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Abstract: Beyond their indispensable role in hemostasis, platelets have shown to affect the
development of inflammatory disorders, as they have been epidemiologically and mechanistically
linked to diseases featuring an inflammatory reaction in inflammatory diseases like multiple sclerosis,
rheumatoid arthritis and inflammatory bowel disorders. The identification of novel molecular
mechanisms linking inflammation and to platelets has highlighted them as new targets for therapeutic
interventions. In particular, genetic and pharmacological studies have identified an important role
for platelets in neuroinflammation. This review summarizes the main molecular links between
platelets and inflammation, focusing on immune regulatory factors, receptors, cellular targets and
signaling pathways by which they can amplify inflammatory reactions and that make them potential
therapeutic targets.
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1. Introduction

Platelets are tiny anucleate cells that circulate in a quiescent discoid state in the blood stream [1].
Their well-known physiological function is to regulate hemostasis as cellular effectors of hemostasis.
In this context, platelets are rapidly deployed to sites of vascular injury, where they are indispensable
for orchestration to stop blood loss [2]. They adhere to exposed subendothelial matrix proteins
of the damaged vessel wall such as collagen, von Willebrand factor (vWF) or collagen bound
fibrinogen [3]. Through this firm interaction with the endothelium, platelets become locally activated
and consequently change their shape from discoid to pseudopodia state. This activation includes
the release of different mediators from their storage compartments into circulation, which, in turn,
can activate and recruit additional platelets to the endothelial lesion [4]. Crosslinking of adjacent
activated platelets along with the binding of fibrinogen to glycoprotein (Gp) IIb/IIIa (also known as
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integrin αIIbβ3 or cluster of differentiation (CD) 41/CD61) on activated platelets results in platelet
aggregation [5]. The forming primary platelet plug can limit bleeding and provides sealing of
the endothelial wound. However, it has been shown that platelet activation is not just linked to
beneficial effects in hemostasis. Dysregulation of the coagulation cascade can lead to an aberrant
activation and, thus, aggregation of platelets that is mostly associated with cardiovascular pathogenesis
(reviewed in detail elsewhere [6–9]). In addition to their well-understood and indispensable hemostatic
role, platelets are receiving more and more interest as immune and inflammatory effector cells [10].
There is growing evidence that they actively participate in various immune-mediated pathogenic
circumstances [11].

In this review, we summarize key links between platelets and inflammation, with a specific focus
on molecular pathways in autoinflammatory disorders. The evidence presented here suggests that
manipulation of platelets could be potentially therapeutically exploitable in autoimmune diseases
in general.

2. Platelets—Cellular Mediators of (Neuro-) Inflammation

Given the fact that platelets are not only cellular effectors of hemostasis, but actively assist immune
mediated (neuro-) inflammation, it is not surprising that platelets secret and shed a range of mediators
both relevant for hemostasis and the immune response [12].

Platelets usually circulate in a quiescent state in the blood circulation, where they contact a variety
of substances that activate them, including lipopolysaccharides (LPS) and toll-like receptor (TLR)
ligands along with thrombin, collagen and adenosine diphosphate (ADP) [13,14]. Upon activation,
platelets can directly and indirectly communicate with several target cells (e.g., leukocytes, endothelial
cells) that are involved in the initiation and propagation of (neuro-) inflammatory reactions through
various platelet-derived factors. These various factors can thus mediate activation, recruitment
and transmigration of involved target cells. These platelet-derived factors can include the release
of cytokines, chemokines and other mediators (like serotonin and ADP) from their main storage
compartments (α- and dense granules). Further, current studies indicate that platelet activation can
also lead to de novo synthesis of mediators, like cytokines, by their regulated metabolic activity [15,16].
Beyond to their capacity to store and secrete immune modulatory molecules, activated platelets are
highly effective at generating extracellular vesicles named microparticles (MP). Despite the fact that
MP can be of various cellular origin (e.g., endothelial cells), platelet MP (PMP) represent the primary
source of MP in the blood circulation [17]. The PMP content harbor an elaborate set of transcription
factors, enzymes, micro ribonucleic acid and various mediators that can be delivered to surrounding
target cells to impact their function [16]. Moreover, PMP, like platelets, expose a range of surface
proteins which enable them both to provide binding sites for adjacent target cells (e.g., leukocytes,
endothelial cells) and to deliver surrounded stimuli leading to the secretion of cytokines/chemokines,
under the control of specific intracellular regulatory pathways. The main platelet receptors, which
comprise TLR, siglecs, Gp as well as metabotropic purinergic receptors, and their ligands are reviewed
in detail elsewhere [14,18–20].

