lncRNA pairn × expression lncRNA pairn. The risk score 
model was utilized to generate the 1-year ROC curve for 
predicting OS. Based on the median risk assessments, 
patients in the training and validation cohorts were 
separated into high- and low-risk groups. Survival curves 

were computed using the Kaplan-Meier method. In order 
to evaluate the stability of this model, a cross test was 
conducted using the validation cohort. We built the final 
model using data from the full cohort in order to get an 
accurate model with a bigger sample size. The ROC curves 
for 1, 3, and 5 years were calculated. As the ideal cut-off 
point for classifying various risk categories, the 1-year ROC 
curve’s greatest inflection point was picked. Survival results 
and risk scores for each patient were anticipated using a risk 
assessment model of prognosis prediction. Furthermore, 
univariate and multivariate regression analyses were 
performed to determine if the model was an independent 
predictor of OS in COAD patients.

The risk score model’s clinical correlation analysis and 
nomogram creation

The Chi-squared test was used to analyze the associations 
between the  r i sk  score  model  and  convent iona l 
clinicopathological parameters, and the results were shown 
as a heatmap. The Wilcoxon signed-rank test was used to 
determine the risk score differences between several groups 
of these clinicopathological traits, and box diagrams were 
used to illustrate the results. Following are the labels for the 
P values: ***P<0.001, **P<0.01, and *P<0.05. The risk score 
model and clinicopathological variables were incorporated in 
the multivariate logistic model, which was used to produce a 
nomogram to estimate the survival rate of COAD patients. 

Risk score model and immune-related component 
correlations

The Wilcoxon signed-rank test was used to determine 
whether there was difference in gene expression between 
the two risk score groups. To assess the relationships 
between the risk score and tumor-infiltrating immune cells 
(TIICs), we used a few widely used algorithms, including 
XCELL, TIMER, QUANTISEQ, MCPCOUNTER, 
EPIC, CIBERSORTABS, and CIBERSORT. The statistical 
significance was set at P<0.05.

Chemosensitivity prediction

Genomics of Drug Sensitivity in Cancer (GDSC) database 
(https://cancerrxgene.org) can be utilized to do large-
scale drug screening. Combining genetic analysis with 
chemotherapy, medication responses can be systematically 
discovered. Based on the GDSC database, the half-
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maximum inhibitory concentration (IC50) of 30 commonly 
used chemotherapy drugs for gastrointestinal tumors was 
calculated, and an evaluation of this model’s clinical use in 
the treatment of COAD was conducted. In the above steps, 
the R package “pRRophetic” was utilized. The Wilcoxon 
signed-rank test was then used to assess the difference in 
IC50 between the high-risk group and low-risk group. To 

illustrate the data, box drawings were generated in R using 
“pRRophetic” and “ggplot2” (23).

Statistical analysis

The HTSeq FPKM and simple nucleotide variation data 
were extracted and structured using Perl software (version 
5.32). The differentially expressed lncRNAs were identified 
using the Benjamini-Hochberg technique based on the log 
fold change and FDR. The Kaplan-Meier method was used 
to evaluate the survival analyses of COAD patients based on 
the risk score model. The Cox regression model was used 
for multivariate analysis. The studies were carried out using 
R software 4.0.5 and Bioconductor packages.

Results

Data characteristics

The current study included 473 COAD and 41 adjacent 
healthy tissues with expression data. Table 1 shows the 
clinical information for the patients (n=452), including age, 
gender, stage, T status, N status, and M status. Twenty-
three m6A-related genes in total were obtained from one 
earlier article (16). There were 579 lncRNAs identified as 
m6A-related lncRNAs in total. After that, 243 of them were 
found to have differently expressed m6A-related lncRNAs 
(232 of which were upregulated and 11 of which were 
downregulated), which were displayed using a heatmap 
(Figure 1A) and a volcano plot (Figure 1B).

