
Frontiers in Immunology

OPEN ACCESS

EDITED BY

Guido Moll,
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Systemic sclerosis (SSc) is a chronic autoimmune disease that includes fibrosis,

diffuse vasculopathy, inflammation, and autoimmunity. Autologous

hematopoietic stem cell transplantation (auto-HSCT) is considered for

patients with severe and progressive SSc. In recent decades, knowledge

about patient management and clinical outcomes after auto-HSCT has

significantly improved. Mechanistic studies have contributed to increasing

the comprehension of how profound and long-lasting are the modifications

to the immune system induced by transplantation. This review revisits the

immune monitoring studies after auto-HSCT for SSc patients and how they

relate to clinical outcomes. This understanding is essential to further improve

clinical applications of auto-HSCT and enhance patient outcomes.

KEYWORDS

systemic sclerosis, hematopoietic stem cell transplantation, immune reconstitution,
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Introduction

Autologous hematopoietic stem cell transplantation (auto-HSCT) is considered for

patients with severe and progressive autoimmune diseases. In the past 30 years, much has

improved in the field, especially concerning patient care. Developments in patient

selection, choice of conditioning regimens, and intra-transplant patient management
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have significantly decreased transplant-related toxicity and

improved patient outcomes (1). Recently, auto-HSCT has been

included in the recommendations for treating diseases such as

systemic sclerosis and multiple sclerosis (2–4). For the

remaining autoimmune diseases, transplants are mostly

limited to clinical trials.

Auto-HSCT eliminates abnormal immune cells and

reconstitutes a new, self-tolerant, long-lasting immunological

system (1, 5). As a first phase of the procedure, autologous

hematopoietic stem and progenitor cells are mobilized from the

bone marrow to the peripheral blood, harvested by apheresis,

and subsequently cryopreserved (1). Then, a conditioning

regimen is administered to ablate the patient’s autoreactive

immune system using chemotherapy or radiation agents

associated with lymphocyte-depleting strategies, either by

antibodies or graft selection (6). The conditioning regimen

may be myeloablative, such as total body irradiation, or less

intense, such as high-dose cyclophosphamide (1, 7). Reduced-

intensity regimens are safer and usually preferred by most

transplant centers to treat autoimmune diseases. However,

some authors debate that myeloablative regimens may

promote better control of autoreactivity and therefore longer

lasting disease control (8). Finally, the previously collected cells

are reinfused intravenously to the patient and warrant

reconstitution of the immune system. These cells may be

administered unselected or undergo CD34+ selection, which is

also debated. While unselected grafts may increase the risk of

reinfusing autoreactive cells and perpetuating the autoimmune

disorder, selected grafts delay immune reconstitution and may

increase the risk of viral infections (9, 10). Following autologous

cell infusion, neutrophil engraftment usually occurs within two

weeks, which is very similar to the time for engraftment of

neutrophils following autologous and allogeneic transplants for

conventional hematological indications using peripheral blood

as source for hematopoietic stem and progenitor cells (11–13).

In most cases, the newly recovered immune system is self-

tolerant and allows control of the disease activity without

further immunosuppressant drugs.

Immune monitoring studies have shown profound and long-

lasting changes in the immune system of patients with

autoimmune diseases treated with auto-HSCT (14–20).

Table 1 summarizes the main clinical studies on multiple

sclerosis, systemic lupus erythematosus, type 1 diabetes,

idiopathic juvenile arthritis, and Crohn’s disease that address

how the autoimmune pathology is affected by auto-HSCT.

Additional mechanisms, specific to auto-HSCT in SSc patients,

will be discussed later in this review. Collectively, these studies

show a modulation of the inflammatory and autoreactive profile,

reactivation of thymic function, increased diversity of the T cell

receptor (TCR) repertoire, and improvement of regulatory

mechanisms after auto-HSCT (21–38). Importantly, these

studies show that patients who reactivate the autoimmune

disease after auto-HSCT have a different post-transplant
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immune profile than those with sustained clinical remission.

Multiple sclerosis patients who fail to respond to auto-HSCT

present less diversity in the T cell receptor (TCR) repertoire early

in the immune reconstitution process, when compared to

patients that remain in remission (17). Similarly, SSc patients

who reactivate the disease after auto-HSCT have lower

regulatory T and B cell counts, less TCR repertoire diversity,

and lower PD-1 expression on lymphocytes when compared to

patients with sustained disease control (20, 39). Type 1 diabetes

patients that remain insulin-free for longer periods after auto-

HSCT have improvement of the immunoregulatory cell

frequencies, not detected in patients with shorter insulin

independency (31).

These evaluations are essential to understanding

mechanisms and indicate possible pathways to be improved in

the clinic. This review revisits the immune monitoring studies

after auto-HSCT, specifically in SSc patients, and how they relate

to clinical outcomes.
Clinical outcomes of systemic
sclerosis patients after transplantation

Systemic sclerosis is a chronic autoimmune disease with

complex pathogenesis that includes diffuse microvasculopathy,

fibrosis, and inflammation (40). Skin fibrosis is the hallmark of

the disease, but internal organ involvement, mainly heart and

lungs, is frequent and usually associated with a poor prognosis

(41) . Convent ional treatment is based mainly on

immunosuppressive and vasodilator approaches, with

antifibrotics paving the way more recently, and has modest

benefit in controlling disease progression (42). Patients with

severe and progressive disease benefit from auto-HSCT, and

SSc is a growing indication in the field. According to

international registries, the number of SSc patients that

undergo auto-HSCT has nearly doubled in the past ten years

(1), and patient outcomes have improved (43).

Over the years, knowledge about patient selection and intra-

transplant management has significantly reduced transplant-

related mortality to the current rate of 3 to 5%. Nevertheless,

SSc is still an autoimmune disease with high transplant-related

mortality, primarily due to baseline organ involvement, mainly

the heart (44). Recent strategies to decrease cardiac toxicity

associated with auto-HSCT include extensive cardiac

evaluations before enrolling for transplant and conditioning

regimens with lower doses of cyclophosphamide, a drug

known to potentially damage the heart (43, 45). Further

studies will show if such interventions impact long-term

patient outcomes.

