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ABSTRACT A theory of cognitive mapping is developed that depends only on accepted 
properties of hippocampal function, namely, long-term potentiation, the place cell phenome- 
non, and the associative or recurrent connections made among CA3 pyramidal ceils. It is pro- 
posed that the distance between the firing fields of connected pairs of CA3 place cells is en- 
coded as synaptic resistance (reciprocal synaptic strength). The encoding occurs because 
pairs of  ceils with coincident or overlapping fields will tend to fire together in time, thereby 
causing a decrease in synaptic resistance via long-term potentiation; in contrast, ceils with 
widely separated fields will tend never to fire together, causing no change or perhaps (via 
long-term depression) an increase in synaptic resistance. A network whose connection pat- 
tern mimics that of CA3 and whose connection weights are proportional to synaptic resis- 
tance can be formally treated as a weighted, directed graph. In such a graph, a "node" is as- 
signed to each CA3 cell and two nodes are connected by a "directed edge" if and only if the 
two corresponding cells are connected by a synapse. Weighted, directed graphs can be 
searched for an optimal path between any pair of  nodes with standard algorithms. Here, we 
are interested in finding the path along which the sum of the synaptic resistances from one 
cell to another is minimal. Since each cell is a place cell, such a path also corresponds to a 
path in two-dimensional space. Our basic finding is that minimizing the sum of the synaptic 
resistances along a path in neural space yields the shortest (optimal) path in unobstructed 
two-dimensional space, so long as the connectivity of the network is great enough. In addition 
to being able to find geodesics in unobstructed space, the same network enables solutions to 
the "detour" and "shortcut" problems, in which it is necessary to find an optimal path around 
a newly introduced barrier and to take a shorter path through a hole opened up in a preexist- 
ing barrier, respectively. We argue that the ability to solve such problems qualifies the pro- 
posed hippocampal object as a cognitive map. Graph theory thus provides a sort of existence 
proof  demonstrating that the hippocampus contains the necessary information to function as 
a map, in the sense postulated by others (O'Keefe,J., and L. Nadel. 1978. The Hippocampus 
as a Cognitive Map. Clarendon Press, Oxford, UK). It is also possible that the cognitive map- 
ping functions of the hippocampus are carried out by parallel graph searching algorithms im- 
plemented as neural processes. This possibility has the great attraction that the hippocampus 
could then operate in much the same way to find paths in general problem space; it would 
only be necessary for pyramidal cells to exhibit a strong nonpositional firing correlate. Key 
words: place ceils Q cognitive map Q hippocampal long-term potentiation * graph theory, neu- 
ral applications �9 rat navigation, computer  model 

I N T R O D U C T I O N  

Cognitive Maps 

Dating back at least to the work of  To lman  (1932, 
1948), the not ion has been  enter ta ined that  rats are en- 
dowed with mapqike representat ions of  their  environ- 
ments.  The  existence of  these "cognitive maps" is in- 
ferred f rom the ways in which rats solve certain spatial 
problems.  Because the problems seem difficult and the 
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solutions seem efficient and intelligent, one imagines 
that rats must  use information about  the overall struc- 
ture or geometry  of  their surroundings while solving 
these problems.  In short, maps are postulated because 
it is believed that no simpler problem-solving mecha-  
nism will do. 

As an aside, we note  that not  everyone accepts this 
reasoning, and that even advocates must  maintain a 
healthy skepticism about  maps (see Terrace,  1984). 
Nevertheless, the behavioral evidence in favor of  maps 
is quite convincing, and the reader  is referred to com- 
pendious  reviews by O'Keefe  and  Nadel  (1978) and 
Gallistel (1990). In this paper,  we take for granted  that  
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various animal species, and particularly rats, have cog- 
nitive maps. 

Accepting the existence of  maps, it is natural to ask 
how they are implemented.  From comparative (cross- 
species) behavioral studies, it is clear that map-like rep- 
resentations can be supported by nervous systems of  
widely varying anatomy; they are found in insects, am- 
phibia, reptiles, birds, and mammals (Gallistel, 1990). 
The strong implication is that there is not  a unique way 
of  representing global information about  the environ- 
ment. Rather, in the course of evolution, a variety of  
mapping systems seem to have developed, presumably 
because it is useful to know where you are and how to 
get to where you want to go. 

The Neural Basis of a Cognitive Map 

Although comparative work may suggest that maps can 
be implemented in many ways, it is a more  difficult task 
to understand how a particular map might function. In 
the first place, it might be difficult to locate a map, 
even if a particular part of  a nervous system is preferen- 
tially associated with mapping. For example, a decrease 
in the ability to solve spatial problems after destruction 
of  a part of  the brain might result from disconnecting 
the putative map from its inputs or outputs, as well as 
from damaging the map itself. Similarly, the existence 
of  a map would not  necessarily be revealed by single- 
cell recordings because the encoding of  spatial infor- 
mation might be distributed across cells in a very com- 
plicated fashion. 

Despite these possibilities, there seems to be one 
map that is at least partly localized and whose opera- 
tions are sufficiently simple to be detectable in the dis- 
charge of  individual neurons. This putative map was re- 
vealed by recordings from hippocampal neurons in 
freely moving rats by O'Keefe and Dostrovsky (1971). 
The seminal discovery of  O'Keefe and Dostrovsky was 
that the discharge of  many hippocampal  neurons is lo- 
cation specific; they fire rapidly only when the rat's 
head is in a restricted part of  the recording apparatus. 
Such units, now called "place cells" (O'Keefe, 1976), 
are pyramidal cells of the CA3 and CA1 regions of  the 
hippocampus. The existence of  place cells has been 
corroborated by many workers (Olton et al., 1978; 
Muller et al., 1987), and although their firing is not  ide- 
ally location specific (Muller et al., 1991b), there are 
circumstances in which discharge is independent  of  the 
direction that the head points in the environment  
(Muller et al., 1994). 

The place cell p h e n o m e n o n  is so striking that it im- 
mediately convinced O'Keefe and Dostrovsky that the 
hippocampus is the locus of  a map. In the view of 
O'Keefe (see, for example, O'Keefe, 1991), this map is 
a Euclidean representat ion of  the environment;  it al- 
lows the computat ion of  distances and angles in the en- 

vironment, thereby permitting solutions to spatial prob- 
lems. An alternative view is that the spatial functions of  
the hippocampus are special cases of more  general 
computations (see Cohen and Eichenbaum, 1993). A 
recent  set of  brief  papers (Nadel, 1991) lays out the 
thoughts of  many workers in this area. 

The position taken in this paper is in fundamental  
agreement  with O'Keefe: We think that place cells re- 
veal a hippocampal map. Our  primary purpose is to 
show that there is a realistic way in which synaptic con- 
nections in the hippocampus can store a map-like rep- 
resentation of  the environment.  By "map-like" we mean 
that the representation can be used to solve specific, 
difficult spatial problems. 

The map-like representat ion is built from place cells, 
long-term potentiation, and the circuitry of  the CA3 
port ion of  the hippocampus. In this scheme, the map- 
ping information is stored in the strengths of  CA3 --) 
CA3 synapses that connect  pairs of  pyramidal /place 
cells. The  scheme is both parsimonious and precise, 
but  is not  comprehensive. That  is, we at tempt to prove 
formally that the required information could be stored 
in the stated way but  do not  at tempt to explain ei ther 
how place cells come to exist nor  how the stored infor- 
mation could be extracted by accepted neural opera- 
tions. Retrieval as it might go on in the nervous system 
is considered only in the Discussion. 

It is useful to comment  also on the supposition by 
O'Keefe that mapping is the sole function of the hip- 
pocampus. A contrary supposition has been expressed 
by Eichenbaum that mapping is a special case of a 
more general computational process. We take it as a 
major strength of  the ideas proposed here  that they fit 
ei ther of these views. O'Keefe's position is strength- 
ened if it is true that pyramidal cells act strictly as place 
cells. If pyramidal cells can also represent  nonspatial as- 
pects of the situation, the same circuitry permits solu- 
tions of  nonspatial problems, and Eichenbaum's posi- 
tion is strengthened. In this paper, we deal only with 
place cells and location-specific firing but  regard as 
open the question of whether  the hippocampus may 
serve more  general functions. 