Increased amounts of platelet-derived factors along with increased activation status of platelets
occur in the pathogenesis of several immune mediated inflammatory diseases.

3. Role of Platelet-Driven Neuroinflammation in Multiple Sclerosis

Multiple sclerosis (MS) is an inflammatory disease of the central nervous system (CNS),
characterized by demyelination of neuronal axons. Although the aetiology and pathogenesis of MS
are still not completely understood, it is widely accepted that MS is an immune-mediated disease [21].
It can be assumed that immunological processes during the initial phases of disease include the
formation of self-reactive leukocytes in the peripheral circulation that eventually transmigrate across
the activated blood-brain barrier (BBB). The subsequent disruption of the impermeable nature of the
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BBB facilitates the local recruitment of further inflammatory effector cells into the CNS parenchyma
mediating tissue damage.

Emerging new concepts emphasize that factors that do not belong to the immune system are
involved in inflammatory degeneration in MS. In particular, constituents of the plasmatic coagulation
system and the contact systems have received interest [22,23]. Further, depositions of coagulation
factors, such as fibrinogen or factor XII, were described in plaques of MS patients [23–25]. Besides the
plasmatic coagulation, slight attention has also been given to platelets in the pathogenesis of MS in
the past, despite the fact that early evidence from 1950s/60s pointed to platelet abnormalities in MS
patients [26–29]. These data already suggested an immune mediated role for platelet contribution
in MS, but were then largely forgotten in future generations of MS researchers. Indeed, current
studies suggest that platelet depletion reduces disease severity and inflammation in mice that were
subjected to experimental autoimmune encephalomyelitis (EAE), a classical animal model of CNS
inflammation to study the pathogenesis of MS [30–32]. In particular, a number of studies have
demonstrated that platelets are present along with an increased activation status in the peripheral
blood and in plaques of MS patients as indicated by elevated PMP levels, P-selectin expression
(also known as CD62P), increased levels of platelet-activating factor (PAF) and upregulation of GpIIb
receptor (see Figure 1) [30,33–36]. Of note, the PMP level was higher in untreated MS patients
and relapsing-remitting patients showed the highest levels both compared to respective controls,
thus emphasizing a predictive role as biomarker [35]. Consistent with the findings in MS patients,
an increased activation status of platelets has also found in inflamed CNS tissue of EAE mice [30,31,37],
whereby EAE symptoms correlate with the levels of PAF [38]. Additionally, the genetic ablation
of PAF receptor in EAE (see Table 1) led to decreased disease severity along with reduced CNS
inflammation and demyelination [38]. Elevated platelet activation was linked to the interaction
between platelets and CNS-specific cell compartments. Thereby, it was shown that platelets have the
ability to recognize gangliosides (sialic acids) within the lipid rafts on the surface of astrocytes and
neurons due to the disrupted integrity of the BBB. The relevance of platelet recognition of CNS-specific
glycolipid structures is underscored by animal studies with reinforcement/inhibition and genetic
ablation of platelet glycolipid interaction (see Tables 1 and 2). Platelet activation (expression of
P-selectin) was triggered through this interaction following secretion of pro-inflammatory mediators,
interleukin (IL)-1, platelet factor (PF)-4, and 5-hydroxytryptamine (5-HT or serotonin, see Figure 1) [31].
Interestingly, platelet-derived serotonin possesses the ability to recruit leukocytes (neutrophils) to
the site of CNS inflammation [39]. Another experimental evidence revealed that 5-HT transporter
knockout (5-HTT−/−, see Table 1) mice showed a decreased disease severity along with reduced CNS
inflammation in EAE [40]. In line with this, treatment of relapsing MS patients with the antidepressant
fluoxetine, which is a selective serotonin-reuptake inhibitor, reduced the disease activity due to its
neuroprotective effect [41,42].