Since the early 2000s, phase I and II studies have shown the

potential of auto-HSCT to reverse skin involvement and at

least stabilize interstitial lung disease in patients with SSc
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(46–52). There is a significant reduction of the modified

Rodnan’s skin score (mRSS), used to clinically quantify the

extent and severity of cutaneous involvement, mainly in the

first year after auto-HSCT. The pulmonary function also ceases

to decline after the procedure, indicating stabilization of lung
Frontiers in Immunology 03
disease, and some studies were even able to show improvement

of forced vital capacity measurements (52–54). Moreover,

patients increase their quality of life and functional capacity

measured by the six-minute walk test after auto-HSCT,

independence and well-being indicators (55, 56). Three
TABLE 1 Main clinical studies on autologous HSCT for autoimmune diseases (systemic sclerosis excluded) addressing mechanisms.

Diseases References Study design Clinical evidence Immune mechanism

Multiple Sclerosis Muraro et al. (2005)
(21)

7 patients
2-year follow-up

Long-lasting clinical remission Reactivation of thymic function (RTEs)
Renewal of the TCR repertoire

Darlington et al. (2013)
(22)

14 patients
2-year follow-up

Long-lasting clinical remission
Abrogation of new disease
activity

Reactivation of thymic function (RTEs, TRECs)
Diminished capacity for Th17 responses
Transient increase in FOXP3+ T cells

Abrahamsson et al.
(2013) (23)

12 patients
2-year follow-up

EDSS improvement Increase in FOXP3+ cells and CD56high natural killer cells
Depletion of pro-inflammatory CD8+cells subsets

Muraro et al. (2014)
(24)

24 patients
1-year follow-up

Disease control (remission/
relapse)

New repertoire of CD4+cells and clonal expansion CD8+cells

de Paula Souza et al.
(2015) (25)

16 patients
2-year follow-up

EDSS improvement Normalization of gene expression in CD8+and CD4+ T cells

Arruda et al. (2015)
(26)

24 patients
2-year follow-up

EDSS improvement Increase in FOXP3+ cells and expression of CTLA-4 and GITR
on CD4+CD25high T cells
Modulation of immunoregulatory genes
Homeostatic proliferation

Cull et al. (2017) (27) 13 patients
2-year follow-up

EDSS stabilization
69% progression-free survival
at 3 years

Reactivation of thymic function
Decrease in T-regulatory cells
Transient decrease in Th17 cells

Type 1 Diabetes Li et al. (2012) (28) 13 patients
31 to 54-month
follow-up

Reduced doses of insulin
Reduced levels of glycosylated
hemoglobin

Reduced levels of serum autoantibodies Reduced levels of IL-1,
IL-17 and TNF-a
Recovery of lymphocyte subsets

de Oliveira et al. (2012)
(29)

14 patients
1-year follow-up

Insulin-free remission
GAD65 levels

Modulation of pro-apoptotic genes

Zhang et al. (2012) (30) 9 patients
12-month follow-
up

Insulin-free remission Recovery of lymphocyte subsets
Modulation of T cell-related genes

Malmegrim et al.
(2017) (31)

21 patients
72-month follow-
up

Long-term insulin-free
remission
Increase in C-peptide levels

Thymic reactivation (TRECs)
Increased TCR diversity
Decreased effector-memory CD4+ T cells
Expansion of immunoregulatory T cells Decreased frequencies of
islet-specific autoreactive CTLs

Ye et al. (2017) (32) 18 patients
12-month follow-
up

Decrease in anti-GAD levels
Increase in C-peptide levels
Reduced doses of insulin

Reduced Th1 and Th17 cell frequencies
Changes in cytokine patterns
Modulation of regulatory genes

Systemic Lupus
Erythematosus

Alexander et al. (2008)
(33)

7 patients
96-month follow-
up

Clinical remission
Decreased ANA titers

Thymic reactivation
Increased TCR diversity
Regeneration of FoxP3+ T cells
Recovery of CD19 B cell subsets

Zhang et al. (2009) (34) 15 patients
8-year follow-up

Clinical remission Sustained elevation of FoxP3+ T cells

Juvenile Idiopathic
Arthritis

de Klee et al. (2006)
(35)

12 patients
2-year follow-up

– Restoration CD4+CD25high T cell
Reprogramming of autoreactive T cells

Brinkman et al (2007)
(36)

22 patients
80 months follow-
up

Clinical remission Recovery of lymphocyte subsets

Wu et al. (2014) (37) 5 patients
3-year follow-up

Clinical remission TCR diversity

Crohn’s Disease Corraliza et al. (2015)
(38)

18 patients
One-year follow-
up

50% endoscopic drug-free
remission

Expansion of naive B cells in the blood and intestinal mucosa.
Intestinal T cell depletion correlating with mucosal healing
(endoscopic remission)
RTE, recent thymic emigrants; TCR, T cell receptor repertoire; TREC, T-cell receptor excision circles; EDSS, Expanded Disability Status Scale; FOXP3, forkhead box P3; GITR,
Glucocorticoid-induced TNFR related protein; GAD65, glutamic acid decarboxylase; CTL, Cytotoxic T lymphocytes; ANA, antinuclear antibodies.
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randomized-controlled trials plus a non-randomized

comparative study have proven the superiority of auto-HSCT

over standard treatment with intravenous cyclophosphamide

pulses in improving overall survival, progression-free survival,

and quality of life (53, 57–59). These critical studies show that,

unlike conventional treatment, auto-HSCT can change the

course of the disease.

However, although patient outcomes have improved after

auto-HSCT, a few questions remain unanswered. SSc-

reactivation over the 5 to 7 years that follow auto-HSCT is

estimated at approximately 20% of patients (44, 52, 57, 58, 60).

We cannot predict or early detect patients that will

reactivate the disease after auto-HSCT. Additional immune

reconstitution studies are essential to answer these and other

questions (Table 2).
Immunological outcomes of
systemic sclerosis patients after
auto-HSCT

Reconstitution of innate immune cells in
SSc after auto-HSCT

The innate immune system has a critical role in SSc

pathogenesis (74, 75). Neutrophils from SSc patients exhibit

distinct phenotypic and functional changes, such as deficiencies

in cell migration, phagocytosis, and chemokine receptor

expression (76). Monocytes are also in disbalance in dcSSc

(diffuse cutaneous systemic sclerosis) since high numbers of

circulating CD16+ monocytes have been detected and correlated

with the severity of skin fibrosis (77). These cells further display

the potential to differentiate into myofibroblasts, the primary cell

type responsible for depositing extracellular matrix components

(ECM) and fibrosis (78). Likewise, there are increased numbers

of circulating natural killer (NK) cells with activated phenotype

in dcSSc, and they produce high levels of IL-6 under stimulation

(79). Differently, plasmacytoid dendritic cells (pDC) are reduced

in the blood of SSc patients but accumulate in the skin and lungs,

correlating with inflammation, leukocyte migration, and wound

repair protein levels (80).