Storing Mapping Information 

The central idea in this paper  is that key information in 
the hippocampal map, namely, distance in the environ- 
ment,  is represented as the strength of  Hebbian syn- 
apses (embodied as N-methyl-D-aspartate [NMDA] 1- 
based, long-term potentiation [LTP]-modifiable syn- 
apses) that connect  place cell pairs. Specifically, we 
propose that the strength of  a synapse made by a pair 

IAbbreviations used in this paper: EEG, electroencephalogram; LTD. 
long-term depression; LTP, long-term potentiation; NMDA, N-methyl- 
o-aspartate. 
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of  place cells is a decreasing function of  the distance in 
two-dimensional (2-D) space between the firing fields 
of  the cells (Muller et al., 1991). If there is a barrier  be- 
tween the two fields when the synaptic resistance is set, 
the distance is how far the rat must go to get from one 
field to the other,  and not  the Euclidian distance. 

The  argument  for supposing that synaptic strength 
should decrease with distance between field pairs is as 
follows: 

(a) Consider a pair of  place cells with coincident  fir- 
ing fields, as shown in Fig. 1, A1 and A2. Because the 
fields are coincident,  the two cells will often fire in 
close temporal  order.  The timing of  the firing of  the 
cell in A2 relative to that in A1 is seen in the point-pro- 
cess cross-correlation in Fig. 1 B, which shows that there 
are many short (<500 ms) intervals. If the cells are 
connec ted  by a Hebbian synapse, the short intervals be- 
tween pre- and postsynaptic spikes are expected to 
cause increased synaptic strength. As is stated more 
fully below, when it is possible for the strength of  the 
synapse to be modified, the strength is assumed never 
to get so great that discharge of  the presynaptic cell is 
an important  determinant  of  discharge of  the postsyn- 
aptic cell. Thus, we imagine that the short intervals in- 
dicate only that the fields are near  each other  (similar 
to common  stimulus driving) and do not  indicate a 
causal relationship between presynaptic and postsynap- 
tic action potentials. 

(b) Now consider a pair of  cells whose fields are far 
apart, as in Fig. 2, A1 and A2. In this case, the rat can- 
not  move from one field to the other  in a time short 
enough to permit  the two cells to fire in close temporal  
order,  as is visible in Fig. 2 B. Since the cells rarely if 
ever fire together,  the Hebbian synapse should remain 
weak. For intermediate cases, synapses should have in- 
termediate strengths. 

In previous work, it was shown that synaptic strength 
changes (ASij) made according to a simple Hebbian 
rule lead to a relationship of  the expected form be- 
tween distance and synaptic strength (Muller et al., 
1991a): 

A~.j = f . ~ ,  (1) 

where fl is the firing frequency of  the presynaptic place 
cell and f is the firing frequency of  the postsynaptic 
place cell. This rule is unrealistic since it permits synap- 
tic strength to increase without limit. In the present  
work, however, the form of  the strengthening rule is 
not  critical for two reasons. First, having established 
that even a minimal rule allows distance to be encoded 
as synaptic strength, we now use explicit functions to 
set synaptic strength from the distance. The issue of  
how to do the encoding more  realistically is left in abey- 
ance. Second, we show in Results that the method  of  
storing mapping information works as long as synaptic 

strength decreases with distance, regardless of  the ex- 
act strength--distance function. The  implication is that 
there are few constraints on the strengthening rule. 

In the example using Eq. 1, the probability that each 
cell discharges in a time interval is strictly determined 
by the position of  the rat's head. The probability func- 
tion is maximal at the center  of the firing field and de- 
creases in Gaussian fashion in all directions away from 
the center. The frequency of  each cell is averaged over 
a time span called the "LTP permissive interval," which 
was taken as 300 ms from the work of  Brown et al. 
(1989). The sequences of  head positions is from paths 
rats actually took as they retrieved randomly scattered 
food pellets in a cylindrical apparatus. 

A computed  example of the relationship between the 
synaptic strength and distance between firing field cen- 
ters is shown in Fig. 3. As expected, the synaptic 
strength decreases with distance and falls to zero if the 
distance is great enough.  Note that synaptic strengths 
are modified in the desired way during exploration and 
no explicit teaching mechanism is required. Muller et 
al. (1991a) showed that the broadness of  the s t rength-  
distance function is very sensitive to changes in field 
size. In contrast, changing the LTP permissive interval 
over a fairly wide range had little effect on the shape of  
the strength-distance function. This is likely because 
the time-average firing rate is so strongly de termined 
by whether  or not  the rat is in the field so long as the 
averaging time is short compared  with the time spent 
in the field. The insensitivity of  the strength-distance 
function to the LTP interval is encouraging because it 
suggests that the theory will be robust as understanding 
of  the temporal  properties of  LTP advances. It is also 
encouraging that the various time and distance scales 
are mutually compatible; there is no need  to use un- 
physiologic values for LTP interval, firing rate, speed of 
movement  by the rat, or field size. 

If distance in the environment  can be encoded as 
synaptic strength, it is reasonable to ask if such infor- 
mation is sufficient to implement  a cognitive map. To 
sharpen up the question, however, we really ask whether 
such an encoding can be used to calculate efficient 
paths through the environment.  Our  main content ion 
is that the answer is yes. We will use the methods of  
graph theory to show that the information is in fact 
available. The argument  is straightforward: We demon- 
strate that the requisite information is present  by solv- 
ing certain difficult spatial problems with graph-search- 
ing algorithms applied to a network of place cells. If the 
information is not  there, no algorithm can compute  
the required paths. 

Three  limitations on inferences that can be drawn 
from the p roof  must be noted. First, the p roof  assumes 
that the encoding actually takes place. The arguments 
that point  towards the encoding are attractive but  in no 
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sense guarantee  that the postulated informat ion is 
stored. Second, even if the information is there,  it is 
not  necessarily available to the rat. Finally, even if the 
informat ion is used by the rat, the p roo f  does not  nec- 
essarily mean  that  the neural  process of  extracting 
mapp ing  informat ion bears a close similarity to the 
graph algorithm. 

An additional r equ i r emen t  of  the model  is that  syn- 
aptic strength must  never  get so great  that  presynaptic 
action potentials can cause 1:1 driving of  postsynapfic 
action potentials. There  are two unfor tunate  conse- 
quences if such driving is possible. First, because Heb- 
bian conjunct ion o f  pre- and postsynaptic activity al- 
ways occurs, synapfic strength will go to the m a x i m u m  
value and  stay there. 

The  second difficulty with 1:1 driving is that the fir- 
ing field of  the presynaptic cell would become  par t  of  
the field of  the postsynaptic cell; specificity would be 
lost (Hasselmo and Bower, 1993; Hasselmo and Schnell, 
1994). By dealing only with writing but  not  reading of  
distance information,  we do not  have to confront  any 
of  these issues immediately.  It  is clear, however, that  if 
the informat ion is stored in synapses between place 
cells, the informat ion can be read only if the presynap- 
tic cells play a major  role in discharging the postsynap- 
tic cell. For the theory to be complete,  it is therefore  
necessary that  synaptic modifiability be turned  off  
when distance informat ion is read. In the discussion, 
we speculate on how reading and  writing are separated 
in time. 

There  are indications that the contacts between pre- 
synaptic pyramidal  cells and  their  postsynapfic partners  
are indeed  quite weak. There  is evidence that a given 
pyramidal cell makes no contact  or  jus t  one  contact  
with interneurons.  In addition, the statistics of  quantal  
release between pairs o f  pyramidal  cells again suggest 

at most  one contact, and,  fur thermore ,  that  the contact  
releases at one  t ransmit ter  quan tum at most  for  each 
action potential  (Balshakov and Siegelbaum, 1995). 

Which Synapses Store the Map Information ? 

