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Abstract

The biology and behaviour of the psyllid Diaphorina citri Kuwayama (Hemiptera: Sternor-

rhyncha: Liviidae), the major insect vector of bacteria associated with huanglongbing, have

been extensively studied with respect to host preferences, thermal requirements, and

responses to visual and chemical volatile stimuli. However, development of the psyllid in

relation to the ontogeny of immature citrus flush growth has not been clearly defined or illus-

trated. Such information is important for determining the timing and frequency of measures

used to minimize populations of the psyllid in orchards and spread of HLB. Our objective

was to study how flush ontogeny influences the biotic potential of the psyllid. We divided cit-

rus flush growth into six stages within four developmental phases: emergence (V1), devel-

opment (V2 and V3), maturation (V4 and V5), and dormancy (V6). Diaphorina citri

oviposition and nymph development were assessed on all flush stages in a temperature

controlled room, and in a screen-house in which ambient temperatures varied. Our results

show that biotic potential of Diaphorina citri is not a matter of the size or the age of the

flushes (days after budbreak), but the developmental stage within its ontogeny. Females

laid eggs on flush V1 to V5 only, with the time needed to commence oviposition increasing

with the increasing in flush age. Stages V1, V2 and V3 were most suitable for oviposition,

nymph survival and development, and adult emergence, which showed evidence of protan-

dry. Flush shoots at emerging and developmental phases should be the focus of any chemi-

cal or biological control strategy to reduce the biotic potential of D. citri, to protect citrus tree

from Liberibacter infection and to minimize HLB dissemination.

Introduction

The Asiatic citrus psyllid Diaphorina citri Kuwayama (Hemiptera: Sternorrhyncha: Liviidae) is

the only known vector of the fastidious phloem restricted α-Proteobacteria, ’Candidatus Liber-

ibacter asiaticus’ and ’Ca. L. americanus’, associated in Brazil with huanglongbing (HLB), the

most devastating disease of citrus [1,2]. It was first recorded in Brazil in 1942 [3] and
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subsequently spread throughout the main citrus producing regions of the country [4] but did

not become economically important until after the first report of HLB in citrus orchards in

São Paulo State (SPS) in 2004 [5]. Planting of certified nursery citrus trees produced in insect-

proof screen-houses, elimination of symptomatic trees to reduce inoculum sources, monitor-

ing and insecticide applications [6–8], were subsequently implemented in order to minimize

the spread of the disease. Insecticide applications during the citrus dormant seasons (late

autumn and winter), when adult insects survive by feeding on mature leaves, have also been

recommended [9–13]. Despite these efforts the disease spread and 46.2 million trees had been

removed by 2016 [14]. Recent estimates based on observations of symptoms in the field indi-

cate that further 16.73% of the 191.7 million productive trees, most in SPS, are currently

infected [15].

The difficulty in successfully managing HLB is related in part to the criteria used to deter-

mine the most appropriate timing and frequency of insecticide applications. In SPS these crite-

ria are based mainly on the presence of adult psyllids captured on yellow sticky traps (YST).

However, the number of adults per YST may not reflect the extent of psyllid populations [16],

as they are influenced by trap density and location within orchards, positioning within tree

canopies, population densities of the psyllid, weather conditions, and the nature and abun-

dance of new flush growth [16–22]. Moreover, the impact of flush growth ontogeny on popula-

tions of D. citri is not clearly understood.

In SPS, which has a temperate/subtropical climate, citrus trees usually produce new growth

twice annually in relatively well-defined cycles, one related to plant growth in summer-

autumn, and one related to flowering and fruiting in spring. The flushes show sympodial

growth as they pass through predicable and recognizable stages of development (termed

ontogeny) [23] that are genetically and environmentally governed, with temperature, photope-

riod, solar radiation and rainfall, playing important roles [24–30].