Most immune monitoring studies of auto-HSCT in

autoimmune diseases have focused on the reconstitution of

adaptive immune cells (81, 82). Nevertheless, a clear

understanding of the reconstitution of all immune cells may

be essential to predicting transplantation outcomes and

improving patient care (83). Innate immune cells recover

earlier after auto-HSCT than those from the adaptive system

(61), indicating that they contribute to the regeneration of the

adaptive immune system in SSc patients after auto-HSCT

(Figure 1) (83).
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Neutrophils are the first innate cell type to reconstitute,

generally within the first 14 days after auto-HSCT (81, 84).

Whole blood transcriptome from SSc patients show a significant

decrease in neutrophil gene expression signatures after auto-

HSCT compared to baseline, which also correlates with lung

function improvements. However, it remains unknown if the

transcriptional changes affect cell phenotype and function (68).

Indeed, knowledge about the reconstitution of neutrophils and

other granulocytes after auto-HSCT in SSc patients remains to

be explored.

Reconstitution of NK cells also occurs early following auto-

HSCT (Figure 1) (61, 81). CD56+ NK cells emerge within the

first 30 days after the transplantation procedure (81). Cytotoxic

NK cells transcript signature increases in dcSSc patients after

auto-HSCT and correlates with a decline in skin fibrosis

measured by mRSS (68). These results suggest that the

transcriptomic signatures of the innate immune cells are

normalized following transplantation and indicate a possible

immunomodulatory role for the innate immune system early

after auto-HSCT (68). Nonetheless, viral infections during

transplantation may influence the function of the reconstituted

NK cells. A case report of a SSc patient showed that

cytomegalovirus (CMV) pneumonia after auto-HSCT was

partially due to a hyperreactive NK cell response (85).

Monocytes may also have an essential function in

controlling the immune response in the new post-

transplantation microenvironment. CD14+ monocytes from

blood samples of transplanted patients with hematological/

immunological diseases, collected within the first six months

after auto-HSCT, suppress T cell proliferation in vitro compared

to healthy subjects (86). In SSc patients, serum levels of

chemokines and cytokines related to the alternatively activated

M2 phenotype, such as CCL-18, IL-6, and MCP-1, were

significantly diminished after auto-HSCT. At the same time,

no changes occurred in patients treated with monthly

intravenous cyclophosphamide infusions (68). In another

cohort, SSc patients treated with auto-HSCT had reduced

serum concentrations of platelet-derived growth factor

(PDGF) (65), an important molecule involved in fibrosis,

playing a central role in the expansion of ECM-producing

cells (87).

Recently, van der Kroef et al. (88) showed that the number of

circulating monocytes positively correlated with plasma

concentrations of PDGF-BB in SSc patients. These results

suggest that reductions in PDGF and other circulating pro-

fibrotic mediators after auto-HSCT could be related to

functional changes in monocytes and macrophages. These

results highlight a possible role of monocytes in regulating T

cell responses after auto-HSCT in SSc patients (Figure 1). We

encourage future immune monitoring studies to determine the

role of monocyte subsets in SSc pathogenesis and immune

regulation after auto-HSCT (83).
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TABLE 2 Overview of studies that evaluated immune reconstitution and clinical outcomes in SSc patients treated with auto-HSCT.

References Number
of patients

Duration of
follow-up
(mo)

Biological
samples

Clinical evaluation Laboratory analyses Clinical
association

Storek et al. (2004)
(61)

30 1, 3, 6, 12, and 24 PBMC Infection rates Antibody levels
CDR3 spectratyping
Immunophenotyping
Thymic size

Infection rates

Farge et al. (2005)
(14)

7 3, 6, 9 and 12 PBMC Cardiac and renal function
HAQ
mRSS

CDR3 spectratyping
Immunophenotyping
TRECs assay

Response or a
relapse of disease

Bohgaki et al.
(2009) (62)

10 3, 6 and 12 PBMC
Serum

Cardiac, pulmonary, renal function
mRSS

Antibody levels
Foxp3 mRNA levels
Immunophenotyping
sjTREC assay

Response or a
relapse of disease

Fleming et al.
(2008) (63)

7 Until 72 Skin biopsies Capillary counts, mRSS, MHAQ Immunohistochemistry and
mRNA in situ hybridization

–

Tsukamoto et al
(2011) (64)

11 1, 3, 6, 12, 24 and
36

PBMC
Serum

mRSS
DLCO
Kl-6
SP-D

Antibody levels
Cytokine levels
Immunophenotyping

mRSS

Baraut et al. (2014)
(18)

7 24 PBMC mRSS Immunophenotyping
suppressive capacity assay

–

Michel et al
(2016) (65)

20 6, 12, 24, 36 and 48 Serum mRSS Cytokine levels –

Farge et al
(2017) (66)

10 24, 36, 48, 60, and
72

PBMC
Serum

FVC
mRSS

Antibody levels
Immunophenotyping
TCR repertoire

Response or a
relapse of disease

Arruda et al.
(2018) (39)

31 6, 12, 24 and 36 PBMC
Serum

mRSS
C-reactive protein

Antibody levels
Cytokine levels
Immunophenotyping
Quantification of sjTREC,
bTREC and Cj and sjKREC
TCR repertoire

Response or a
relapse of disease

Arruda et al
(2018) (67)

25 6, 12, 24 and 36 PBMC
Serum

mRSS
Lung, Gastrointestinal and renal
involvement
C-reactive protein

Antibody levels
Cytokines levels
Immunophenotyping
Quantification of telomere
length

Response or a
relapse of disease

Assassi et al.
(2019) (68)

62 8 and 26 Whole blood
Serum

FVC
mRSS

Gene expression profiling
Serum protein composite
score

FVC
mRSS

Gernert et al
(2019) (69)

6 1, 2, 3, 5-7, 12-16 PBMC – Immunophenotyping
Cytokines measuring

–

Gernet et al
(2020) (70)

17 4-14 Whole blood mRSS
Lungs and heart fuction

Immunophenotyping Infectious
complications

Arruda et al.
(2020) (71)

8 18 (mean) PBMC mRSS
Lung function

TCR diversity
Frequency of CMV-specific
clonotypes

Responder/non-
responders/relapse

Lima-Júnior et al.
(2021) (20)

22 1, 2, 3, 6, and 12 PBMC
Serum

mRSS
Lungs, heart, kidney and gastrointestinal
tract function

Antibody levels
Cytokines levels
Immunophenotyping
Suppressive capacity assay
Signaling pathways

Responder/non-
responders/relapse

Santana-Gonçalves
et al. (2022) (72)

27 0,6,12,18,24,30 and
36

Serum
Skin biopsies

mRSS
Lungs, heart, kidney, gastrointestinal
tract function and vascular involvement.