A second main idea in this pape r  concerns the identity 
of  the synapses in which the m a p p i n g  informat ion is 
proposed to be stored. As is true of  many other  schemes 
to explain spatial or  nonspatial  operat ions of  the hip- 
pocampus,  we focus on  the recur ren t  or  lateral syn- 
apses that are made  between pairs of  CA3 place cells 
(see Traub  and  Miles, 1991). This synaptic class is by no 
means the only candidate in which to store m a p p i n g  in- 
formation.  Other  possibilities are the contacts f rom en- 
torhinal cortex (EC) cells onto  dentate  granule  (DG) 
cells and the Schaffer collateral project ion f rom CA3 to 
CA1. Synaptic classes EC --~ DG and CA3 ~ CA1 are 
both considered to be NMDA-based, LTP-modifiable 
synapses with Hebbian  logic (see, for example,  Brown 
et al., 1989). There  is also growing evidence that  CA3 
--~ CA3 synapses also show NMDA-based LTP (Miles 
and  Wong, 1987; Jaffe and Johns ton ,  1990; Jeffreys and 
Traub,  1993). 

There  are still o ther  candidate synaptic classes. The  
mossy fiber project ion f rom dentate  granule  cells to 
CA3 pyramidal  cells also shows LTP, but  the biophysics 
and possibly the logic of  the modifiability are different 
(Jaffe and Johnston,  1990). Moreover,  pathways f rom 
entorhinal  cortex directly to CA3 and CA1 exist and  
show LTP (Buzsaki, 1988), a l though the nature  of  the 
modifiability is not  well characterized. 

Given this embar rassment  of  riches, there are several 
reasonable ways in which mapp ing  information might  
be distributed across synapses. Nevertheless, we believe 
that  there is a major  advantage to focusing on the CA3 
---) CA3 network. We contend  that  a network of  connec- 

FIGURE 1. Description of the discharge properties of a pair of simultaneously recorded hippocampal place cells with overlapping firing 
fields. (A1) The first cell had its field against the apparatus wall at ,'-q 1:30. The discharge rate of this cell is relatively low, as shown by the 
color code to the left, which indicates the median rate (in spikes/s) for each color category. (A2) The field of the second cell is somewhat 
larger than that of the first, and the first rate is considerably greater (see color scale) but is in almost the same part of the apparatus. There 
are two very strong indications that the two cells are independent. First, they were recorded from different microwires. Second, the timing 
of action potentials was very different on the short scale (ms). (B) Cross-channel spike histogram. Each count in the histogram denotes the 
existence of an interval between a spike fired by the first cell and a spike fired by the second cell. The key features of the histogram are the 
great excess of counts at short intervals (< 1 s) and the strong peak near zero. If one of the two cells directly contacted the other via an LTP- 
modifiable synapse, the existence of many short intervals would tend to cause synaptic strength to increase (synaptic resistance to de- 
crease). 

FIGURE 2. Description of  the discharge properties of a pair of simultaneously recorded hippocampal  place cells with separated firing 
fields. (A1) The first cell had its field near  the apparatus wall at "-~7:30. This cell fired quite briskly; the median rate in the highest rate cat- 
egory (purple) was 17.5 spikes/s. (A2) The second cell is the same as in Fig. 1 A2 its field is well away from that  of the first unit. (B) Cross- 
channel  spike histogram. In contrast to the clear peak near  t = 0 for the overlapping firing fields in Fig. 1 B, there is a min imum near t = 0 
and  two maxima at ~ - 3  s and  +3.5 s. If one of  the two cells directly contacted the o ther  via an LTP-modifiable synapse, the large n u m b e r  
of long intervals and  the near  absence of short  intervals would tend to leave synaptic strength unchanged  or to produce a reduction via 
LTD. Note that  the asymmetry of the histogram is caused by the behavior of the rat; there are more counts at positive than negative inter- 
vals because the rat tended to walk more often from the field of the first cell to the field of the second cell. 
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FIGURE 3. An example of a calculated strength-distance func- 
tion. The strength of a given synapse is calculated from the simple 
Hebbian rule of Eq. 1. Firing rate was strictly determined from the 
animal's position in the following way. (a) The current  position 
was taken from a time series of positions recorded as a real rat ran 
inside of a cylindrical apparatus. (b) The time-averaged firing rate 
at the current  position was a Gaussian function of the distance 
from a field center for the cell. In the present case, the standard 
deviation of the Gaussian was three pixel-edge lengths and the 
peak rate was 30 spikes/s. (c) The time-average rate was used in 
conjunction with a random number  generator  to determine if the 
cell did or did not  fire in the current  1 /60th  s. (d) If the firing rate 
of both  the pre- and postsynapfic cells was greater than zero aver- 
aged over 300 ms, the strength of the synapse was increased ac- 
cording to Eq. 1. In the actual simulation, a total of 600 cells were 
scattered across the surface of the cylinder, and each cell was con- 
nected to eight o ther  cells for a total of 4,800 synapses. All synaptic 
strength calculations were done at once, using a single time series 
of positions. In the graph, strength at a given distance is the mean  
strength of many synapses, such that the distance between the field 
centers of the pre- and postsynaptic cells was in the range n < d < 
n + 1. Normalization was done after taking the averages. 

t i o n s  a m o n g  cel ls  o f  a s i n g l e  k i n d  h a s  s t r o n g e r  i s o m o r -  

p h i s m s  to  2-D s p a c e  t h a n  a n e t w o r k  i n  w h i c h  c o n n e c -  

t i o n s  a r e  m a d e  i n  o n e  d i r e c t i o n  f r o m  ce l l s  o f  o n e  class  

o n t o  ce l l s  o f  a d i f f e r e n t  class.  W e  n o w  a t t e m p t  to  j u s t i f y  

t h i s  c l a i m .  

The Connectivity of Networks and the Connectivity of Space 

C o n s i d e r  t h e  s u i t a b i l i t y  o f  two d i f f e r e n t  k i n d s  o f  n e u r a l  

c o n n e c t i o n s  f o r  r e p r e s e n t i n g  t h e  p r o p e r t i e s  o f  s p a c e .  

T h e  n e t w o r k  in  Fig. 4 A h a s  two layers  i n  a f e e d f o r w a r d  

a r r a n g e m e n t  t h a t  r e s e m b l e s  t h e  CA 3  ---> CA1 p r o j e c t i o n  

( o r  g e n e r a l l y ,  t h e  p r o j e c t i o n  f r o m  o n e  class  o f  cel ls  to  a 

s e c o n d  class  o f  ce l l s ) .  T h e r e  a r e  n o  i n t e r a c t i o n s  be -  

t w e e n  cel ls  in  a layer .  A l t h o u g h  t h e y  a r e  n o t  d r a w n ,  

cel ls  i n  t h e  f i r s t  l aye r  r e c e i v e  i n p u t s  f r o m  s o m e  o t h e r  

s o u r c e  a n d  ce l l s  i n  t h e  s e c o n d  l a y e r  s e n d  o u t p u t s  to  

s o m e  o t h e r  r e g i o n .  N e t w o r k s  c o n n e c t e d  i n  t h i s  way 

h a v e  b e e n  s h o w n  to  b e  u s e f u l  as p a t t e r n  s o r t i n g  a n d  

CA3 -> CA3 Recurrent Connections 

FIGURE 4. Drawings of the connect ion schemes for a two-layer 
system (A) and a recurrent  or associational system (B). (A) The 
two-layer system captures the form of the projection from CA3 to 
CA1 pyramidal cells. If each cell is imagined to be a place cell, the 
two-layered system allows associations between arbitrarily selected 
pairs of points in the environment.  On the other  hand,  there is no  
natural equivalent of a path in the environment,  since only one 
step can be taken without leaving the system. (B) The recurrent  
system captures the form of the CA3 to CA3-associational connec- 
tions. The connections once again allow associations between arbi- 
trarily selected pairs of points in the environment.  Note, however, 
that if there are enough connections (as is true here),  the recur- 
rent  system is isomorphic to real space in the sense that it is possi- 
ble to get from any cell to any other  cell,just as it is possible to get 
from any place to any other  place in unobstructed 2-D space. In ad- 
dition, if each cell is a place cell, then a walk along a sequence of 
cells corresponds to a path in 2-D space, al though the 2-D path in 
general will not  be smooth if the walk along the cell sequence is 
chosen only according to connectivity. A central theme in this pa- 
per  is that  optimal paths in 2-D space can be found from optimal 
paths in connectivity space if the strength of the connect ion is de- 
termined by distance in 2-D space. 
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recognition devices (Kohonen, 1984), especially if there 
are three cell layers connected  by two sets of  projec- 
tions, as in basic back propagat ion schemes (Rumel- 
hart  et al., 1986). 