Although eggs, nymphs or adults of D. citri can be found on reproductive flushes, vegetative

flushes are apparently the main sites for psyllid development. This explains the strong associa-

tion between vegetative flush phenology and the dynamics of D. citri populations in citrus

groves [31–34], and the rate of spread of HLB [35]. The psyllid is attracted to flushes that offer

optimal conditions for feeding and oviposition, especially those at the very initial stage of

development, by a combination of chemical volatiles and visual stimuli [36–41]. It has been

known since Husain and Nath [42] published the first major study on D. citri in 1927 that ovi-

position occurs almost exclusively on very young flushes. They wrote “The period of greatest

activity of the insects and most rapid increase in their numbers corresponds with that of the

sprouting of new shoots and the appearance of new leaves” [42]. Other authors have reported

that females lay their eggs in the growing tips of young host plants, preferring flush growth < 6

mm in length [43–46] and that most eggs are laid within 14 days of new growth commencing

[43]. Initiation of oogenesis, and subsequent maturation of eggs within ovaries, is closely

related to the presence of buds [47–49]. ‘Feather flush’ has been cited as the growth stage on

which eggs are laid [33,50–52] but this term, incorrectly ascribed to Chavan and Summanwar

(1993) [34] by Halbert and Manjunath (2004) [50], appears to be the first of five stages related

to monitoring of the black citrus aphid Toxoptera citricida (Kirkaldy) (Hemiptera: Sternor-

rhyncha: Aphididae) [53] and a stage of growth with ‘leaves still folded’.

Although an overall description of flush development is available in the literature [54], no

detailed phenotypical illustration of each stage during shoot ontogeny exist, as well as the risk

that each growth stage of flushes represents to the development and increasing of D. citri popu-

lation. The goal of this study was to (i) define, clearly describe and illustrate the stages during

flush growth ontogeny on citrus, and (ii) determine the relative importance of each stage on

insect oviposition, nymph survival and adult emergence.

Flush shoot ontogeny and Diaphorina citri
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Material and methods

The experiment was carried out twice at the Plant Protection Department of the São Paulo

State University, in Jaboticabal, SPS, Brazil (21.2522˚ S, 48.3257˚ W), in two different environ-

ments: (i) a 3 × 3 × 3 m temperature-controlled environmental room (CER) (average 26 ± 2˚C,

70 ± 5% RH, 12 h photoperiod) with artificial light provided by 16 fluorescent bulbs (32 W

each) and 5 incandescent lamps (250 W each) yielding 3500 to 4000 lux, and (ii) a 8 × 12 × 5 m

screen-house (SH) under ambient temperatures (average 25˚C, max. 42˚C, min. 12˚C) and rel-

ative humidity (average 53%, max. 93%, min. 15%). Data on temperature and relative humidity

were recorded with a HT-500 data logger (Instrutherm, SP). The experiments were carried out

from March to April 2014 (autumn) inside CER, and from September to October 2014

(spring) inside SH.

Plant material

Two-year-old nursery trees of ’Valencia’ sweet orange (Citrus sinensis (L.) Osbeck.) grafted on

’Swingle’ citrumelo (Citrus paradisi MacFaden × Poncirus trifoliata (L.) Raf.–based on [55])

were maintained in 4.7 L plastic pots containing substrate composed of 80% Pinus sp. bark,

15% vermiculite and 5% charcoal (Multiplant citrus1; Terra do Paraiso, Holambra, SP).

Before starting the experiments, the plants were kept in greenhouse irrigated four times a week

and ferti-irrigated biweekly with 100 mL pot-1 of a nutritive solution containing Ca(NO3)2,

MAP, MgSO4, Cu, Zn, Mn-EDTA, (NH4)2MoO4, and Fe-EDTA, at concentrations of 1.35,

0.111, 0.4, 0.015, 0.01, 0.0075, 0.00045, 0.075 g L-1, respectively.

Insect rearing

Fifteen to twenty D. citri adults of each sex from a colony on healthy orange jasmine plants

(Murraya exotica L.) at Fundecitrus (Araraquara, SP) were confined for oviposition in sleeve

cages for 5 days in the CER, on immature growth flushes of previously uninfested orange jas-

mine plants, and then removed to allow eggs laid to hatch and nymphs to develop to a new

generation of adults. After eclosion the adults were separated daily and placed individually in

50 mL glass test tubes for sexing [56]. The insects were then transferred to new non-infested

orange jasmine plants, grouping by sex. Daily insect separation of emerging adults ensured

collection of unmated adults [57]. A manual aspirator, made of a mesh-covered plastic Pasteur

pipette inserted into a plastic tube was used to collect the adults, and a 30× magnification hand

lens was used to distinguish males from females. Given that adult emergence fits Gaussian

curve, the few adults that emerged during the first three days were discarded. Only those at the

top of the bell shape of the emergence growth curve (days 4 to 7) were used. These procedures

allowed the use of a relatively uniform group of insects that were further maintained on orange

jasmine in the CER for additional 15 days before use in the experiments. This methodology

was adapted from Skelley & Hoy [58].