Full platelet activation can be induced in response to platelet-endothelial cell interactions.
Note that, under physiological conditions, circulating platelets do not interact with intact endothelium.
However, it is reported that platelets can also alter the phenotype of endothelial cells. In this context,
it was demonstrated that platelets can indirectly contribute to the activation of cerebrovascular
endothelium via released IL-1α. In addition, endothelial activation in response to platelet-derived
IL-1α was associated with the expression of cell adhesion molecules, intracellular adhesion molecule-1
(ICAM-1) and vascular cell adhesion protein (VCAM-1) as well as to enhanced release of CXC
chemokine ligand 1 (CXCL1) [43]. Studies with human endothelial cells revealed similar results [44].
Besides IL-1, platelets can also modulate the BBB via their expression of CD40 Ligand (CD40L,
also known as CD154). Like IL-1, CD40L enable platelets to indirectly interact with endothelium,
which express CD40, thus triggering upregulation of adhesion molecules and chemokine [45].
The contribution of E- and P-selectin, additional adhesion molecules, in EAE pathogenesis were
investigated (see Table 1), thus showing that they are not required for the development of EAE
although P-selectin was found to be upregulated on both endothelium and platelets in inflamed
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CNS [37]. Nevertheless, the genetic ablation of platelet/endothelial cell adhesion molecule-1
(PECAM-1, also known as CD31) in animal studies of EAE (see Table 1) revealed that PECAM-1
plays a major role in the restoration of endothelial integrity [46].

As already mentioned, activation of platelets can be modulated by distinct receptors. In this
context, the metabotropic purinergic ADP receptor P2Y12, which is mainly found on platelets, seems
to play a significant role. Experimental inhibition of P2Y12 receptor by clopidogrel on human platelets
showed a reduced release of both P-selectin and CD40 Ligand (CD40L) [47]. The relevance of
P2Y12 receptor inhibitors like clopidogrel or prasugrel in MS patients has not yet been analyzed,
but platelets can bind to CNS-specific lipid rafts through CD62P [31] and CD40L triggers endothelial
activation [45], meaning both mediators fire neuroinflammatory processes. Furthermore, it was shown
that dipyridamole decreased the clinical severity of EAE (see Table 2), although other molecular
mechanisms than inhibition of platelet activation were relevant in this context [48]. Blockade of platelet
key receptors (see Table 2) showed that platelets participate in EAE pathogenesis by recognizing
integrins [30]. Here, it should be taken into account that Gp blocker might be an opportunity to treat
MS. Copaxone, which are already successfully applied for MS therapy, seem to beneficially affect
platelet activation additional to its known mode of action [49].

Although an increasing body of evidence clearly shows the inflammatory role of platelets and their
derived factors/receptors in pathophysiology of MS and EAE, the role of platelets remain elusive so
far. For instance, it is known that disease activity in MS undergoes shifts in the time before, during and
after pregnancy with a clear reduction in relapse rates, especially in the last trimester, of 70%–80% [50].
Especially, in late pregnancy, it is known that increased platelet activation occurs and is associated with
increased concentrations of β-thromboglobulin and thromboxane A2 [51,52]. However, whether these
findings hold also true in MS patients has not been examined so far, so further studies are required.

Table 1. Studies of platelets, their receptors and molecules: effects on inflammatory processes of the
central nervous system in transgenic mice.

Mouse Line
(Genetic Background) Model (Peptide) Inflammatory Effect Referene

ST3Gal-V−/−

(C57BL/6)
EAE (MOG35–55)

Ameliorated disease course due to lack of brain-specific
gangliosides that can recognize by platelets. Reduced CNS

inflammation as determined by the infiltration of less lymphocytes,
CD4 T cells and macrophages on day 21 after the EAE induction.