Creation of a predictive model with m6A-related lncRNA 
pair risk scores

A 0-or-1 matrix of 14,980 m6A-related lncRNA pairs was 
built for a more objective prognostic evaluation model 
that did not require normalization of individual expression 
values. Univariate Cox proportional hazards regression 
analyses indicated that 318 m6A-related lncRNA pairs were 
prognostic-associated lncRNA pairs. After performing 
LASSO regression analysis on the training cohort, a 
predictive signature containing 26 m6A-related lncRNA 
pairs was established. The risk score model’s AUC for the 
1-year survival rate in the training and validation cohort 
were 0.926 and 0.979, correspondingly (Figure S1A,S1B).  
In both the training cohort and the validation cohort, survival 
analyses revealed a substantial difference between the high- 
and low-risk groups (Figure S1C,S1D). Following that, 

Table 1 The clinical characteristics of COAD patients in the 
TCGA dataset

Variables Values (N=452)

Age (years)

<65 169

≥65 283

Gender

Male 214

Female 238

Stage

I 76

II 178

III 125

IV 62

NA 11

T

T0 0

Tis 1

T1 10

T2 77

T3 308

T4 56

N

N0 269

N1 103

N2 80

M

M0 334

M1 62

NA 56

COAD, colon adenocarcinoma; TCGA, The Cancer Genome 
Atlas; NA, not applicable; T, tumor; N, node; M, metastasis.

https://cdn.amegroups.cn/static/public/TCR-23-1883-Supplementary.pdf
https://cdn.amegroups.cn/static/public/TCR-23-1883-Supplementary.pdf
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Figure 1 Differentially expressed m6A-related lncRNAs in COAD. (A) Differentially expressed m6A-related lncRNAs in COAD visualized 
by a heatmap; (B) differentially expressed m6A-related lncRNAs in COAD represented by a volcano plot. Red dots: m6A-related lncRNA is 
a risk factor for the prognosis of patients with COAD; green dots: m6A-related lncRNA is a protective factor for the prognosis of patients 
with COAD; black dots: no significant relationship between m6A-related lncRNAs and prognosis of COAD patients. FDR, false discovery 
rate; FC, fold change; lncRNA, long non-coding RNA; COAD, colon adenocarcinoma; m6A, N6-methyladenosine.
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we built a risk score model using data from the complete 
cohort. A prognostic signature with 35 m6A-related 
lncRNA pairs was created after LASSO regression analysis  
(Figure 2A-2C). Table 2 lists the 35 m6A-related pairs along 
with the appropriate calculation coefficients. LncRNAs 
sequences were acquired from GENCODE. For the 1-, 
3-, and 5-year survival rates, the AUCs were 0.938, 0.933, 
and 0.930 (Figure 3A). Additionally, we determined that the 
ideal cut-off point on the 1-year ROC curve was the greatest 
inflection point of 20.296 (Figure 3B). Furthermore, the 
risk score model outperformed standard clinicopathological 
factors like age, gender, and stage in predicting the OS of 
COAD patients, according to our findings (Figure 3C).

Clinical connection of the prognostic model and prediction 
evaluation

Using the previously established cut-off point, 344 patients 
were assigned to the low-risk group and 82 to the high-risk 
group. According to the risk assessment model for prognosis 
prediction, there were more deaths as the risk score rose 
(Figure 4A,4B). Analysis of survival data showed that the high-
risk group had significantly lower OS than the low-risk group 

(Figure 4C). In the univariate analysis, age (P=0.09), T status, 
N status, M status, and risk score model were found to be 
significant risk factors (all P<0.001) (Figure 4D). Multivariate 
analysis supported the risk score model (P<0.001), T status 
(P<0.001), and M status (P=0.03) as independent predictive 
variables (Figure 4E). Additionally, the risk score model was 
substantially correlated with the T status, N status, M status, 
and stage, according to our findings (Figure 5). Furthermore, 
a precise predictive nomogram using the risk score model and 
typical clinicopathological traits was developed for predicting 
1-, 3-, and 5-year OS probabilities. This nomogram could be 
useful in the clinical assessment of COAD patients (Figure 6).

Correlations between the risk score model and  
immune-related factors

In consideration of the increasing evidence on the 
correlation between immunological features and survival in 
malignant tumors, the correlation between risk score model 
and TIICs was investigated. The results showed that the 
high-risk group was associated with CD8+ T cells, CD4+ 
T cells, and macrophage, whereas the low-risk group was 
associated with neutrophils, B cells, and NK cells (Figure 7).