Cytokines levels
Immunostaining in skin
biopsies

Severity disease

Zanin-Silva et al.
(2022) (73)

39 0 and 12 Serum
Skin biopsies

mRSS
Lungs, heart, kidney and gastrointestinal
tract function

Cytokines levels
Immunostaining in skin
biopsies

Severity disease
Frontiers in Immun
ology
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PBMC, peripheral blood mononuclear cells; HAQ, Health Assessment Questionnaire; SP-D, surface protein D (SP-D); MHAQ,Modified Health Assessment Questionnaire Disability Index;
mo, months; mRSS, modified Rodnan Skin Score.
frontiersin.org

https://doi.org/10.3389/fimmu.2022.941011
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Kawashima-Vasconcelos et al. 10.3389/fimmu.2022.941011
Considering the innate immune cells as the primary source

of proinflammatory cytokines, investigations about how they

contribute to T cell polarization and function in the context of

auto-HSCT are essential. Auto-HSCT corrects the Th1/Th2

imbalance in SSc patients (64), but it is still unknown if the

innate system contributes to this shift and which cell subtypes

are involved (83).

Along with immune monitoring from blood samples,

analyses of tissues affected by the disease, such as skin and

lungs, may provide more insights into the local effects of auto-

HSCT (83). Transplantation was able to reduce collagen

deposition in the skin of SSc patients (73, 89), improved the

microvascular morphology (63, 72, 90) and decreased lung

infiltrates (91). In addition, the expression of IFN-a and
Frontiers in Immunology 06
CD123+ (pDC markers) is associated with fibrosis in dcSSc

(92). Skin biopsies of dcSSc patients showed significant

reductions in IFN-a and CD123+ mRNA expression after

auto-HSCT which inversely correlated with capillary numbers

in the skin (63). These results demonstrate the positive effects of

auto-HSCT on pDC phenotype and IFN-a response, with

implications on microvasculature and fibrosis outcomes

(Figure 1) (83).

A remaining question is how the auto-HSCT rebalances the

communication/interaction between innate immune cells,

endothelial cells, and fibroblasts, which could explain the

positive effects of transplantation in the fibrosis and

vasculopathy pathological axes (83). SSc patients treated with

auto-HSCT have improved microvascular morphology and
A B

FIGURE 1

Immune reconstitution over time after auto-HSCT in systemic sclerosis patients. Systemic sclerosis (SSc) patients undergoing autologous
hematopoietic stem cell transplantation (auto-HSCT) are treated with an immunoablative conditioning regimen consisting of high doses of
chemotherapy/radiotherapy/immunotherapy agents, usually cyclophosphamide plus anti-thymocyte globulin. Then, previously collected autologous
hematopoietic stem and progenitor cells (HSPCs) are thawed and administered to the patient intravenously. The graft may be CD34+ selected or
non-manipulated, according to institutional protocols. After a period of bone marrow aplasia, there is hematological and immunological recovery,
and the innate immune system recovers earlier than the adaptive system. Neutrophils are the first immune cell type to reconstitute, generally within
the first 14 days after infusion of the HSPC graft. Neutrophil gene expression signatures significantly decrease after auto-HSCT. Other innate
immune cells, such as monocytes, natural killer (NK) cells, and dendritic cells (DCs), achieve normal counts within the first month after
transplantation. At this point, increased transcription signature of circulating NK cells is reported. In parallel, SSc skin biopsies post-auto-HSCT show
significant reductions in mRNA expressions of plasmacytoid dendritic cells (pDC) and IFN-a responses. Alternatively-activated monocytes with an
M2 phenotype significantly diminish post-transplantation. Plasma levels of platelet-derived growth factor (PDGF), an important molecule involved in
fibrosis that positively correlates with the number of circulating monocytes in SSc, reduce significantly at six months after auto-HSCT. Improvement
of skin fibrosis is evidenced within 6 months post-auto-HSCT, detected by decreasing modified Rodnan Score (mRSS) scores and reduced collagen
deposition in the skin of SSc patients. Whether auto-HSCT affects the phenotype and function of fibroblasts from SSc patients is still unknown. B
and T cells start to recover within the first six months after auto-HSCT. Early after transplantation, there is homeostatic proliferation, a process in
which both cell subtypes expand in response to transplant-induced lymphopenia from residual cells that were not entirely depleted by the
conditioning regimen or from cells that were re-infused with the graft. During the first-year post-transplantation, PD-1 expression is transiently
increased on T and B cells as an important mechanism to control homeostatic activation. Circulating profibrotic IL-6 and TGF-b1-producing B cell
subsets transiently decrease at 6 and 12 months after auto-HSCT, possibly contributing to the amelioration of skin fibrosis. Thymic reactivation or
rebound, usually detectable beyond the first-year post-transplantation, promotes the exportation of newly generated naive T-cells, including
regulatory T cells, thereby increasing the peripheral TCR repertoire diversity. In parallel to the thymic rebound, there is also a parallel bone marrow
rebound, marked by increased output of newly generated naive B cells. Functional and numeric recovery of Treg and Breg cells after auto-HSCT
contributes to controlling autoreactivity and reestablishing self-tolerance by cell contact-dependent mechanisms, increased expression of GITR and
CTLA-4, and increased production of IL-10. Finally, after transplantation, the Th1/Th2 ratio is rebalanced in SSc patients.
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significantly reduced endothelial activation in the dermis (72).

Auto-HSCT can also induce connective tissue remodeling and

decrease inflammation markers in the skin, such as S100

calcium-binding protein A9 (S100A9) and NF-kB (73). How

these mechanisms interact is still to be determined.