The single-layer, recurrent  network in Fig. 4 B is pat- 
terned after the CA3 ---) CA3 circuitry but  could equally 
well stand for any neural  system in which cells of  a sin- 
gle class are mutually interconnected.  No interactions 
with cells in o ther  layers are drawn, al though again one 
expects there to be inputs and outputs. Recurrent  or 
"peer-to-peer" networks function as autocorrelators 
that can do pat tern completion, where a f ragment  of  a 
stimulus configuration allows recall of  the entire con- 
figuration (Kohonen,  1984). 

In the feedforward network of Fig. 4 A, only se- 
quences of  two cells are possible, regardless of  the 
number  of  cells in each layer and of  the density of  con- 
nections. Since place cell firing fields occur with about  
equal frequency everywhere in the environment (Muller 
et al., 1987), if the connect ion density between cell 
pairs is high enough,  the network can store distances 
between every pair of points in the environment.  Nev- 
ertheless, there is no way to use a two-layered structure 
to calculate paths in 2-D space, since only pairwise but  
not  higher  order  sequences of cells occur in network 
space. 2 In o ther  words, there is no way to make paths in 
the environment  correspond to paths in the network. 

The recurrent  network in Fig. 4 B also permits the 
storage of distances between pairs of  points in the envi- 
ronment .  In addition, however, the recurrent  network 
provides a direct analogy between environmental  and 
network paths. If the network is connected richly 
enough,  it is possible to find a path from any cell to any 
other  cell. Since each cell is a place cell, a path in neu- 
ral space immediately corresponds to a path in the sur- 
roundings. Thus, the recurrent  network allows for 
chains of  arbitrary length, in the same way that arbi- 
trarily long paths are generated by locomotion.  More- 
over, because firing fields occur everywhere in the envi- 
ronment ,  and because there are so many CA3 place 
cells (~250,000 per  side; Amaral et al., 1990), if it is 
possible to find a neural path from any cell to any other  
cell, there must be corresponding paths in the environ- 
ment  from any place to any other  place; the network 
shares with 2-D space the property that any place is ac- 
cessible from any other  place (you can get from there 
f rom here) .  

The existence of  paths through network space and 
the existence of  corresponding paths through 2-D 

2yeckel and Berger (1990) demonstrated that a single shock to the 
perforant path can excite the same hippocampal elements two or 
more times because of loops that involve the hippocampus. Pathways 
of this kind, or a recurrent  network in CA1 (Christian and Dudek, 
1988; Thomson and Radpour, 1991), are possible alternatives to the 
recurrent  CA3 network considered here. 
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space is a key property of  recurrent  place cell networks. 
The possibility of  paths through 2-D space does not, 
however, necessarily mean that the paths are physically 
reasonable. Imagine that the probability of  connect ion 
between a pair of  cells is independen t  of  where their 
firing fields are in the environment.  Under  these cir- 
cumstances, going from a presynaptic cell to a postsyn- 
aptic cell might be associated with a large j u mp  in 2-D 
space. Thus, smooth paths in neural space need  not  
correspond to smooth or even possible paths in the sur- 
roundings. 

This difficulty is resolved by taking into account  not  
just  whether  two cells are connected,  but  also the 
strength of the connection.  In particular, if the synaptic 
strength approaches zero, two cells can be considered 
to be unconnec ted  even if the anatomical junct ion ex- 
ists. In our  theory of  synaptic strengthening, strength 
remains near zero if the firing fields of  two cells are suf- 
ficiently far apart. At once, this means that cell se- 
quences in neural space such that the synaptic weights 
are all strong correspond fairly well to real paths in the 
environment;  jumps of  arbitrarily great distance no 
longer occur in the representation. This does not  mean 
that the representat ion or map can generate direct, ef- 
ficient paths, a matter  that remains to be demon- 
strated. What it does mean is that a recurrent  network 
of  place cells can be strongly isomorphic to 2-D space if 
the strength of  the recurrent  connections decreases 
with distance, as may happen  if the place cells are con- 
nected by LTP-modifiable synapses. 

What Spatial Problems Must  Be Solvable to Call a 
Representation a Map ? 

We now turn to a key question concerning the pro- 
posed embodiment  of a map: Does the map contain 
enough information to permit  solutions of  spatial prob- 
lems? To answer this question affirmatively, it is neces- 
sary only to show that there is some method,  no matter  
how unrealistic, that can generate the required solu- 
tions using the stored information; the solutions can- 
not  be generated if the information is not  there. 

A much more  difficult problem is to find a plausible 
neural mechanism that is capable of  finding solutions. 
It is yet more difficult to show that any proposed mech- 
anism is actually used to generate the paths rats are ob- 
served to take. In this paper, we deal mainly with the 
easiest issue: whether  the recurrent  network stores 
enough information about  the structure of  the environ- 
ment  to solve three spatial problems. These problems 
are selected because the ability of rats to solve them 
suggests the existence of  maps in the first place. 

The first problem concerns the ability to find the 
straight-line path between any pair of  points in the en- 
vironment,  so that any point  can serve as a starting loca- 
tion and any other  point  can serve as a goal. This ability 



is closely associated with the h idden goal p rob lem ex- 
emplified by the Morris swimming task (Morris, 1981) 
and especially the variant designed by Whishaw (1985). 

The second p rob lem concerns the ability to find an 
optimal  de tour  when a more  efficient route  is suddenly 
blocked (Poucet  et al., 1983). The selection of  the best 
de tour  should be done  by operat ions on the existing 
map  and must  not  require the generat ion of a new 
map. If  the proposed  representat ion is not  flexible 
enough  to find detours, in our  j u d g m e n t  it would not  
be appropr ia te  to call it a map.  

The  final p rob lem involves the capacity to find short- 
cuts when a path  is suddenly opened  that is more  effi- 
cient than the cur rent  best path  (Poucet, 1993). Again, 
it is critical whether  the system can produce  the short- 
cut without generat ing a new map.  I f  this is possible, it 
may be concluded that the substrate for the new path  
already exists in the map,  as would be true if the map  
represented  the overall structure of  the environment .  

Note that  the three tests of  the mapp ing  scheme are 
all variants of  what may be called the "geodesic prob- 
lem," in which optimal  solutions are simply shortest  
paths. It is not  clear if the mapp ing  system deals with 
motivation or t ime as well as geometry  in the process of  
path  selection, but  in the current  t rea tment  only geom- 
etry is considered. 

Searching for Paths in a Model of the CA3 Recurrent Network 

Having stated the criteria for de termining  if a network 
contains enough information to be considered a map,  
it is necessary to decide how to look for the required 
paths. The  me th od  used here  is to treat the network as 
a graph, in which cells are in terpre ted  as nodes (or ver- 
tices) and axons plus synapses are in terpre ted  as edges. 
One  node  is connected  to ano ther  by a directed edge if 
and only if an axon branch  of  the node  corresponding 
to the first cell makes a synaptic contact with the node  
cor responding  to the second cell. The graphs of  inter- 
est are weighted because each synapse has a certain 
strength and are directed because information flows in 
only one direction across a synapse. 3 In Methods, an al- 
gor i thm is described that allows optimal  paths to be 
found  according to sequences of  synaptic weights. The  
critical question is then whether  opt imal  paths in neu- 
ral space are also optimal  paths in 2-D space. 

It is worth not ing that the intuitive distinctions drawn 
above between feedforward and  recur ren t  networks 
have formal  parallels in graph theory (Harary, 1969). A 
directed graph (A --~ B does not  imply B ~ A) is said to 
be "strongly" connected  if it is possible to walk f rom any 

3This does not  preclude the possibility of  a retrograde signal sent 
during modification of  synaptic strength via LTP, Information flow is 
meant  to include only the effect that the presynaptic cell has on  the 
likelihood of  discharge of  the postsynaptic cell. 

node  to any other  node  using a sequence of  properly 
directed edges. We ment ion  two other  related notions 
of  connectedness.  A directed graph is called "unilater- 
ally" connected  if, for any two nodes, it is possible to 
walk f rom at least one of  them to the other  using a se- 
quence of  proper ly  directed edges. Finally, we say that a 
directed graph is "weakly" connected if one can walk 
f rom any node  to any o ther  node  not  necessarily re- 
specting the direction of edges; this is likely true of  
feedforward networks such as the CA3 ---) CA1 projec- 
tion. We argue that  the strong connectedness  of  the 
CA3 --~ CA3 network allows it to mimic the connected-  
ness of  space, something  that the weak connectedness  
of  the CA3 ~ CA1 projection does not  permit .  Experi- 
mental  results (Miles and Wong, 1983) and  numerical  
calculations (Traub and Miles, 1991; see also Results) 
indicate that the anatomical  divergence and conver- 
gence in the recurrent  CA3 --~ CA3 network is great 
enough to make the network strongly connected.  