Translational Cancer Research, Vol 13, No 7 July 2024 3709

© Translational Cancer Research. All rights reserved.   Transl Cancer Res 2024;13(7):3704-3717 | https://dx.doi.org/10.21037/tcr-23-1883

 −4.5 −4.0 −3.5 −3.0 −2.5
Log(λ)

 −4.5 −4.0 −3.5 −3.0 −2.5
Log lambda

 121 109 98 91 83 81 80 76 71 59 43 13 2 0  109 84 78 59 9

26

24

22

20

18

16

14

12

1.0

0.5

0.0

−0.5

−1.0

P
ar

tia
l l

ik
el

ih
oo

d 
de

vi
an

ce

C
oe

ffi
ci

en
ts

0 1 2 3 4 5
Hazard ratio

AC068790.5|AC016831.4
AC002116.2|OGFRP1
AC026356.1|AC026368.1
AP000866.6|GK-AS1
AP002336.2|AL121895.2
AC145207.8|ALG13-AS1
AL137782.1|ZNF433-AS1
LINC00513|LMO7-AS1
AC027228.2|AC156455.1
AC027228.2|MIR100HG
SP2-AS1|AC048344.4
AL031716.1|AC008760.1
AC090152.1|AL158837.1
AL136115.2|AC004837.2
AC010542.5|AP006621.2
AC007342.5|AL138689.1
AC112496.1|AC084117.1
LINC02163|AC100814.1
PAN3-AS1|AC008115.3
AL117379.1|ZKSCAN2-DT
GK-AS1|AC084117.1
AC026368.1|LINC02577
AC104695.3|AC108134.3
ALG13-AS1|AL355075.2
AC010536.2|AL121895.2
ABALON|AC090116.1
CD44-AS1|ARHGEF38-IT1
AC004241.3|AL138689.1
AL031673.1|AL161729.4
SNHG10|AC156455.1
AL354993.2|AC002128.2
FAM222A-AS1|AC156455.1
AC106820.3|AC103591.3
MBNL1-AS1|LINC01138
AF117829.1|AC020978.3

0.002 
0.007 
0.006 
0.001 
0.007 
0.009 
0.007 
0.001 
0.009 
0.002 
0.007 
0.003 
0.002 

<0.001 
0.005 
0.009 
0.006 
0.007 
0.006 
0.008 
0.003 
0.009 
0.008 
0.002 
0.005 
0.002 
0.005 
0.006 
0.008 

<0.001 
0.002 
0.006 
0.008 
0.006 
0.009

2.382 (1.368–4.148) 
1.968 (1.203–3.219) 
2.152 (1.239–3.736) 
2.011 (1.325–3.052) 
0.527 (0.331–0.839) 
0.546 (0.346–0.859) 
0.502 (0.303–0.831) 
0.484 (0.309–0.757) 
0.554 (0.355–0.864) 
0.514 (0.336–0.785) 
0.547 (0.354–0.847) 
0.387 (0.206–0.728) 
0.520 (0.341–0.793) 
2.228 (1.434–3.460) 
0.531 (0.341–0.829) 
0.568 (0.371–0.870) 
0.484 (0.290–0.808) 
1.782 (1.173–2.706) 
1.816 (1.185–2.784) 
0.563 (0.369–0.858) 
0.498 (0.316–0.786) 
0.569 (0.373–0.870) 
1.785 (1.164–2.740) 
1.907 (1.256–2.896) 
1.839 (1.205–2.808) 
0.523 (0.345–0.792) 
2.230 (1.273–3.907) 
0.557 (0.368–0.844) 
0.564 (0.370–0.860) 
0.452 (0.285–0.717) 
1.927 (1.262–2.944) 
0.544 (0.352–0.841) 
1.746 (1.154–2.640) 
0.366 (0.179–0.749) 
2.303 (1.226–4.326)

Hazard ratio (95% Cl)P value

BA

C

Figure 2 Creation of a prognostic model with m6A-related lncRNA. (A,B) Creation of a prognostic model based on LASSO regression 
analysis; (C) univariate Cox regression analysis. 95% CI, 95% confidence interval; m6A-related lncRNAs, N6-methyladenosine-related long 
non-coding RNAs; LASSO, least absolute shrinkage and selection operator.

Correlations between the risk score model and sensitivity to 
anticancer drugs 

In order to determine potential treatment modalities for 
COAD, the sensitivity to 30 common anticancer drugs 
between the high- and low-risk groups were compared 
(Figure 8A). According to the findings, patients in high-
risk groups had lower IC50 values for the Food and Drug 
Administration (FDA)-approved antitumor medicines 
rapamycin, lenalidomide, embelin, and dimethyloxallyl 
glycine (DMOG) (Figure 8B). In this context, these drugs 
have the potential to be applied in the treatment for COAD 

patients in the high-risk group in the future.