[31]

E-/P-selectin−/−

(C57BL/6)
EAE (MOG35–55) No effect on clinical symptoms. [37]

E-/P-selectin−/−

(SJL)
EAE (PLP139–151) No effect on clinical symptoms. [37]

5-HTT−/−

(C57BL/6)
EAE (MOG35–55) Decreased disease severity. Reduced CNS inflammation. [40]

5-HTT−/−

(C57BL/6)
EAE (rat MBP) Decreased disease severity. [40]

PAF receptor−/−

(C57BL/6)
EAE (MOG35–55) Decreased disease severity. Reduced CNS inflammation

and demyelination. [38]

FcR γ-chain −/−

(C57BL/6J)
EAE (MOG35–55) Reduced clinical symptoms. [36]

PECAM-1−/−

(C57BL/6)
EAE (MOG35–55) Early onset of clinical symptoms associated with early leukocyte

migration into CNS. [46]

PECAM-1−/−

(C57BL/6)
Adoptive transfer of

EAE (MOG35–55)
Early onset of clinical symptoms regardless of whether KO mice

were injected with MOG35–55-specific WT or PECAM-1−/− T cells. [46]

Abbreviations: CD, cluster of differentiation; CNS, central nervous systems; EAE, experimental autoimmune
encephalomyelitis; FcR γ-chain, Fc receptor γ-chain; Gp, glycoprotein; 5-HTT, 5-hydroxytryptamine (common
name serotonin) transporter; IL, interleukin; KO, knockout; MBP, myelin basic protein; MOG35–55, myelin
oligodendrocyte glycoprotein 35–55; PAF, platelet-activating factor; PECAM-1, platelet/endothelial cell adhesion
molecule-1 (also known as CD31); PLP139–151, proteolipid protein 139–151; WT, wild type.
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Table 2. Studies of platelets, their receptors and molecules contributing to neurovascular inflammation
using pharmacological substances/experimental manipulations.

Treatment Model (Peptide) Genetic Background/or
Species Inflammatory Effect Reference(s)

Injection of brain lipid rafts on day 0
(platelet degranulation within brain)

EAE (MOG35–55)
without PTx C57BL/6 EAE was induced. [31]

Intracranial injection of platelet
rich plasma on day 0

(systemic platelet degranulation)

EAE (MOG35–55)
without PTx C57BL/6 EAE was induced. [31]

Neuroaminidase (Prevention of
platelet-lipid rafts interactions) EAE (MOG35–55) C57BL/6 Decreased disease

severity. [31]

LFA protein (Prevention of
platelet-lipid rafts interactions) EAE (MOG35–55) C57BL/6 Decreased disease

severity. [31]

CTB (Prevention of platelet-lipid
rafts interactions) EAE (MOG35–55) C57BL/6 Decreased disease

severity. [31]

Anti-GQ Ab (Prevention of
platelet-lipid rafts interactions) EAE (MOG35–55) C57BL/6 Decreased disease

severity. [31]

Anti-M2 Ab on days 12, 14 & 16
(blockig Mac-1/GP1bα interaction) EAE (MOG35–55) C57BL/6 Decreased disease

severity. [30]

Anti-GPIIb/IIIα Fab on days 12, 14 & 16 EAE (MOG35–55) C57BL/6 Decreased disease
severity. [30]

Anti-GPIbα Fab on days 12, 14 & 16 EAE (MOG35–55) C57BL/6 Decreased disease
severity. [30]

Anti-GPIbα Fab on days 15, 17 & 19 EAE (MOG35–55) C57BL/6 Decreased disease
severity. [30]

Anti-thrombocyte serum (platelet
depletion) on days 0, 2, 4 & 8 or 12 & 16 EAE (MOG35–55) C57BL/6

Decreased disease
severity. Reduced CNS

inflammation.
[30,31]

Anti- thrombocyte serum (platelet
depletion) on days 2 & 6 EAE (MOG35–55) C57BL/6 No effect on

clinical symptoms. [30]

Dipyridamole EAE (MOG35–55) C57BL/6
Reduced clinical

symptoms, decerased
microglial activity.