Ontogenesis of flush shoots

Previous observations of potted plants in greenhouses and mature trees in orchards led us to

divide the growth of citrus flush shoots into six discrete stages of development. To describe the

stages and their durations, four healthy two-year-old potted plants of ‘Valência’ on ‘Swingle’

citrumelo rootstocks were pruned 20 cm above the bud union and fully defoliated. When the

3rd or 4th bud below the pruning site started swelling, its length was measured with a Vernier

calliper (Mitutoyo 530 Series, Suzano, SP, Brazil). Any other subsequent new shoot was

detached (Fig 1A–1C).

Flush shoot ontogeny and Diaphorina citri
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Influence of flush ontogeny on the biotic potential of Diaphorina citri

To evaluate the influence of flush ontogeny on D. citri multiplication, 100 potted ‘Valencia’

plants were divided into five groups, each comprising 20 plants. The plants were then sequen-

tially pruned and defoliated weekly over a 4-week interval (Fig 1A to 1C). Using a sleeve cage

(Fig 1D), two unmated 15-day-old D. citri couples were confined for mating and oviposition

on each flush stage. In the CER the insects were confined for 72 h. In the SH, the flushes were

observed for the presence of eggs every 24 h and, when present, the adults remained confined

for additional 48 h to allow 72 h for oviposition. Eggs and nymphs were then counted, and

emerging adults collected every four days (CER) or daily (SH). All adults were stored at -20˚C

in 5 × 20 cm transparent plastic bags for further sex identification using a stereo-microscope.

Egg, nymph, and total viability (Ve = [nymph/eggs]�100, Vn = [adults/nymphs] �100, and Vt =

[adults/eggs] �100, respectively), as well as sex ratio (SR = % female) and duration of egg-to-

adult cycle, were determined for both ambient, whereas time to oviposition and synchrony of

male/female emergence were determined only for SH. Egg-to-adult cycle was estimated for

each flush shoot (replicate), summarizing the period from the second oviposition day (24 to 48

h) until previous day when first adult appeared, plus the numbers of days between first adult

appeared until 50% of adults emerged, this one estimated by a nonlinear regression.

Statistical analysis

To describe flush shoot elongation, several non-linear regression analyses were carried out.

The final model was chosen based on the Akaike Information Criteria (AIC) [59], for which

the simplest and smaller model that maximizes the goodness-of-fit is the best for explaining

Fig 1. General schematic representation of treatments. (A) Pruning and defoliation. (B) New flush shoots. (C)

Selection of flush shoot at the beginning of stage V2. (D) Pruning and selection period of the remaining groups for

final standardisation and insect caging.

https://doi.org/10.1371/journal.pone.0190563.g001

Flush shoot ontogeny and Diaphorina citri
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the data [60]. Prior to statistical analysis, data on number of eggs and percentages were log

(y’ = Log10 (y + 1)) and arcsine (y’ = arcsine(sqrt(y/100))�180/π) transformed, respectively [61].

The effect of the different flush stages on psyllid biology was evaluated by analysis of variance

using the general linear model (GLM) procedure. Each ambient was analysed separately.

When significant differences were detected, the means were compared by Tukey-HSD test.

Sex ratio and oviposition percentages were analysed by the Chi-square test, or by Fisher’s

Exact test when the frequencies were less than 5 [61]. To evaluate the distribution of adult

emergence patterns, two procedures were applied: (i) a linear regression of the quantiles (1, 5,

10, 25, 50, 75, 90, 95, 99) (for the female emergence as a function of male emergence) [57], and

(ii) a Linear Trend test complemented with analysis of the adjusted residual [62]. Interpreta-

tion of adjusted residuals was made according to Haberman [63], for which absolute values

greater than 1.96 (P = 0.05) or 1.65 (P = 0.10) represent lack of independence, or an indication

that the observed frequency (Xij) is more variable than should be. The Statgraphics Centurion

XVII software (Statpoint Technologies Inc.) was used, with P< 0.05 for all analyses.