Finally, other innate immune components involved in SSc

pathogenesis, such as pattern recognition receptors (PRRs)

signaling pathways, damage-associated molecular patterns

(DAMPs), and innate lymphoid cells (75), should be

investigated to provide scientific bases to understand the

effects of auto-HSCT in SSc and potential biomarkers of

response. Whether the recently emerged innate immune

system initiates a permissive environment for the new and

tolerant adaptive immune system after auto-HSCT

regeneration remains elusive (83).
Reconstitution of T cells in SSc after
auto-HSCT

T cells play a critical role in the pathogenesis of SSc (93–97).

These cells infiltrate the skin before any evidence of cutaneous

fibrosis, suggesting their participation in the initial events of the

disease (93). T cell receptors from skin infiltrates show

oligoclonal repertoires, evidencing failure of tolerance

mechanisms (98). Overlapping TCRb repertoires in CD4+ and

CD8+ T cells from peripheral blood of SSc patients are highly

stable over time, indicating temporal persistence of a low

diversity T cell repertoire (99). In this context, auto-HSCT

ablates autoreactive clones of T and B cells, renews the

immune system, and reestablishes immune tolerance (Table 3)

(5, 6, 100).

For the past two decades, immune monitoring studies have

investigated the role of T cells in auto-HSCT for SSc and how

they influence patient clinical outcomes (14, 18, 39, 61, 62,

64, 66).
Homeostatic proliferation

After the immunosuppressive regimen of auto-HSCT, T

lymphocytes can recover from two sources: expansion of

residual T cells, known as homeostatic proliferation (HP), or

thymopoiesis, generating new naive T cells (101). In the early

post-transplantation periods, naive and memory T cells that

survive the conditioning regimen or are infused with the graft

expand in response to lymphopenia (101).

In SSc, CD8+ T cells recover earlier than CD4+ T cells,

achieving normal levels at 1 to 3 months after auto-HSCT,

regardless of the clinical outcomes after the procedure (14, 61,

62, 64). The rapid reconstitution of CD8+ T cells also occurs in

other clinical scenarios of lymphopenia, such as sepsis, post-
Frontiers in Immunology 07
chemotherapy, and auto-HSCT for other autoimmune diseases

(Figure 1) (102–21).

Studies report divergent results about the reconstitution of

naive CD4+ T cells. Farge and collaborators described that the

absolute number of naive T cells remained lower than baseline

levels during the first nine months after auto-HSCT and

reconstituted faster in patients who reactivated the disease

after transplantation than those who remained in remission.

Memory CD4+ T cell reconstitution did not differ between

groups (14). Another study observed a similar trend, with

naive CD4+ T cell remaining low until six months post-

transplant in patients who sustained disease remission while

reconstituting earlier in patients who reactivated the disease after

the procedure (62). Tsukamoto et al. demonstrated that in SSc

patients transplanted with CD34+ selected grafts, naive CD4+ T

cells remained lower than baseline until 36 months, while

memory CD4+ T cells returned to baseline levels at 24 months

after auto-HSCT (64). Homeostatic proliferation after auto-
TABLE 3 Immunophenotyping of peripheral blood T and B cell
subsets in SSc patients undergoing auto-HSCT.

CELL SUBSET PHENOTYPE REFERENCES

Total CD3, CD4, CD8 CD3+; CD3+CD4;
CD3+CD8+

(14, 39, 62, 64, 66)

Recent thymic emigrants CD3+CD4+CD45RA+CD31+ (39)

Naive T cells
Memory T cells

CD4+CD45RA+

CD4+(CD8)
CD27+CD45RO-

CD4+CD45RO+

(14, 62, 64, 66)
(39)

(14, 64)

Central-memory T cells
Effector-memory T cells
Effector T cells
Senescent T cells

CD4+(CD8)
CD27+CD45RO+

CD4+(CD8)CD27-

CD45RO+

CD4+(CD8)CD27-CD45RO-

CD8+CD28-CD57+

CD8+CD28-FoxP3+

CD3+CD4+(CD8)PD1+

(39)
(39)
(67)
(67)
(67)

Th1
Th2
Tc1
Tc2
Regulatory T cells
Total CD19 cells
Transitional B cells
Post-switched memory B
cells
Pre-switched memory B
cells
Double-negative memory B
cells
Naive B cells
Transitional Bregs
Memory Bregs

CD3+CD8- INFg+

CD4+INFg+

CD3+CD8- IL-4+

CD4+IL-4+

CD3+CD8+ INFg+

CD3+CD8+ IL-4+

CD4+CD25+

CD4+Foxp3+

CD4+CD25hiFoxp3+

CD4+CD25+TGF-b+

CD4+CD25+IL-10+

CD4+CD25hiCTLA-4+

CD4+CD25hiGITR+

CD19+

CD38+CD10+IgD+

CD19+CD27+IgD-

CD19+CD27+IgD+

CD19+ CD27-IgD-

CD19+CD27-IgD+

CD19+CD24hiCD38hi

CD19+CD24hiCD27+

(62)
(64)
(62)
(64)
(62)
(62)

(62, 64)
(62)

(18, 39)
(18)
(18)
(39)
(39)

(14, 20, 39, 66, 69,
70)

(69, 70)
(20, 69, 70)
(20, 69, 70)
(20, 69, 70)

(20, 39, 69, 70)
(20)
(20)
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HSCT was also associated with transient telomere attrition and

increased senescent CD8+CD28−CD57+ T cells (39). These cells

have immunomodulatory properties and might have a role in

controlling autoimmunity early post-transplant (103). These

studies show that the delayed recovery of naive CD4+ T cells

is associated with favorable clinical response in SSc treated with

auto-HSCT (Figure 1).
Increased PD-1 expression

The lymphopenia that follows the intense immunosuppression

regimen of auto-HSCT leads to homeostatic proliferation and may

exacerbate the expansion of residual autoreactive T cells,

perpetuating the autoimmune disease (104). The expression of

the co-inhibitory programmed death-1 (PD-1) receptor is an

essential mechanism for controlling homeostatic activation in the

first months after auto-HSCT and keeping autoreactive T cell clones

under control (105). In SSc patients, PD-1 expression transiently

increases on CD4+ and CD8+ T cells during the first-year post-

transplantation. In addition, CD4+ and CD8+ T cells from patients

with better clinical outcomes have higher PD1 expression than

patients who reactivate the disease after auto-HSCT, indicating that

this is an important immune regulatory mechanism in the early

stages after transplantation (67). (Figure 1). Once thymic rebound

establishes itself, newly-generated naive and regulatory T cells are

responsible for maintaining long-lasting self-tolerance (106).
Thymic reactivation

Thymic involution is a physiological process that includes

atrophy, loss of cells, and structural changes of the organ, mainly

associated with age (107). In immune monitoring studies after

transplant, TCR rearrangement excision circles (TRECs) are

used to assess thymic function. TRECs are small circles of

DNA formed during the rearrangement of T cell receptors

that do not duplicate during mitosis (108). TREC counts in

the peripheral blood reflect new T cells exported by the thymus

(109, 110).