To conclude, we refer  to some origins of  the ideas 
presented here. As far as we know, the first s ta tement  
that temporal  coincidence of  firing might  produce  
functional aggregates of  place cells via LTP was by Bliss 
(1979), in a commenta ry  on the work of  O 'Keefe  and  
Nadel  (1979). The aggregates were composed  of all the 
cells that fired in a given place, and their significance 
was thought  to be increased accuracy of  localization of  
the rat. A second source for the present  work is the to- 
pological mapp ing  theory of  Deutsch (1960) and the 
presentat ion of the theory by Gallistel (1980). This the- 
ory has no specific neural  embodiment ,  but  it states 
that navigation may depend  on associations between 
neighbor ing  regions of  space and  on the absence of  as- 
sociations between distant regions of  space. 

M E T H O D S  

Experimental Foundations 

One requirement for implementing the graph model is a de- 
scription of place cell discharge. We begin by briefly describing 
the behavioral situation for recording and then summarize some 
important aspects of place cell activity. 

Behavioral conditions. Detailed methods used for training rats, 
implanting electrodes, discriminating and recording single cells, 
and tracking rats are given elsewhere (Muller et al., 1987). In 
brief, place cell recordings were made as rats ran around in 
walled apparatuses of simple geometric shape. The most com- 
monly used apparatus was a cylinder 76 cm in diameter and 50 
cm high. The wall of the cylinder was gray except for a white cue 
card that covered about one-fourth of the circumference. Hun- 
gry rats were trained to scamper over the whole surface of the cyl- 
inder to retrieve 20-mg food pellets, so that place cell firing rate 
could be measured everywhere. Since the rats ran almost contin- 
ually, positional firing variations cannot easily be ascribed to ten- 
dencies of rats to do discharge-related things in certain places. 
Under the stated circumstances, place cells have several well- 
characterized properties, which are considered next. 
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Place cellproperties. (a) Place cell discharge is location specific. 
This is the defining property of  place cells; their  firing rate is 
largely de te rmined  by the position of the rat 's head  in the envi- 
ronment .  There  are known deviations from ideal location-spe- 
cific firing. For example, the positional firing pat tern is more 
precise when the h ippocampal  e lec t roencephalogram (EEG) is 
in "theta" mode  than otherwise (Kubie et al., 1985), and firing 
ceases if the rat is immobilized (Foster et al., 1989). Nevertheless, 
firing is intense only when the rat 's head  is in a delimited firing 
field (see below). 

(b) In the cylinder, firing is i n d e p e n d e n t  of head direction 
(Muller et al., 1994). In this paper,  we consider only omnidirec- 
tional firing. We note, however, that  place cells are often direc- 
tionally selective when recorded on  an eight-arm maze or a l inear 
runway (McNaughton et al., 1983; O'Keefe and  Recce, 1993; 
Muller et al., 1994). We argue in the discussion that  the graph 
model handles directional and  omnidirectional firing equally well. 

(c) Positional firing patterns are stationary over time intervals 
of  weeks or  months  (Muller et  al., 1987; Thompson  and  Best, 
1990). If a given place cell is recorded with the rat in a familiar 
envi ronment ,  its positional firing pat tern  seems to be the same 
no matter  how many times the rat  is removed and  replaced into 
the environment .  

(d) Positional firing patterns are characterized by "firing 
fields." A place cell discharges rapidly only when the head  is in a 
continuous,  restricted port ion of the apparatus. Outside such a 
field, the firing rate is virtually zero. Examples of firing fields are 
shown in Figs. 1, 2, and  13. Most cells have only one  field, but  a 
few have two (Muller et  al., 1987; Sharp et al., 1990;Jung and  Mc- 
Naughton,  1993). Here, we do not  consider cells with more than 
one  field since it is clear that  they will interfere with the graph 
searching scheme. As noted,  for example, by Shapiro and Heth- 
er ington (1993), the existence and  significance of cells with mul- 
tiple fields must be settled for a theory to be complete.  

(e) Firing fields vary in several ways including size (area), in- 
tensity (peak discharge rate), and  shape. Nevertheless, for sim- 
plicity of computat ion,  Muller et  al. (1991a) imagined that  the 
iso-rate contours  are circular or are circles t runcated by the wall 
of the cylinder. The same assumptions are made here.  

The stated propert ies are compatible with the idea that  the 
strength of a Hebbian  synapse that  connects  a pair of place cells 
should decrease with the distance between the firing fields of  the 
cells (Muller et al., 1991a). Because the real s t rength-dis tance 
function is unknown (if indeed one exists), synaptic strengths in 
networks are calculated from one of several explicitly stated func- 
tions of the distance between firing fields. Several effects of vary- 
ing the s t rength-dis tance function, or, more correctly, the recip- 
rocal "resistance--distance" function, are shown in Results. The 
reason for using resistance-distance functions is stated below. 

Building the network. For simplicity, the networks to be ana- 
lyzed are modeled  as r andom graphs, in which the probability of 
a connect ion  is the same for all pairs of cells. There  is no  ques- 
tion that  this assumption is wrong in detail since it is agreed that  
the density of  recurrent  CA3 --4 CA3 connect ions  varies with the 
position of the presynaptic cell in the pyramidal cell layer (Miles 
and  Wong, 1986; Ishizuka et al., 1990; Li et al., 1993; Bernhard  
and  Wheal, 1994). The  same workers agree, however, that  recur- 
rent  connect ions are widespread and  massive. In the absence of a 
specific role for the partial specificity of connections,  ou r  main 
interest  is in whether  networks of the size of CA3 and  connect ion  

density of CA3 are likely to be strongly connected,  i.e., that  it is 
possible to "walk" a long a chain of cell ~ synapse ~ cell ~ syn- 
apse, etc., and reach any cell from any starting cell. As stated in 
the Introduct ion,  strongly connected  networks share with unob- 
structed 2-D space the property that  it is possible to get from any 
place to any o ther  place. This property underl ies our  analysis, 
and, accordingly, it is the first topic dealt  with in Results. 

A random network is characterized by two parameters,  namely, 
the number  of cells and the number  of output  connections made by 
each cell. In graph theory, the n u m b e r  of output  connect ions  is 
called outdegree,  a not ion that  corresponds precisely to the neu- 
roanatomical idea of divergence. (Similarly, "indegree" corresponds 
to convergence.)  The total n u m b e r  of  ou tpu t  connect ions is the 
product  of the n u m b e r  of cells and  the divergence. Because syn- 
apses are made between cell pairs, the total n u m b e r  of ou tpu t  
connect ions  is equal to the total n u m b e r  of input  connect ions  
(number  of cells times average convergence) (see Bollobas, 1985). 

Once the numeric  parameters  for a network are chosen, the 
units are randomly connected  with the following constraints: 

(a) Every cell has the same divergence (is presynaptic to the 
same n u m b e r  of postsynaptic cells). Al though the mean  conver- 
gence must  equal the divergence, the convergence varies from 
cell to cell. For small networks, the convergence will have a Pois- 
son distribution. For networks the size of CA3, the convergence 
would have a normal  distribution. 

(b) A cell cannot  contact  itself, which means that  "autapses" 
are precluded. In graph theory, the concept  equivalent to an au- 
tapse is a loop, in which a node has an edge with itself. Changing 
this condi t ion would have little effect on any of our  results. 

(c) A cell is no t  allowed to contact  ano the r  cell twice. (In graph 
theory, this is equivalent to saying that  there are no parallel 
edges.) There  is empirical evidence that  suggests this is true 
(Balshakov and Siegelbaum, 1995). If multiple contacts do in fact 
occur, permit t ing only one contact  can be viewed as lumping to- 
gether  all the synapses. This approximation is not  necessarily cor- 
rect, depend ing  on how the multiple synapses are distributed on 
the dendri t ic  tree. 