Results

Flush shoot ontogenesis

Flush shoot elongation in the SH fitted a sigmoidal logistic curve (Fig 2) spanning four devel-

opmental phases over an average 35 days. Phase 1, emergence, that comprised a single stage,

V1 (Vegetative 1), that commenced with bud swelling and opening of the protective scales (Fig

3A and 3B). In this phase, elongation rates reached a maximum of� 2.5 mm day-1 over an

interval of 3 days (Fig 2). Phase 2, developmental, comprised two stages, V2 and V3. At the

beginning of this phase (V2), which lasted about 5 days, flush elongation rates were� 1.5 to 3

mm day-1 (Fig 2). There was an initial expansion of the lamina of the basal leaves but the mar-

gins stayed folded inwards so that the adaxial leaf surfaces were not visible (Fig 3C–3D). Latter

in V3, which lasted about 9 days, the flush elongation was� 10 mm day-1, reaching a maxi-

mum of� 14 mm day-1 at the middle of the stage, followed by a decline to� 5 mm day-1 (Fig

Fig 2. Flush shoot growth. Adjusted curve describing flush shoot length (continuous line; sigmoidal logistic

curve selected based on the AIC [59]), elongation rate per day (dashed line) and approximate duration and

length of each stage during ontogeny (vertical lines are standard error of the mean of the original data, n = 4

plants) (See S1 Apendix).

https://doi.org/10.1371/journal.pone.0190563.g002
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2). During this stage the leaf margins opened and adaxial leaf surfaces became visible (Fig 3E

to 3F). Phase 3, maturation, comprised two stages, V4 and V5. Flush shoot elongation contin-

ued but decreased very quickly from� 5 mm day-1 at the beginning of V4, which lasted about

7 days, to less than 0.25 mm day-1 during V5, which lasted about 11 days (Fig 2). V4 began

when emission of new leaves stopped and was the period when the leaves gradually hardened

from the top to the base with the colour changing from bright green to opaque light green-yel-

low (Fig 3G to 3H). During V5, which began when a shoot tip chlorosis and posterior abscis-

sion was evident, the leaves became almost fully expanded and hardened (Fig 3I to 3J),

changing from light green-yellow to dark green. Phase 6, dormancy, comprised one stage, V6,

characterized by fully expanded mature dark-green leaves (Fig 3K–3M).

Influence of flush shoot ontogenesis on biotic potential of D. citri

Controlled environmental room. The females were allowed to lay eggs for 72 h. Oviposi-

tion frequency was dependent on the growth stage of the flush (Fisher’s Exact test = 21.872,

P = 0.0003). Eggs were detected on 100, 94.7, 87.5, 85.7 and 44.4% of the plants with shoots at

stage V1, V2, V3, V4, and V5, respectively. Eggs were not detected on V6 shoots. Flush stage

also influenced oviposition (F = 16.7; df = 4; P< 0.0001), with highest percentages of eggs per

shoot recorded on V2 and V3 (29.92% and 35.73%) flushes in contrast to V1 (16.29%), V4

(5.53%) and V5 (2.53%) (n� 162; Fig 4) (See S2 Appendix).

While flush stage did not affect egg viability (F = 1.13; df = 4; P = 0.3532), it strongly affected

nymph survival (F = 164.45; df = 4; P< 0.0001) with highest percentages of live insects found

on V1 to V3 flushes. V5 flushes were unsuitable for development of nymphs. Nymphs that did

hatch from eggs laid on these flushes died during the 1st or 2nd instar.

The negative impact of flush stage on nymph survival reflected on D. citri total viability,

namely, the percentage of individuals that completed their life cycle (F = 96.13; df = 4;

P< 0.0001). Emerging (V1) or developing (V2 and V3) flushes produced highest numbers of

adults, with no significant differences among populations on life span (average 15 days;

F = 1.06; df = 3; P< 0.3751) or final sex ratio (60% females; Chi-square = 6.523, df = 3,

P = 0.0888, n = 1435). On average, 18.13, 34.57, 45.96, 1.34, and 0% of the adults emerged

from flushes V1 to V5, respectively (See S2 Appendix).