[48]

Abbreviations: Ab, antibody; CD, cluster of differentiation; CNS, central nervous systems; CTB, β subunit of
cholera toxin; EAE, experimental autoimmune encephalomyelitis; Fab, Fragment antigen binding; FcR γ-chain,
Fc receptor γ-chain; Gp, glycoprotein; LFA, Limax flavus agglutinin; MOG35–55, myelin oligodendrocyte
glycoprotein 35–55; PECAM-1, platelet/endothelial cell adhesion molecule-1 (also known as CD31); PF4, platelet
factor 4 (also known as CXCL4); PLP139–151, proteolipid protein 139–151; PTx, Pertussis toxin; WT, wildtype.

4. Role of Platelet-Driven Immune Responses in Other Non-Neurological
Inflammatory Disorders

An increasing body of evidence also supports the role of platelets and platelet-derived factors in
non-neurological auto-inflammatory diseases. In the following, we focus on two well-characterized
disorders (rheumatoid arthritis (RA) and inflammatory bowel disorders (IBD)) to elaborate the
immunological role of platelets.

5. Rheumatoid Arthritis

In particular, a substantial contribution of platelet-derived factors has been suggested in
rheumatoid arthritis (RA; reviewed in detail elsewhere [53]) as platelet glycoprotein IIb/IIIa can
be detected in the synovium of patients with RA [54,55]. Moreover, the activation marker P-selectin is
higher in platelets from patients with active RA than those in remission [56] and elevated levels of PMP
and soluble CD40L as well as P-selectin are reported in individuals suffering from RA [57–63]. Further,
platelet aggregates and platelet or PMP adherent to leukocytes have been detected in both blood and
synovial fluids of RA patients [58,64–70]. In vitro, it was shown that platelets are hyper-responsive to
further activation, potentially reflecting the in vivo priming of platelets during disease [71,72].

A further direct pro-inflammatory role of platelets was suggested as its depletion in mice leads
to an improvement in the clinical symptoms in an animal model of RA and results in decreased
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inflammation, bone and cartilage erosion (see Table 3) [70]. Interestingly, it was shown that GPVI is
the relevant receptor for this effect, while neither thromboxane production or blockade of its receptor
nor GPIbα was necessary in this context (see Tables 3 and 4) [70]. Furthermore, it was shown that
genetic depletion of COX-1 in mice resulted in an ameliorated disease course in an animal model of
RA [53]. Even more surprising, treatment with P2Y12 receptor antagonists like prasugrel leads to an
aggravated disease course [70,73]; however, to support the potential human relevance, several case
reports of patients developing spontaneous joint inflammation after clopidogrel intake exist [74–79].
Additionally, the effect of dipyridamole was tested as a therapy in RA patients, but it did not modify
disease severity [80].

Table 3. Studies of platelets and platelet-derived factors: effects on inflammatory processes in
transgenic mice.

Mouse Line
(Genetic Background) Model (Peptide) Inflammatory Effect Reference

Cox1−/− K/BxN serum transfer
arthritis (K/BxN serum) Ameliorated disease course due to platelet-derived COX-1 [53]

Gp1ba−/− (C57BL/6)
K/BxN serum transfer

arthritis (K/BxN serum) No clinical effect [70]

Gp6−/− (C57BL/6)
K/BxN serum transfer

arthritis (K/BxN serum)
Decreased disease severity. Reduced inflammation,

bone erosion, cartilage erosion [70]

Tbxas1−/− (C57BL/6)
K/BxN serum transfer

arthritis (K/BxN serum) No effect on clinical symptoms [70]

CD40−/− (C57BL/6) Colitis (DSS) Attenuated disease activity, reduced inflammation and MPO
activity, reduced platelet and leukocyte adhesion [81]

CD40L−/− (C57BL/6) Colitis (DSS) Attenuated disease activity, reduced inflammation and MPO
activity, reduced platelet and leukocyte adhesion [81]

P-Selectin−/− (C57BL/6) Colitis (DSS) Reduced platelet adhesion and rolling [81]

Reduced platelet adhesion, decreased albumin extravasation [82]

Enhanced disease activity, reduced MPO activity,
inflammation, leukocyte rolling [83]

PSGL-1−/− (C57BL/6) Colitis (DSS) Reduced platelet adhesion and rolling [81]