Discussion

m6A is an RNA modification that interacts with mRNAs 
and lncRNAs, and affects almost all biological functions 
of tumor cells. For example, METTL14, an m6A writer, 
is relevant to CRC progression by modulating SOX4 
expression (24). Recent study found that LINC00460 
improved HMGA1 mRNA stability and protein expression 
by directly interacting with IGF2BP2 and DHX9 to bind 



Liang et al. Establish a COAD m6A-related lncRNA pair prognostic model3710

© Translational Cancer Research. All rights reserved.   Transl Cancer Res 2024;13(7):3704-3717 | https://dx.doi.org/10.21037/tcr-23-1883

Table 2 The list of lncRNA pairs and corresponding calculation 
coefficients

lncRNA pair Coefficient

AC068790.5|AC016831.4 0.858997115

AC002116.2|OGFRP1 0.742623573

AC026356.1|AC026368.1 0.903499701

AP000866.6|GK-AS1 1.418833278

AP002336.2|AL121895.2 −0.742888613

AC145207.8|ALG13-AS1 −0.607202023

AL137782.1|ZNF433-AS1 −1.564661653

LINC00513|LMO7-AS1 −1.460502637

AC027228.2|AC156455.1 −0.654081795

AC027228.2|MIR100HG −0.775889553

SP2-AS1|AC048344.4 −0.833135322

AL031716.1|AC008760.1 −0.896116458

AC090152.1|AL158837.1 −0.913222126

AL136115.2|AC004837.2 1.150803418

AC010542.5|AP006621.2 −0.866521051

AC007342.5|AL138689.1 −0.477772369

AC112496.1|AC084117.1 −0.826878942

LINC02163|AC100814.1 0.812451829

PAN3-AS1|AC008115.3 0.737068795

AL117379.1|ZKSCAN2-DT −1.251469056

GK-AS1|AC084117.1 0.699519969

AC026368.1|LINC02577 −0.876128589

AC104695.3|AC108134.3 0.528219693

ALG13-AS1|AL355075.2 1.055026661

AC010536.2|AL121895.2 0.923678667

ABALON|AC090116.1 −0.728559966

CD44-AS1|ARHGEF38-IT1 1.422617605

AC004241.3|AL138689.1 −0.670518358

AL031673.1|AL161729.4 −1.015071998

SNHG10|AC156455.1 −0.681577301

AL354993.2|AC002128.2 0.453187294

FAM222A-AS1|AC156455.1 −0.529227502

AC106820.3|AC103591.3 1.098883888

MBNL1-AS1|LINC01138 −1.673238208

AF117829.1|AC020978.3 0.62944427

lncRNA, long non-coding RNA.

the 3’ untranslated region (UTR) of HMGA1 mRNA. M6A 
modification of HMGA1 mRNA by METTL3 enhanced 
HMGA1 expression in CRC (25). Lu and his coworkers 
revealed that the m6A reader IMP2 worked ZFAS1, and that 
these two factors work together to induce CRC by boosting 
mitochondrial energy metabolism (26). It was reported 
that YTHDF1, an m6A reader, effectively synergizes 
with cisplatin by inhibiting protein synthesis of GLS1 to 
induce colon cancer cell death (27). In addition, Zhang  
et al. summarized the mutual regulation mechanism of m6A 
modification and lncRNA in tumors, further indicating that 
not only m6A can regulate the level of lncRNA, but also 
lncRNA can manipulate the level of m6A modification and 
biological effects by regulating demethylase and methyl-
binding protein (28). These investigations showed that m6A 
is essential for regulating the development and division of 
colon cancer cells and that it works in synergy with drugs to 
cause colon cancer cell death. Additionally, researches have 
showed that m6A-related lncRNA signatures can be utilized 
to anticipate prognosis, improve risk analysis for survival, 
and enable tailored treatment in CRC (29-31). Xue et al. 
established a prognostic model of disulfidptosis-associated 
lncRNA in COAD, and the AUCs of 1-, 3-, and 5-year 
survival rates were 0.679, 0.703, and 0.744, respectively (32).  
A study has shown that  lncRNAs such as  ESRG, 
LINC00518 and PWRN1 can be used as diagnostic and 
prognostic biomarkers in COAD (33). Compared with the 
above prognostic models, our model has better predictive 
value and we identified a brand-new m6A-related lncRNA 
pair predictive model for COAD. There are certain practical 
issues with these models. These forecasting algorithms 
were developed using the particular expression levels of the 
discovered lncRNAs. Before applying the measurements in 
a clinical setting, to remove batch effects between different 
testing platforms, the measured results must be standardized. 
We created the brand-new m6A-related lncRNA pair 
predictive model for COAD. The area under the curve 
(AUC) for predicting 1-, 3-, and 5-year survival rates 
demonstrated outstanding predictive accuracy, with values 
of 0.938, 0.930, and 0.916, respectively. Our prognostic 
signature, which included 35 m6A-related lncRNA pairs, 
was verified by Cox regression analysis to be an independent 
predictive factor. Notably, it was better at predicting the OS 
for COAD than frequent clinicopathological factors. More 
crucially, the signature was created by pairing, iteration, and 
a novel modeling technique; as a result, it may be used more 
effectively in clinical settings.