Screen-house. Unlike the experiment conducted in the CER, females in SH were allowed

to lay eggs for variable time periods with observations over 72 h commencing when the first

eggs were observed on the flushes. The females laid eggs on most flushes (100% of V1 to V4

and on 93.3% of V5), but the time needed for commence oviposition was significantly influ-

enced by flush stage (F = 9.18; df = 4; P< 0.0001), with longer intervals on V5 (� 3 days) than

on V1 to V4 (� 1 day) (Fig 5). Flush stage also influenced egg number (F = 7.23; df = 4;

P< 0.0001) (Fig 4) with the highest values recorded on V2 flushes in contrast to newly

emerged V1, developing V3, and mature V4 and V5 flushes. On average, 22.24, 34.96, 21.36,

Fig 3. Ontogeny of flush shoot of ‘Valencia’ sweet orange plants. Stage V1: from bud swelling (A) to bud

emergence with less than 2 mm flush stem (white square bracket) (B). Stage V2: from initial stem elongation

with separation between basal petioles (C) but all margins of the leaves remaining closed (D). Stage V3: from

initial leaf blade expansion and separation of the flush axis (E) with margins of lower leaves opening (F) until

new leaves emission stops. Stage V4: from unfolding of all leaf (G) and final leaf number defined (H) to shoot

tip chlorosis. Stage V5: leaves fully expanded, green-light yellow coloured, gradual hardening from top to base

(I), and shoot tip chlorosis and/or abscission (J). Stage V6: vegetative flush completely matured with leaves

fully hardened and green-dark (K) and with dormant buds (L). Comparison between fully expanded, partially

hardened and green-light-yellow leaf from a V5 shoot and one fully expanded, hardened and final green-dark

leaf from a V6 flush (M). For relative sizes and duration of each stage see Fig 2.

https://doi.org/10.1371/journal.pone.0190563.g003
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12.67 and 8.76% of the eggs (n� 194) were laid on V1 to V5 flushes, respectively (Fig 4). (See

S2 Appendix).

As observed under CER conditions, flush stage did not significantly influenced egg viability

(F = 1.40; df = 4; P = 0.2448). Nonetheless, nymph viability on V1 to V3 flushes was signifi-

cantly higher than on V4 or V6 (F = 20.54; df = 4; P< 0.0001). The percentage of individuals

Fig 5. Time to begin oviposition. Mean (±SEM) values of time needed for females of Diaphorina citri to start

oviposition on new shoots of citrus under screen-house conditions (bars with different letter differ statistically

by Tukey-HSD test, P < 0.05).

https://doi.org/10.1371/journal.pone.0190563.g005

Fig 4. Oviposition by Diaphorina citri. Means (±SEM) of the number of eggs laid by Diaphorina citri on

different flush stages of ‘Valencia’ sweet orange plants grown under controlled environmental room (black

bars; 26˚C ± 2, 70% RH ± 5, 12h photoperiod) and screen-house (grey bars; 25˚C ±8, 53% ±21 HR and 12h

photoperiod) conditions. No eggs were laid in stage V6 in both ambient. Bars with different letters differ by

Tukey-HSD test, P < 0.05 (lowercase for CER and lowercase with quote for SH; no comparisons were made

between ambient).

https://doi.org/10.1371/journal.pone.0190563.g004

Flush shoot ontogeny and Diaphorina citri
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able to complete their life cycle was also significantly influenced by flush stage (F = 21.59;

df = 4; P< 0.0001), with the developing flushes V2 and V3 being the most suitable, and V1

and V4 and V5 flushes the least suitable (Table 1). On average, 21.53, 44.39, 24.71, 6.61, and

2.76% of the total number of adults emerged from flushes V1, V2, V3, V4, and V5, respectively.

Flush stage did no impact the duration of egg-to-adult cycle (average 23.3 days; F = 2.21;

df = 4; P = 0.0759).

In the SH insect removal and sexing were made daily. The proportion of male was higher in

the first days but gradually declined until the fifth day, when the proportion of the cumulative

number of emerged females surpassed that of male, reaching 54.13% on the 17th day, the end

of the emergence period (Fig 6). The analysis of the quantiles for female vs. male emergence

revealed a positive correlation (F1,7 = 2236.64; P< 0.0001; r2 = 0.996; y = 1.181x – 15.862). A

Table 1. Mean values (± SEM) of eggs, nymphs and total viability of Diaphorina citri on flush shoot stages of ’Valencia’ sweet orange plants grafted

on ’Swingle’ citrumelo under controlled environmental room (CER) and screen-house (SH) condition.