The resulting network is then tested for strong connectivity. If 
it is not  strongly connected,  it is discarded and  a new random 
network is built. A surprisingly low divergence is necessary to vir- 
tually ensure that  the network is strongly connected (see Results). 

Once a network is known to be strongly connected,  a weight is 
assigned to each synapse in a two-step process. First, each cell is 
assigned a location in 2-D space for its firing field. This does not  
imply any relationship between the identity of a cell and  the loca- 
tion of its firing field. To the contrary, the assignment is done  
randomly, in accord with our  belief that  the pyramidal cell layer 
is not  topographically mapped  onto  the apparatus floor (Muller 
et al., 1987; Kubie et al., 1992). Accessible space is divided into 
pixels, and  at least one cell is assigned to each pixel. In the 
model,  each pixel is taken to be the field center  for one or more 
place cells. In the present  calculations, the accessible space is a 
circle that contains 756 pixels. The radius of  the cylinder is ~15.3 
pixel-edge lengths. Our  considerations pertain to a scale such 
that  a pixel is a square ~3 .3  cm on a side, and  the diameter  of the 
circle is ~100  cm. The size of the circle falls within the range of 
cylinder diameters (76-200 cm) in which we have recorded place 
cells. In this range, place cell propert ies are nearly constant,  al- 
though fields in larger diameter  cylinders are somewhat larger 
(Muller and  Kubie, 1987). 
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After field locations are assigned, each synapse is given a 
strength according to the distance between the field centers of 
the cells it connects. As stated above, reciprocal strengths (synap- 
tic resistances) are assigned using one of several resistance-dis- 
tance functions, which share the property that resistance is a 
monotonically increasing function of the distance between field 
centers. At this point the network is complete and ready to be 
tested for whether it contains sufficient information to solve the 
navigational problems proposed in the Introduction as hallmarks 
of mapping. 

Finding optimal paths in synaptic resistance space and 2-D space. 
Formally, the completed network is a random, directed, weighted 
graph. It consists of a set of nodes, the cells, which are connected 
by a set of edges, the axons and the endings made by axons on 
other cells. The graph is random because the connections be- 
tween cell pairs are set up randomly. It is directed because infor- 
mation can move in only one direction across synapses. It is 
weighted because the strength of the synaptic connections can vary. 

The central problem is whether the graph can be used to find 
best paths from a start to a goal in 2-D space. The proposed solu- 
tion is to use a standard algorithm to find best paths in the graph. 
Since each cell is a place cell, any path in the graph corresponds 
to a path in 2-D space. The question is whether optimal paths in 
the graph correspond to optimal paths through the environ- 
ment. If the correspondence exists, it will have been proved that 
the network stores enough information to act as map. 

Optimal paths in the strongly connected weighted graphs were 
found with Dijkstra's algorithm (Sedgewick, 1987; Even, 1979). 
Dijkstra's algorithm finds the path from a start node to an end 
node that minimizes the sum of the weights. The algorithm 
works by constructing a simplification of the original graph in 
the form of a "tree" rooted at the starting node. The tree is sim- 
pler than the original graph because it contains no cyclic path 
such that it is possible to get from a node back to itself. Once 
built, the tree contains the minimal path from the starting node 
to every other node and is called a minimum spanning tree. 

To build the minimal spanning tree, nodes are divided into 
three classes: those already known to be part of the tree, those in 
a fringe that has been visited but that are not yet part of the tree, 
and, finally, those not yet known to exist. The current state of 
the fringe is maintained in a list called a priority queue in which 
the values for nodes determine how the search is made. Initially, 
the spanning tree consists of only the starting node, and the pri- 
ority queue is empty. In the first step, all the nodes adjacent 
(reachable) from the starting node are put onto the priority 
queue. Next, one of these nodes is attached to the spanning tree 
(according to the priorities in the queue), and all nodes attached 
to it are put into the queue. This cycle is repeated until there are 
no unvisited nodes left. The tree is then finished by attaching the 
rest of the nodes in the fringe to the tree. 

The preceding description of finding a spanning tree makes it 
clear that the art form is in the assignment of priorities to nodes 
in the queue. It is not in the scope of this paper to explain how 
the assignments are made, but it may be clear that the searching 
process can be varied by changing assignments. For example, if 
nodes are added to the fringe by always looking at nodes adjacent 
to the first node on the queue, a "depth-first" search results. If, 
instead, nodes are added by looking at nodes adjacent to all 
nodes currently on the queue, a "breadth-first" search is per- 
formed. For Dijkstra's algorithm, a more complex assignment of 

priority is made (Sedgewick, 1987). Dijkstra's algorithm is not op- 
timal for sparse graphs, our main interest, but it is fast enough 
for small sparse graphs with available computers. For sparse 
graphs, algorithms exist that run in time proportional to (E + N) 
log N, where E is the number of edges and N is the number of  
nodes. 

One methodological problem remains to be considered. The 
path-searching algorithms are designed to find paths along 
which the sum of the weights is minimized. Clearly, something is 
wrong if the weights are taken to be synaptic strengths, since a 
path in the network of minimal synaptic strengths would be a 
long path in the environment. 

It is also clear, however, that the difficulty arises only because 
synapses are usually characterized by strength and not by its re- 
ciprocal, which may be called synaptic resistance (see, for exam- 
ple, Hebb, 1949). If synaptic resistance is used to specify the 
weight of each connection, then a search algorithm will find 
paths along which the sum of the synaptic resistances is minimal, 
and these will be short paths in the environment. It is more con- 
venient to use synaptic resistance in Dijkstra's algorithm simply 
because large resistances are associated with long distances in the 
environment and small resistances with short distances in the en- 
vironment. It is important to realize that substituting synaptic re- 
sistance for synaptic strength in no way compromises the graph 
model. There is nothing more fundamental about synaptic 
strength than synaptic resistance; they are related in just the 
same way as electrical conductance and electrical resistance. 

R E S U L T S  

IS the CA3 Network Strongly Connected? 

As s t a t ed  in  M e t h o d s ,  r a n d o m  g r a p h s  a r e  u s e d  to 

m i m i c  t h e  CA3  r e c u r r e n t  c o n n e c t i o n  n e t w o r k .  I n  s u c h  

g r a p h s ,  t h e  p r o b a b i l i t y  t ha t  a ce l l  c o n t a c t s  any  o t h e r  

ce l l  is a c o n s t a n t .  I t  is c lea r ,  h o w e v e r ,  t h a t  t h e  p r o b a b i l -  

ity t h a t  a CA3 ce l l  c o n t a c t s  a n o t h e r  var ies  wi th  t h e  loca-  

t i on  o f  b o t h  t h e  p r e s y n a p t i c  cel l  a n d  pos t synap t i c  cel l  

in  t h e  CA3 layer.  F o r  e x a m p l e ,  r e c o r d i n g s  f r o m  pyrami -  

da l  cel ls  in  l o n g i t u d i n a l  s l ices o f  CA3 r e v e a l e d  t h a t  

m o n o s y n a p t i c  CA3  ~ CA3 c o n t a c t s  a r e  m a d e  o v e r  l o n g  

sep ta l  to t e m p o r a l  d i s t a n c e s  a n d  o v e r  t h e  w h o l e  w i d t h  

o f  CA3 f r o m  t h e  h i lus  to t h e  b o r d e r  wi th  CA2 (Miles  e t  

al., 1988) .  N e v e r t h e l e s s ,  t h e y  f o u n d  a g r a d i e n t  a l o n g  

t h e  l e n g t h  o f  t h e  h i p p o c a m p u s ,  s u c h  t h a t  t h e  p r o b a b i l -  

ity o f  c o n t a c t  was m a r k e d l y  l o w e r  i f  t h e  cel ls  w e r e  sepa-  

r a t e d  by two- th i rds  o f  t h e  l e n g t h  c o m p a r e d  wi th  o n e -  

t h i r d  o f  t h e  l e n g t h .  R e c e n t l y ,  Li  e t  al. (1993)  t r a c e d  t h e  

c o n n e c t i o n s  o f  i n d i v i d u a l  CA3 p y r a m i d a l  cel ls  a n d  