Earlier disease onset, enhanced disease activity, enhanced
infiltration, platelets not examined [84]

Decreased disease activity, inflammation, reduced Th1 and
Th17 infiltration, platelets not examined [85]

PSGL-1−/− (Balb/c) Colitis (DSS) Reduced clinical disease activity, decreased leukocyte rolling,
inflammation and MPO activity, platelets not examined [86]

Abbreviations: Cox1, cyclooxygenase-1; DSS, dextran sulfate sodium ; Gp, glycoprotein; K/BxN, KRN and
MHC class II molecule I-A (g7); MPO, myeloperoxidase; Tbxas1, Thromboxane A synthase 1.

Thus, platelet activation mechanisms engaged during RA seems to be different from the typical
pathways involved in thrombosis, so that not all drugs currently used to inhibit platelet function might
have a protective effect in the context of arthritis.

Inflammatory Bowel Disease

In addition to RA, potential contribution of platelets and platelet-derived factors is also under
consideration for inflammatory bowel disease (IBD), namely Crohn’s disease and ulcerative colitis
(reviewed in detail elsewhere [87,88]). These disorders are known to be associated with an increased
risk for thromboembolism [87]. Interestingly, there is evidence that patients suffering from IBD
reveal a larger number but smaller size of platelets. This finding is proposed to be used as a marker
for disease activity [89–93]. Furthermore, it was shown that both expression of P-selectin, GP53
and CD40L on circulating platelets, appearance of platelet-leukocyte aggregates and soluble CD40L,
β-thromboglobulin and PF-4 are increased in IBD patients [94–97]. In line with these findings, animal
models of colitis have demonstrated accumulation of platelets in colonic venules that correlated
with disease activity and adherent leukocytes and were predominantly attached to the surface of
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leukocytes [81,82]. In this model, pharmacological depletion of platelets induces reduced rolling and
adhesion of leukocytes [81]. Genetic depletion or pharmacological blockade of both P-selectin of
PSGL-1 led to reduced platelet and leukocyte adhesion in mice, while findings concerning disease
activity revealed contradictory results (see Tables 3 and 4) [81–86]. Furthermore, the same group could
show that genetic depletion of CD40 or its ligand is protective in animal model of colitis with reduced
platelet and leukocyte adhesion (see Table 3). Nonetheless, blockade of GPIIb/IIIa had no effect on
platelet adhesion in an experimental model of colitis [82]. In contrast to RA, pharmacological blockade
of P2Y12 receptor by clopidogrel or treatment with acetylsalicylic acid reveals an attenuated disease
course in models of IBD [98,99].

Collectively, these results demonstrate a clear role of platelets and platelet-derived factors, not
only in neuroinflammation, but also in other autoimmune disorders.

Table 4. Studies of platelets and platelet-derived factors: effects on inflammatory processes using
pharmacological substances.

Treatment Model (Peptide)
Genetic

Background/or
Species

Inflammatory Effect Reference

Anti-GPIbα Ab
(platelet depletion)

K/BxN serum
transfer arthritis
(K/BxN serum)

C57BL/6J Reduced clinical symptoms, decreased inflammation,
bone erosion and cartilage erosion [70]

Anti-GPIIb/IIa Ab Colitis (DSS) C57BL/6 No effect on adhesion of platelets and leukocytes [82]

Anti-platelet serum Colitis (DSS) C57BL/6 Decreased rolling and adhesion of leukocytes [81]

Reactive arthritis
(PG-PS) Lewis rat

Exacerbated disease severity (increased joint
diameter), increased synoviocyte hyperplasia (in

both acute and chronic phases), blood vessel
proliferation (chronic), inflammatory infiltration

(acute and chronic) and fibrosis (chronic), increased
IFNy, IL-1b, IL-6 plasma levels, reduced IL-10

plasma level, increased neutrophil and platelet count

[73]

Crohn’s disease
(TNBS)

Spargue
Dawley rats

Attenuated disease course, reduced inflammation
and MPO activity [98]

Ulcerative colitis
(oxazolone) Wistar rats Attenuated disease course, reduced inflammation

and MPO activity [98]