Flush shoot stagex ny Viability (%)

Eggz Nymphz Totalz

CER SH CER SH CER SH CER SH

V1 9 13 83,9±1,7a 80,3±2,4a 79,1±4,0a 51,9±8,4b 66,5±3,7a 43,3±7,3b

V2 18 17 75,6±3,9a 84,6±3,4a 87,0±2,0a 79,4±4,5a 66,2±4,2a 68,2±5,5a

V3 14 19 75,7±3,3a 84,6±2,9a 85,5±2,7a 78,0±4,6a 64,6±3,5a 66,3±4,4a

V4 12 13 70,2±3,2a 81,4±2,1a 6,3±54,4b 32,8±6,7bc 4,9±3,5b 27,4±5,7bc

V5 8 28 73,9±6,9a 77,5±2,6a 0b 21,1±3,7c 0b 16,2±3,8c

x Eggs were not laid on V6 flushes.
y Number of replications.
z Means with the same letter within the column did not differ statistically by Tukey-HSD test (P < 0.05) (comparisons were not made between both ambient).

https://doi.org/10.1371/journal.pone.0190563.t001

Fig 6. Schedule of Diaphorina citri emergence. Total number of adults emerged per day (circles) and

synchrony proportion (%) of female (squares) and males (triangles) of Diaphorina citri in experiment

performed under screen-house conditions (*, ** indicate adjusted residuals greater than 1.65 for P-value <
0.10) and1.96 for P < 0.05, respectively).

https://doi.org/10.1371/journal.pone.0190563.g006

Flush shoot ontogeny and Diaphorina citri
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slope of 1.181 indicates a possible protandry, namely, emergence of males in higher proportion

than females at the beginning of the emergence period (values below 1 would indicate proto-

gyny). Furthermore, cumulative male/female emergence proportion was not independent

from time (Linear trend test, P = 0.0012). Analysis of adjusted residuals for male at the 3rd

(2.05), 4th (1.94) and 5th (2.36) day of emergence, indicated that observed frequency of males

was higher than expected, at exact probabilities of 0.0404, 0.0524, and 0.0183, respectively (See

S3 Appendix).

In both ambient psyllid did not cause any apparent damage to stages older than V2, despite

the large number of feeding individuals. However, the V1 flushes were smaller, contained

fewer and atrophied leaves, and showed abscission of the feather new leaves primordia and

shoot tip.

Discussion

Our research related the maturity of flush growth on citrus and the development of D. citri
from oviposition to adult emergence. In our first attempts to define the stages, we used the

scales or criteria of Agustı́ et al. [64], Leong et al. [65], Stoller [66], and Yang et al. [37], which

were developed based on flush size and colour, shoot elongation or leaf expansion. The simul-

taneous occurrence of all those variables limited their use. In our observations in greenhouses

and orchards flushes of distinct sizes suggesting same phenotypic characteristics or level of tis-

sue softness were frequently observed. This led us to develop a new scale which define six

stages (V1-V6) of growth within four phases of flush development. It proved useful to distin-

guish the stages in our studies involving potted plants (S1 Fig) as well as in young and adult

trees growing in the field (S2 Fig). We then determined the suitability of these stages for devel-

opment of the psyllid.

Diaphorina citri females laid eggs on all growth flush stages with the exception of mature

V6 flushes. Oviposition was higher on stages V2 and V3, and gradually declined as the shoots

matured. Flush ontogeny also influenced the time required for females to commence oviposi-

tion, which took longer on harder tissues of stage V5 (�3 days) than on the younger tissues of

V1 to V4 (about 1 day). This suggests that changes in leaf hardness and its chemical composi-

tion [36,46,67] signal to females that the leaf tissues are not suitable for development of

nymphs. Similar behaviour is exhibited by Toxoptera citricida [53], Trioza erytreae Del Guercio

(Triozidae) [68], and citrus leafminer Phyllocnistis citrella (Lepidoptera: Gracilariidae) [69].