f o u n d  severa l  p a t t e r n s  o f  c o n t a c t  specif ic i ty .  F o r  e x a m -  

p le ,  t hey  saw t h a t  cel ls  in a b a n d  o f  CA3 pa ra l l e l  to t h e  

s e p t a l - t e m p o r a l  axis t e n d e d  to c o n t a c t  o t h e r  cel ls  in t h e  

s a m e  b a n d .  I n t e r e s t i ng ly ,  t h e y  also s h o w e d  t h a t  t h e  de-  

c r e a s e  o f  c o n t a c t  p r o b a b i l i t y  away f r o m  t h e  ce l l  b o d y  is 

s o m e t i m e s  n o t  m o n o t o n i c ;  t h e y  f o u n d  c l ea r  osc i l l a t ions  

o f  t h e  n u m b e r  o f  c o n t a c t s  f o r  s o m e  cel ls  a l o n g  t h e  

s e p t o - t e m p o r a l  axis. 
I n  l i g h t  o f  c o n t a c t  specif ic i ty ,  a r a n d o m  g r a p h  c a n n o t  
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capture the full richness of  the CA3 connect ion pat- A 100 
tern. It  is therefore  necessary to say in jus t  what way ran- 
dom graphs are adequate  models  for a CA3-based cog- 
nitive map.  In the Introduct ion,  we argued  that  an ad- 0 75  

vantage of  using a strongly connec ted  graph to store a 
o map is that  the strong connectivity is isomorphic  to a 

fundamenta l  proper ty  of  2-D space: It is possible to get ~ 0~ 
anywhere f rom anywhere else. It  is therefore  essential 
for us to assess if the CA3 network is strongly con- 
nected. In our  scheme,  once it is reasonable to assume ~ 025 
strong connectivity for the recur ren t  pathway, the use ~" 
of  r a n d o m  graphs as models  is acceptable. 

Our  a rgumen t  that the CA3 network is strongly con- 
nected  rests on calculations done  on r andom graphs 0 0 0  

with 250,000 nodes, which is about  the n u m b e r  of  cells 
in the CA3 region of  rats (Amaral et al., 1990). This is 
reasonable since recent  work has shown that there are B 
place cells in the ventral ( temporal)  as well as the dor- 
sal (septal) h ippocampus  (Poucet  et al., 1994; Jung  et 
al., 1994). 10" 

For each of 20,000 r andom  graphs, the divergence 
was initially set to 1 and  the graph was tested for strong 
connectedness.  If  the graph was not  connected,  the di- _~'~ 

k 9  10 .2 
vergence of  each node  was increased by 1 and  connect- ~ 

u 
edness was again tested. The  cycle of  testing for con- 
nectedness and  increasing divergence was repeated  un- 
til the divergence became great enough  that the graph 

o = 10-3 was connected.  This task is possible with relatively lim- 
ited comput ing  resources because graphs with 250,000 r 
nodes are virtually certain to be  strongly connec ted  
with divergences as small as 20 or so. 

The  results of  this computa t ional  p rocedure  are pre- 
sented in Fig. 5 A as a survivor plot; the fraction of  non- 
connec ted  graphs is shown as a funct ion of  divergence. 
When  the same data are plot ted on a log survivor scale 
(Fig. 5 B), the decay of the function is well fit as a single 
exponent ia l  for divergences larger than ~15,  as ex- 
pected  f rom graph theory (Bollobas, 1985). The  decay 
constant  is such that an inc rement  of  2.5 in divergence 
yields a 10-fold decrease in the probabili ty that a graph 
is not  connected.  Extrapolat ion shows that the proba- 
bility that  a g raph  is not  connected  reaches 10 -lz when 
the divergence is only ~30 .  (By bolder  extrapolation,  
the probabili ty that a graph of  250,000 nodes with a di- 
vergence of 5,000 is not  connec ted  is r'-'10-2,200.) 

Thus, the divergence necessary to virtually insure 
strong connectivity in a r andom  graph is minuscule 
compa red  with the real divergence of  the CA3 network, 
which is est imated to be between 5,000 and 15,000. The  
lower value comes f rom the pairwise recordings of  
Miles and  Wong (1986) and  the higher  value f rom the 
anatomical  work of  Li et al. (1993). A third way of  mea- 
suring the connect ions per  cell is provided by Amaral  
et al. (1991). They estimated a convergence for CA3 
cells o f  ~6,000 by count ing the n u m b e r  of  spines per  

I I I 

20 22 24 

Fraction Connected = 3 . 3 2 x 1 0  s e ̀ l"a2~ 

R = 0.999973 

10 4 

14 

FIGURE 5. 

I 

12 14 16 18 

Divergence 

i i i k i i i 

15 16 17 18 19 20 21 

Divergence 

Plots of the n u m b e r  of nonconnec ted  graphs of 
250,000 nodes as a function of the divergence (outdegree) of 
nodes in the graph. In this Monte Carlo calculation, 20,000 graphs 
were constructed and tested for being connected at each diver- 
gence. (A) The n u m b e r  of nonconnec ted  graphs is plotted on a 
linear scale to show that the number  approaches zero at small di- 
vergences. (B) The number  of nonconnec ted  graphs is replotted 
on a logarithmic axis against divergence in the range 15-20. As ex- 
pected from graph theory, the number  of  nonconnected  graphs is 
an exponentially decreasing function of divergence with a decay 
constant of almost exactly 1.0. Note that  the function is noisier at 
divergences of 19 and 20, where only a few graphs are expected to 
be nonconnected.  R is the correlation between the number  of 
nonconnec ted  graphs and the divergence; its minuscule deviation 
from 1.0 indicates that  the fit is very close. The equation of the re- 
gression line indicates that the n u m b e r  of nonconnec ted  graphs is 
expected to be very small (,-.~10 -2,21~ when the divergence (D) is 
5,000, which is about  the right value if the connect ion probability 
for any pair of pyramidal cells is ~0.02. 
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cell on the part  of  the dendritic tree known to receive 
recurrent  contacts. This n u m b e r  is directly comparable  
to the divergence estimates since the average conver- 
gence must  be identical to the average divergence in a 
recurrent  network. 

The  fact that the measured  divergence and conver- 
gence of  CA3 units is at least 100 times greater  than is 
necessary to virtually insure strong connectivity in a 
r andom graph is by no means a p roof  that the CA3 net- 
work is strongly connected.  One  can imagine a vast 
n u m b e r  of  contact  schemes that preclude some cells 
f rom affecting other  cells because the required path 
does not  exist. On the other  hand,  it would take very lit- 
tle randomness  to reach strong connectivity. An astro- 
nomically large majority of  all connect ion patterns are 
strongly connected  with 250,000 cells and a divergence 
of  6,000. Put ano ther  way, if only ~0 .5% of  the connec- 
tions were random,  strong connectedness  is virtually 
ensured. Returning to the anatomical  data, the axonal 
distributions found by Li et al. (1993) show many inter- 
esting regularities, but  unless the small scale contact 
patterns are much  more  restricted than the axonal pat- 
terns, the network is assuredly strongly connected.  

Exper imental  data relevant to the stated conclusion 
were obtained by Miles and  Wong (1983), who re- 
corded and stimulated single cells in transverse CA3 
slices. They induced rhythmic bursts of  activity in such 
slices by blocking GABA A inhibition. Such bursts likely 
involved synchronous activity in the whole pyramidal 
cell populat ion since every recorded cell part icipated 
in the bursts. In 10 out  of  36 cells, repetitive intracellu- 
lar stimulation was found to affect the entire popula-  
tion. For it to be concluded that the network is strongly 
connected,  stimulation of every cell must  be able to in- 
fluence the bursts; it is not  enough that every cell par- 
ticipates. The results of  Miles and Wong (1983) are 
therefore  at odds with our  bel ief  that the network must  
be strongly connected.  It is possible, however, that the 
cuts made . to  produce  the CA3 transverse slice severed 
many  axons near  their cell bodies, so that such cells 
could alter the t iming of  bursts. 

Are There Enough Synapses in CA3 for the 
Proposed Representation ? 