Prasugrel (P2Y12
receptor antagonist)

Reactive arthritis
(PG-PS) Lewis rat

Exacerbated disease severity (increased joint
diameter), greater synoviocyte hyperplasia,

leukocyte infiltration, fibrosis, bone destruction,
and pannus formation, increased platelet and

neutrophil count, decreased IL-10 plasma levels

[73]

SQ29548
(Thromboxane A2

receptor antagonist)

K/BxN serum
transfer arthritis
(K/BxN serum)

C57BL/6J No effect on clinical symptoms [70]

Anti-P-Selectin Ab Colitis (DSS) C57BL/6 Decreased rolling and adhesion of platelets [81]

Reduced adhesion of platelets and leukocytes [82]

Reduced body weight loss, decreased disease
activity, MPO activity, inflammation, leukocyte
rolling in colon, enhanced MPO activity in lung

[83]

Anti-PSGL-1 Ab Colitis (DSS) C57BL/6 Decreased rolling and adhesion of platelets [81]

Reduced adhesion of platelets and leukocytes [82]

Acetylsalicylic acid Colitis (DSS) C57BL/6 Decrease in disease severity [99]

Clopidogrel Colitis (oxazolone) Rats Decrease in disease severity, protection against
mucosal damage [98]

Crohn’s disease
(TNBS) Rats Decrease in disease severity, protection against

mucosal damage [98]

Abbreviations: Ab, antibody; AIA, antigen-induced arthritis; Gp, glycoprotein; IFNy, Interferon gamma;
IL, Interleukin; K/BxN, KRN and MHC class II molecule I-A (g7); PG-PS, Peptidoglycan polysaccharide;
TNBS, Trinitrobenzenesulphonic acid.
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6. Future Prospects/Concluding Remarks

Beyond their hemostatic functions, platelets have the capacity to produce and secrete a
variety of immune modulatory mediators after activation in response to various factors leading
to initiation and modulation of immune-mediated inflammatory processes via interaction with other
platelets, leukocytes and the endothelium. In this context, increased amounts of platelet-derived
factors along with an increased activation status of platelets occur in the pathogenesis of MS,
RA and IBD, emphasizing that modulating platelet activity may be beneficial. Furthermore,
platelets and platelet-associated molecules have been tested as targets for imaging tools in vascular
inflammation [100]. Thereby, platelets and their activation status merit consideration as a tool
and biomarker in immune-mediated disease prediction [35] and also as targets for therapy of
(neuro-)inflammation [49,101]. A recent report has implicated platelets as effectors of tissue
remodeling processes such as apoptosis after brain damage using a model of transient ischemia [102].
This unexpected role of platelets within the neuronal tissue will have to be further questioned in
additional experimental settings. In conclusion, further research is still required to elucidate the
underlying mechanism(s) by which platelets, their receptors and platelet-derived factors modulate
vascular integrity, and leukocyte crosstalk will aid in our understanding of the role platelets might
play during inflammatory immune responses. Some of these targets already have available drugs,
which creates an opportunity to merely repurpose them for use in immune mediated disease, like MS.Int. J. Mol. Sci. 2016, 17, 1723  9 of 14 
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Under steady state, platelets circulate in a quiescent state in the blood peripheral blood stream.
Disruption of the impermeable nature of the BBB is a pathophysiological hallmark of MS and its
animal model, EAE. Platelets rapidly deployed to sites of neurovascular injury to restore endothelial
integrity and interact with lipid rafts within CNS parenchyma. This initial interaction is possible
since platelets recognize sialic acids within the lipid rafts, which results in the expose of P-selectin
on platelet surface. Upon activation, platelets active secret chemokines/cytokines and upregulate
surface molecules, which both enable them to more efficiently communicate with target cells. Thereby,
platelets mediate leukocyte recruitment and activation of endothelial cells. Leukocytes adhere to
activated endothelium through adhesion molecules that promote leukocyte–endothelial interaction
and leukocyte transmigration. Thus, platelets facilitate immune cell infiltration from the periphery
into the CNS, where they may become reactivated and fan the fire of neuroinflammation.
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