Flush ontogeny also impacted nymph viability, which was lower on stages V4 to V5. The

few live young nymphs observed on older tissues moved quickly (which is in opposition to the

suggestions in the way that younger nymphs walk less, apparently to reduce the risk of dehy-

dration [70]), in contrast to those found on younger less lignified tissues. Since younger

nymphs have shorter and weaker stylets [36], the relatively thicker leaf cuticles [71] and larger

and deeper vascular vessels, characteristic of mature leaves [36,72], may have affected nymph

probing and survival. Nutritional changes could be an additional factor. It is already known

that the mineral composition of citrus leaves varies from organogenesis to maturation and

senescence, with calcium remaining immobilized and nitrogen and potassium moving from

older to younger tissues [73,74]. Nutritional variation in plant tissues may cause changes in tis-

sue palatability and phloem sap quality, and consequently affect the activity of chewing and

sucking insects [75–78]. For instance, changes in essential amino acid composition changed

the performance of Manduca sexta Linnaeus [79], and the sucking insects Bemisia tabaci Gen-

nadius [80,81] and aphids [38]. Changes in calcium supply also have shown to affect the integ-

rity of plant cell wall and tissue hardness, leading to decreased damages caused by bacterial or

fungal infections [82,83] and damages caused by feeding insects. Increased rigidity of leaf
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tissues in response to calcium supply caused attrition to the mouthparts of the chewing insects

Spodoptera exigua Hübner, Eldana saccharina Walker, and Deroceras reticulatum Müller [84–

86], and might impede D. citri stylet penetration.

The early emergence of males in proportion higher than that of females (Fig 6), suggests

protandry in D. citri, a phenomenon that represents a reproductive advantage for insects with

high fecundity rates [87], as is the case of D. citri. Protandry has been described in Cardiaspina
densitexta Taylor [88] and Cacopsylla pyri L. (Psyllidae) [89] but not, in contrast to our obser-

vations, in D. citri [57,90]. It is possible that the relatively low numbers of adults observed in

those previous studies with D. citri may have influenced the results and conclusions. The exis-

tence of protandry would benefit D. citri reproduction as males require more time to reach

sexual maturity than females [57] and have shorter life spans [91,92].

Currently in SPS, effective measures to minimise the impact of HLB have been based on

removal of symptomatic trees and area-wide suppression of D. citri populations [8]. Vector

suppression has benefited from information generated through the “phytosanitary alert sys-

tem”, which involves fortnightly inspection of some 18,000 YST distributed within the major

citrus growing areas of the state [93]. The presence of new shoots on trees is also monitored.

Regional and coordinated applications of insecticides start when numbers of adult psyllids per

trap exceed set intervention thresholds (< 0.5 psyllid per YST) and when the density of new

shoots indicates favourable conditions for rapid increases in psyllid populations. However, the

shoot development criteria on which decisions are made are almost exclusively based on shoot

size. Furthermore, psyllid records on YST would reflect a process that begun a few weeks

before.

As shown in this study, shoot ontogeny provides a better evidence for phenotypic charac-

terization and duration of the flush stages that mostly influence D. citri reproduction. Com-

bined to an estimation of flush density using, for example, the methodology proposed by Hall

and Albrigo [54], it may be possible to determine at a given moment the potential risk for psyl-

lid multiplication in a particular orchard, and the best moment for psyllid control based on the

proportion of most suitable flushes. Particular models that consider mainly the temperature

for psyllid multiplication [94,95] and include the relative weight of each growth stage on psyl-

lid biology. As shown in Fig 2, in the ambient conditions the study was conducted, the period

of time most suitable to D. citri spanned around 20 days, from bud-break to the end of V3

flushes, when D. citri chemical control practices should be intensified. Outside that period,

when leaf emission and expansion rate decrease quickly, it would be probably more reasonable

to alternate insecticide or mineral oil applications with biological control [11,37,96–102].

Since a citrus orchard should be understood as a heterogeneous population of flush shoots, D.

citri control also could be benefited from the establishment of a ‘reproduction’ or ‘potential

risk’ threshold value, which could be estimated taking into consideration the risk each flush

stage represents to D. citri reproduction, and the frequency of each stage in a given orchard at

a given moment.
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