In auto-HSCT, thymic rebound is defined by functional

reactivation and volumetric enlargement of the thymus after

the immunosuppression regimen and re-infusion of autologous

hematopoietic stem and progenitor cells (111). The thymic

reactivation generally occurs after one to two years post-

transplantation, depending on the patient’s age, and has been

associated with favorable clinical response of autoimmune

disease patients (21, 31, 31, 39). Storek et al. (61) showed an

increase in thymic size detected by computed tomography at

three and 12 months and increased TREC frequencies between

one- and two-years post-transplantation in patients with

multiple sclerosis and systemic sclerosis (Figure 1).
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Farge et al. showed that in patients that reactivated

SSc after auto-HSCT, TREC values transiently increased

from 6 to 8 months after transplantation, decreasing

thereafter (14). These results corroborate those from Bohgaki

et al. demonstrating significantly reduced sjTREC levels at

three months after auto-HSCT in patients with good

outcomes compared with those that reactivated the disease

(62). Arruda et al. reported a positive correlation between

sjTREC levels and frequencies of early naive T cells, named

recent thymic emigrants (RTE) with the phenotype

CD3+CD4+CD45RA+CD31+ in the peripheral blood of SSc

patients, an alternative and complementary method to

quantify thymic function. The RTE number also correlated

with regulatory T cell (Treg) counts and better clinical

outcomes after auto-HSCT (39).

In summary, the thymic rebound is one of the main

immunological mechanisms of auto-HSCT. Efficient

production of new naive T cell cells generates a diverse TCR

repertoire that has been associated with the control of the

autoimmune disease after auto-HSCT (Figure 1).
TCR repertoire diversity

The generation of naive T cells after auto-HSCT -induced

thymic reactivation directly affects TCR repertoire diversity (19).

Farge et al. reported a disturbed T cell repertoire in SSc patients

at baseline compared with age-matched controls, which did not

change in the one-year follow-up after auto-HSCT (14). In a

more extended follow-up study of six years, these authors

showed late recovery of a polyclonal profile of the TCR

repertoire similar to healthy individuals (66). However, there

was no correlation between TCR diversity and clinical response

to transplantation.

Arruda et al. demonstrated that SSc patients that reactivated

the disease after auto-HSCT sustained a skewed TCR repertoire,

indicating persistent autoreactivity one to two years after

transplantation (39). In contrast, patients that remained in

remission after transplantation presented a polyclonal TCR

repertoire, similar to healthy individuals. In addition, patients

that reactivated the disease after auto-HSCT presented increased

frequencies of CMV-specific clones and a reduction of TCR

diversity after the procedure. Opposingly, patients with good

outcomes after transplantation showed an increase in TCR

clonotypes specific to CMV, EBV, Influenza, and Dengue

virus (71).

The renewal of the TCR repertoire following auto-HSCT has

been proposed as a potential biomarker of therapeutic response

(17). Patients with favorable clinical outcomes after auto-HSCT

present low overlap of TCR clonotypes, reflecting the successful

replacement of skewed and autoreactive T cell clones by a more

polyclonal T cell repertoire (17).
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Increase of Th1/Th2 ratios

The Th1/Th2 disbalance contributes to the pathogenesis of

several organ-specific and systemic autoimmune diseases (112).

The Th2 response, characterized by the production of profibrotic

cytokines such as IL-4, IL-6, IL-5, and IL-13, has a critical

relevance in the pathogenesis of SSc (113–115). These cytokines

stimulate collagen synthesis by fibroblasts and are chronically

elevated in the serum of SSc patients. In contrast, the anti-fibrotic

Th1 cytokine IFN-g is reduced in SSc patients (116–119).

Frequencies of IFN-g-producing CD8+ T cells increase at 12

months after transplantation, regardless of the clinical outcomes

after auto-HSCT (62). Tsukamoto et al. showed that the ratio of

IFN-g/CD4+ to IL-4/CD4+ increased one month after auto-

HSCT, reaching a plateau at six months that was maintained

for at least 36 months. However, despite the Th1/Th2 ratio

increase, there were no correlations between changes in the Th

profile and modified Rodnan skin score (mRSS) (64). There are

few studies evaluating the reconstitution of T cell subsets after

auto-HSCT. Therefore, more studies are warranted to

understand how T cell subsets contribute to the different

clinical outcomes in SSc patients after auto-HSCT.
Regulatory T cell recovery

Regulatory T cells (Tregs) expressing the transcription

factor forkhead box P3 (FOXP3) represent 5–10% of the

peripheral CD4+ T cells in humans and are crucial for the

maintenance of self-tolerance and immune homeostasis (120,

121). SSc patients present decreased frequencies and reduced

suppression capacity of circulating Tregs compared to healthy

individuals (122–124).

Bohgaki et al. showed that CD4+CD25+ T cells increased at

12 months in SSc patients treated with unselected CD34+ grafts,

regardless of clinical outcomes (62). FOXP3 gene expression

levels did not correlate with the therapeutic response or graft

selection. Another immune monitoring study of autologous

transplants for SSc using selected grafts showed a severely

delayed reconstitution of Tregs (64). The frequencies of

CD4+CD25+ and CD4+FOXP3+ T cells remained lower than

baseline even at 36 months post-transplantation (Figure 1) (64).