The  immune  microenv i ronment  i s  c ruc i a l  in 
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carcinogenesis. Infiltrating immune cells may work to 
antagonize tumors or to promote tumors (34,35). Cancer 
cells have evolved multiple mechanisms to escape immune 
surveillance, resulting in cancer development (36). In 
recent years, immunotherapy has been innovated in cancer 
treatment and has demonstrated remarkable success (37,38). 
Furthermore, m6A and immunity are intimately related (39).  

M6A can regulate a wide range of immune cells and has 

a number of regulatory modes and processes, including 
influencing T cell development, regulatory T cell status, 
and dendritic cell maturation (40). A recent study has shown 
that m6A methylation is a key epigenetic modification in the 
differentiation of tumor-associated macrophages in CRC, 
and METTL3 knockdown can promote the invasiveness 
of CRC by down-regulating miR-146b (41). In this work, 
we examined the correlation between the risk score model 
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Figure 8 Estimated drug sensitivity in patients with high- and low-risk groups. (A) The sensitivity to 30 common anticancer drugs between 
the high- and low-risk groups; (B) IC50 values for the antitumor medicines rapamycin, lenalidomide, embelin, and DMOG. IC50, half-
maximum inhibitory concentration; DMOG, dimethyloxallyl glycine.

and variables related to the immune system. The findings 
demonstrated that the high-risk group was connected 
to more TIICs, such as CD4+ T cells, CD8+ T cells, and 
macrophages, in contrast, the low-risk group exhibited a 
higher association with TIICs, such as neutrophils, B cells, 
and NK cells. The discovery that m6A-related lncRNAs 
were connected to immune cell infiltration in COAD may 
help us identify new treatment targets. Despite recent 
advances in tumor immunotherapy, the overall therapeutic 
impact of COAD is unsatisfactory. Therefore, creating 
multimode therapy and biointegration targets is required. 
Further investigation is needed to explore the association 
between COAD and lncRNAs related to m6A modification.

Typically, patients with high-risk COAD undergo a 
combination of chemotherapy and surgery as part of their 
treatment regimen. By utilizing the GDSC database, we 
found that high-risk individuals demonstrated greater 
sensitivity to commonly prescribed chemotherapeutic 
drugs (such as lenalidomide, embelin, DMOG, and 
rapamycin) compared to low-risk patients. This discovery 

has the potential to unveil novel treatment possibilities for 
patients with COAD. Although lenalidomide’s anticancer 
mechanism is still not fully understood, it appears to cause 
angiogenesis inhibition and immunomodulation (42). In 
the tumor environment, embelin boosted the infiltration 
of CD8+ T cells, NK cells, and mature dendritic cells 
while decreasing the number of regulatory T cells (43). 
Rapamycin, the first naturally occurring mammalian target 
of rapamycin (mTOR) inhibitor, prevented the growth of 
CRC cells that were susceptible to rapamycin (44). Further 
clinical trials are necessary to assess the effectiveness of 
these chemotherapeutic drugs in patients with COAD.

There are some limitations in this study. First, additional 
experimental confirmation is needed as we can only draw 
inferences from bioinformatics research. Second, more 
samples should be included in the future.

Conclusions

In conclusion, the m6A-related lncRNA pairs in COAD 
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were systematically identified and analyzed for the first time 
in the research. We have identified m6A-related lncRNA 
pairs that hold prognostic value and have developed a novel 
risk model that demonstrates excellent predictive ability for 
prognosis and survival status. The risk score is a new and 
potential biomarker since it has a strong correlation with 
the malignant clinicopathological characteristics of COAD. 
Moreover, our findings offer crucial support for additional 
research on the role of m6A-related lncRNA pairs in 
COAD, which may offer fresh perspectives on how to direct 
an efficient immunotherapy regimen for COAD. 
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