Baraut et al. evaluated the suppressive capacity of Tregs by

co-culture with autologous effector T cells (18). The suppressive

function of CD4+CD25highCD127low Tregs was restored 24

months after auto-HSCT, along with increased numbers of IL-

10-producing CD4+CD25+ Tregs. On the other hand,

CD4+CD25+TGF-b T cell counts remained significantly

decreased before and after auto-HSCT (18). These findings

indicate an improvement of the suppressive capacity of Tregs

by cell contact-dependent mechanisms and the production of

the inhibitory cytokine IL-10.
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Patients with good clinical response to auto-HSCT present

higher CD4+CD25highFOXP3+ Treg percentages after the

procedure than those that reactivate the disease (39). Tregs

from responsive patients also show increased expression of

GITR and CTLA-4 molecules compared to the patients that

reactivate the disease after auto-HSCT (39).

Although the results diverge across different studies, the

reported findings indicate that auto-HSCT induces a functional

recovery of Treg with increased IL-10-production, improved cell

contact-dependent suppression, and higher expression of GITR

and CTLA-4. Effective functional Treg reconstitution has been

related to favorable clinical outcomes of SSc and is currently

considered another pivotal mechanism of auto-HSCT.
Changes in serum cytokines

Several T cell-related cytokines are implicated in SSc

pathogenesis and associated with fibrosis and vascular damage

(18, 114, 125, 126). Auto-HSCT changes serum levels of

inflammatory and pro-fibrotic cytokines by regenerating the

immune system (39, 64, 65, 72, 73). High serum levels of

tumor necrosis factor-alpha (TNF-a), IL-6, and soluble

interleukin 2 receptor (sIL-2R) are found at baseline in the SSc

patients, with a significant decrease after auto-HSCT (64). Serum

levels of IL-2, IL-8, and TGF-b also transiently decrease after

auto-HSCT. Still, changes in levels of the profibrotic cytokine

TGF-b are not associated with the improvement of the skin score

(mRSS) (55). Other cytokines, such as IL-6, IL-10, and IFN-g, are
increased at baseline and do not decrease for at least 48 months

after transplantation (65).

Expression of tumor necrosis factor receptor (TNFR) was

found higher on dermal T lymphocytes from SSc patients than in

healthy controls. Activated peripheral blood lymphocytes also

secreted more IL-6, soluble IL-6 receptor and IL-13, and induced

higher type 1 collagen expression in fibroblasts compared to

lymphocytes from healthy controls. In one subject that had been

treated with auto-HSCT, expression of TNFR and IL-6

decreased in the dermis at the six-month time point after the

procedure. These results indicate a therapeutic potential of auto-

HSCT in improving the inflammation-fibrosis axis in SSc (127).

Recently, Zanin-Silva et al. observed alterations in

connective tissue and fibrosis-related molecules after auto-

HSCT (63). One-year post-transplant, SSc patients exhibited

significant decreases in serum concentrations of platelet-derived

growth factor (PDGF)-AA, PDGF-BB, tissue inhibitor of

metalloproteinases (TIMP)-1 and S100A9. On the other hand,

serum levels of collagen I alpha 1 (COL1A1) increased after

transplantation, indicating collagen degradation (73).

Assassi et al. investigated molecular changes in the

peripheral blood cell transcriptome in 62 SSc patients treated

with auto-HSCT. At 26-months post-transplantation, the IFN
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transcript score decreased significantly, indicating a long-lasting

effect. In contrast, patients treated with conventional

cyclophosphamide did not present significant changes in the

molecular signatures (68).

Santana-Gonçalves et al. evaluated serum levels of markers

of inflammation, angiogenesis, and endothelial activation before

and until 36 months post-transplant (72). IL-6, von Willebrand

factor (vWF), CXC Motif Chemokine Ligand 8 (CXCL8),

Endothelin-1, epidermal growth factor (EGF), VEGFA,

Pentraxin-3, Intercellular Adhesion Molecule 1 (ICAM-1), E-

selectin, P-selectin, Thrombomodulin and IL-18 levels were

significantly higher at baseline in SSc patients when compared

to healthy controls, except for ICAM-1. After auto-HSCT, all

biomarkers remained stable at high levels until 36 months of

follow-up, indicating persistence of the vascular injury (72).

The transplant-induced changes in serum cytokine levels

associated with inflammation and fibrosis indicate an at least

partial systemic modulatory effect of this therapeutic approach.

However, alterations in cytokine profiles are only partially

responsible for the clinical outcomes of SSc patients treated

with auto-HSCT.
Reconstitution of the B cell
compartment in SSc after auto-HSCT

B cells have been widely investigated in SSc pathogenesis,

especially since B cell-targeting therapies have become available.

Autoreactive B cells produce autoantibodies against nuclear

autoantigens, such as anti-topoisomerase I (anti-Scl-70), anti-

centromere, and anti-RNA polymerase III, which are associated

with different disease phenotypes (42, 128). Autoantibodies

directed against endothelial cells and fibroblasts are also found

in SSc patients, suggesting a contribution of B cells to tissue

fibrosis and vasculopathy (129, 130).

Target organs, such as the lungs and the skin, show B cell

infiltrates, underscoring the importance of these cells in disease

pathogenesis (131–133). In the skin, B cell infiltrates are

implicated in the early stages of the disease, preceding the

establishment of fibrosis (134). This is important since B cells

from SSc patients can induce the production of IL-6, TGF-b, and
collagen by fibroblasts (135).

Moreover, B cells with a hyperactivated phenotype have

been identified in the peripheral blood of SSc patients, with

overexpression of the CD19 surface signaling molecule and

correlation with autoantibody production, indicating that

CD19 regulation may be functionally linked with autoantibody

production in SSc (136). Meanwhile, regulatory B cells (Breg) are

decreased in numbers and functionality, with deficient IL-10

production (137) and inversely correlating with disease activity

(138). Additionally, Breg subpopulations from SSc patients fail

to suppress CD4+ T cells (139).
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In the context of auto-HSCT, pre-existing autoreactive B

cells are depleted by the immunoablative regimen (17, 21, 140).

Different studies with SSc patients have assessed the kinetics of

the B cell reconstitution after auto-HSCT (Figure 1) (1, 14, 20,

39, 66, 69, 70, 141). Memory B cell counts increase early after

auto-HSCT due to homeostatic proliferation but significantly

diminish after that, while numbers of naive B cells newly

produced by the bone marrow increase (14, 39). Indeed,

CD19+IgD+CD27- naive B cell frequencies increase early after

auto-HSCT compared to baseline (20). In parallel to the thymic

rebound, there is also a comparable “bone marrow rebound”,

with increased output of newly generated naive B cells, which is

not observed in SSc patients treated with conventional

therapies (39).

A remaining and intriguing question of the auto-HSCT

scenario is whether complete removal of memory B and T

cells is required for full therapeutic efficacy of transplant.

Incomplete immunoablation or even reinfusion of autoreactive

and memory cells within the autologous stem cell graft may

trigger disease reactivation (100, 142). Patients with

autoimmune diseases, including SSc, have more circulating

double-negative memory B cells, characterized by absent

expression of CD27 and IgD (143, 144). This cel l

subpopulation transiently increases in the first month after

auto-HSCT in SSc patients, followed by a sustained decrease

in later time points (20). Combined with the expansion of

switched and non-switched memory B cel l s a f ter

transplantation, the increase of double negative memory B

cells at this stage could indicate the existence of residual B-

cells, either non-depleted by the transplant conditioning

regimen or re-infused within the graft (20). The transiently

high expression of the negative co-stimulatory molecule PD-1 in

B cells of SSc patients in these early periods after transplantation

may have a role in preventing the exaggerated proliferation of

autoreactive B cells (20). A similar mechanism of control is

described in multiple sclerosis (MS) patients, correlating with

good neurological outcomes after auto-HSCT (19).

Circulating CD19 and CD20 B cell counts are inversely

associated with clinical response, suggesting that pathogenic B

cell clones may preferentially expand in patients with less

favorable outcomes (14, 66). Additionally, in patients with a

good response to auto-HSCT, there is a sustained and positive

slope of B cell reconstitution, which may reflect increased

numbers of B cell subsets that promote disease control,

especially those with a regulatory phenotype and function (66).

Timely reconstitution of regulatory T and B cells after

transplantation is considered a key element in modulating the

activation and proliferation of potent autoreactive cells after

auto-HSCT (19, 39, 145). Multiple studies have shown that the T

cell-mediated regulatory network improves in SSc and other

autoimmune diseases following auto-HSCT (17, 21, 146).

However, recent studies have also shown an increased
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frequency of B cells with regulatory and anti-inflammatory

phenotypes in SSc patients after auto-HSCT (20, 139). IL-10

release by peripheral B cells of SSc patients post-transplantation

significantly raises compared to baseline (141).

Additionally, transitional Bregs (tBregs, CD19+CD24high

CD38high) and memory Bregs (mBregs, CD19+CD24high

CD27+) are IL-10-producing cells (147–149) that increase after

auto-HSCT (20). Patients with disease remission after auto-

HSCT present higher frequencies of tBregs than those who

reactivate SSc, both at baseline and 360 days post-transplant.

Moreover, tBregs also recover their ability to suppress the

production of Th1 cytokines by CD4+ T cells after auto-

HSCT (20).

Previous studies have shown that phosphorylation of ERK1/

2 and p38MAPK contributes to IL-10 production (150, 151) and

that SSc Bregs have impaired p38 MAPK phosphorylation

pathways (135). Lima-Júnior and collaborators demonstrated

that Bregs increased the phosphorylation of ERK1/2 and p38

MAPK proteins after auto-HSCT (20). Thus, an increase in

ERK1/2 and p38 MAPK phosphorylation may be one of the

mechanisms responsible for improving Breg suppressive

function in SSc treated with auto-HSCT (20). Circulating

profibrotic subsets of IL-6 and TGF-b1-producing B cells also

decreased after auto-HSCT, possibly contributing to the

observed amelioration of skin fibrosis (20). Future studies

should investigate a possible relationship between the

decreased numbers of these B cell subsets and tissue fibrosis.

We suggest that the profound alterations in the B cell

compartment in SSc patients induced by auto-HSCT cannot

be achieved with conventional B cell–depleting therapies.

Rituximab, a monoclonal antibody against CD20 molecule, has

been used to selectively deplete B-cells in many autoimmune

diseases, with transient and variable responses (152–154).

Treatment of rheumatoid arthritis (RA) with rituximab

promotes B-cell depletion and is associated with clinical

response (155). However, half of the rheumatoid arthritis

patients eventually lose responsiveness over time, requiring

additional rituximab infusions (154). Three-quarters of these

patients recover disease control after consecutive treatment

cycles with rituximab, indicating that loss of response is

reversible and that patients may still improve (154). However,

for type 1 diabetes (T1D) patients, rituximab was ineffective in

resetting defective B cell tolerance checkpoints (153).

SSc patients treated with rituximab showed benefits in the

skin (155–157) and lung involvements (158). In parallel,

treatment with belimumab, another monoclonal antibody that

leads to B cell apoptosis and decreases autoantibody production

(159) resulted in significant improvement of mRSS in SSc

patients with early disease and alterations in the expression of

the profibrotic gene pathways in B cells. These studies indicate

that although the B cell–depleting therapies are effective in the

control activity of specific autoimmune diseases, they do not
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promote profound or long-lasting modifications in the patient’s

immune system. Therefore, auto-HSCT may be a better

therapeutic alternative than conventional B cell-directed

therapies for promoting long-lasting improvements in the B-

cell compartment.
Conclusions and perspectives

In conclusion, auto-HSCT involves multiple immune

mechanisms that collectively improve SSc patient clinical

outcomes. Reconstituted neutrophils, monocytes, natural

killers, and dendritic cells may exert an important role in

producing signals that contribute to the new regulatory

microenvironment promoted by auto-HSCT. However, the

literature lacks studies regarding these cells and how the

innate and adaptative immune systems interact after auto-

HSCT. Future investigations of the innate immune cell

subsets, including their phenotype, numbers, and functionality,

may increase the understanding of SSc pathogenesis, perhaps

even beyond the transplantation scenario.

In the context of auto-HSCT for autoimmune diseases,

including SSc, the roles of homeostatic proliferation, thymic

and bone-marrow rebound, T cell repertoire diversity, and

increase of T and B cell-mediated regulation are currently

well-described mechanisms. Nonetheless, more vigorous efforts

are needed to better correlate the immunological mechanisms of

auto-HSCT with patient clinical outcomes. Further cellular

function assessments and comprehensive molecular analyses

may identify immune signatures associated with disease

remission or reactivation after auto-HSCT. Collaborative

approaches to evaluate the immune profile of more significant

numbers of transplanted SSc patients worldwide may provide

helpful answers. We convene the academic community to

pursue these research gaps and further improve clinical

transplant protocols, allowing more SSc patients to benefit

from this therapeutic approach.
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