A key feature of  the p roposed  representat ion is that 
each synapse stores a unique piece of  information,  the 
distance between the firing fields of  the pre- and  
postsynaptic cells. In a fixed environment ,  each place 
cell has a stable firing field, so there is no ambiguity 
about  which distance a given synapse represents.  In ad- 
dition, since only one env i ronment  is being consid- 
ered, the prob lem of  interference due to individual 
cells having different firing fields in different environ- 
ments  does not  arise, and it is pos tponed  until the Dis- 
cussion. Here,  we ask whether  there are enough CA3 ---) 

CA3 synapses to store all the distances in a single envi- 
ronment .  

It is first necessary to estimate the n u m b e r  of  points 
in the environment ,  since the n u m b e r  of  distances is 
the square of  the n u m b e r  of  points. We imagine that 
the surface of the apparatus is divided into equal area, 
mutually exclusive square regions (pixels). The  size of  
each pixel is taken to be equal to the area of  the projec- 
tion of  a rat 's head onto the horizontal plane, ~ 6  cm 2. 
The  area of  the 76-cm diameter  cylinder we have used 
for much  of  our  work is ~4,534 cm 2, so there are 756 
pixels. The n u m b e r  of  directed distances to be repre- 
sented is then 7562 if there is more  than one place cell 
per  pixel. Having more  than one place cell in a pixel al- 
lows there to be connect ions that represent  zero dis- 
tance, even though a cell may not  contact  itself. I f  there 
is only one cell per  pixel, the n u m b e r  of  distances is 
756 • 755. 

Since, on the average, all CA3 pyramidal cells are pre- 
and  postsynaptic to the same n u m b e r  of  synapses, the 
n u m b e r  of  CA3 ~ CA3 synapses, S, is: 

S= C(C-1)PM, (2) 

where C is the n u m b e r  of  pyramidal cells and PM is the 
probability that a cell is directly presynaptic to ano ther  
cell. Estimates of  the n u m b e r  of  CA3 pyramidal cells 
range f rom ~250,000 to 300,000 (Amaral et al., 1990; 
Bernard and Wheal, 1994). As measured  with pairwise 
intracellular recordings, PM is ~0.02 (Traub and Miles, 
1991). (Anatomical techniques suggest considerably 
higher  values for PM; Li et al., 1993.) Taking the lower 
values for the n u m b e r  of  pyramidal cells and for PM, 
the total n u m b e r  of  connections is ~1.25 • 10 9. Divid- 
ing the n u m b e r  of  CA3 ~ CA3 synapses by the n u m b e r  
of  distances, each of  the 5.71 • 105 distances is repre- 
sented by ~2,200 synapses! We conclude that the num- 
ber  of  synapses is so large that the proposed representa-  
tion is certainly feasible if all the synapses are used for a 
single environment .  Because the directed distance be- 
tween each pair of  points can be stored many  times, 
one can imagine schemes that use some form of  averag- 
ing to reduce errors in the representation.  

One  re f inement  of  Eq. 2 is worth br ief  consider- 
ation. It is commonly  observed (Muller and Kubie, 
1987; Thompson  and Best, 1989) that a fraction of dis- 
criminable pyramidal cells are silent in a given environ- 
ment .  The silent fraction (~) is substantial, with esti- 
mates ranging f rom ~ 5 0  to 90% of  the pyramidal cell 
populat ion.  Silent cells do not  affect the state of  o ther  
cells in the ne twork- - they  are informational  dead 
ends. Eq. 2 may therefore be rewritten as 

S = Ca(Ca-  1)PM, 

where Ca, the n u m b e r  of  active cells, is C(1 - F~). If  F~ is 
0.5, the n u m b e r  of  synapses available to store pairwise 
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distance is reduced  by 75% and is down by 99% if F~ is 
0.9. Even in this extreme case, however, there are still 
>20 synapses available to store each pairwise distance 
in the environment.  The conclusion that there are 
enough synapses to store a detailed representat ion is 
thereby reinforced. The  issue of  multiple copies for the 
representat ion of the distance between each pair of 
points is fur ther  treated in the Discussion. We now turn 
to the question of  whether  the network stores enough 
information to act as a map. 

Problem 1: Finding a Straight Path between Any Pair of 
Points in Free Space 

The fundamental  mapping problem is to calculate the 
shortest path between any pair of  points in the environ- 
ment,  using information stored in the map. If no bar- 
t ier exists between the pair of  points, the shortest path 
is of course a straight line; in this section we consider 
only unobstructed space. 

As described before,  the proposed map has the form 
of  a strongly connected  random graph. Each node (cell 
equivalent) of the graph is associated with a position in 
2-D space and is therefore  an analog of a place cell. 2-D 
space is divided into equal area square pixels, and 
equal numbers  of cells are assigned to each pixel. This 
mimics the even distribution of  firing fields over the 
surface of  the apparatus (Muller et al., 1987). At least 
one  node  is associated with each pixel. Given 250,000 
CA3 cells, ~330  cells would be assigned to each pixel if 
we at tempted to preserve the size of  the neural system. 
In reality, however, very few cells must be assigned to 
each pixel for it to be possible to find optimal paths 
(see below). For this reason and for purposes of  re- 
stricting the size of  the computations to practical val- 
ues, we devote only one to five cells to each pixel. 

A basic characteristic of  the network is the number  of  
connections made by each node (outdegree or diver- 
gence).  In accordance with the relatively constant num- 
ber of  connections sent by each CA3 pyramidal cell, the 
divergence is assumed to be the same for every node  in 
a graph. The  divergence determines not  only whether  
the graph is strongly connected,  but  also how closely 
shortest paths correspond to straight lines. 

The connect ion weights in the graph (synaptic resis- 
tances) are a function of the distance between the 2-D 
points for  each pair of connected  nodes. We begin by 
considering a very simple function, and later show the 
effects of  changing the relationship between synaptic 
resistance and distance. The  function has the following 
properties: (a) The  coordinate space is discrete. The 
only allowable distances are f rom pixel center  to pixel 
center.  The  first few possible distances are 0.0, 1.0, 
1.41, 2.0, 2.24, etc. (b) When the distance is 0.0, the syn- 
aptic resistance is greater than zero. In more  usual 
terms, this means there is a maximum synaptic strength. 

A distance of  0.0 is possible only when more  than one 
node is associated with a pixel. In most cases treated 
here,  a single node is associated with each pixel, so the 
lowest resistance is associated with distances of  1.0. (c) 
When distance (D) is 1.0 or greater, resistance (R) is 
given by 

R =  kD if D < Dmax 

R = R~nmod if D > Dm~,, 

(3a) 

(3b) 

where k is a constant. Rm~x is the highest possible resis- 
tance for modif ied synapses. /)max is chosen such that 
R = Rmax at D = Dm~. This is useful since it yields the 
same range of  R for all values of  k. In turn, it becomes 
possible to vary k without altering the permissible range 
of  synaptic strengths, a range presumably set by the bio- 
physics of the synapses. The effects of  changing k and 
of  introducing nonl inear  resistance-distance functions 
are treated below. The  resistance of  an unmodif ied syn- 
apse, P~nmod, is arbitrarily set to the very large value of  
1 0  6 , which has the effect of excluding unmodif ied syn- 
apses from sequences of  cells. 

Fig. 6 A shows an example of  a linear resistance-dis- 
tance function, for k = 2 (Dmax -= 5.0). This function is 
used in all simulations unless otherwise stated. The cor- 
responding (i.e., reciprocal) strength--distance func- 
tion is shown in Fig. 6 B, which was scaled to make it 
similar to the computed  strength--distance relationship 
of Fig. 3. 

The best available path in 2-D space is found as fol- 
lows. First, a starting point  and a goal point  are se- 
lected. Next, the graph is searched for a node whose as- 
sociated 2-D position is at the start; there must be at 
least one because every pixel has at least one associated 
node.  If several nodes are found, one is randomly se- 
lected. In the same way, a node  whose 2-D position is at 
the goal is selected. Next, the shortest path between the 
nodes is found by minimizing the sum of  the synaptic 
resistances along the path. Finally, the path in the net- 
work is converted to a path in 2-D space by listing the 
positions of  the nodes. It is then possible to draw the 2-D 
path or to calculate the total distance traversed by sum- 
ming the distances from node position to node position. 

Fig. 7, which illustrates typical paths at different di- 
vergences, summarizes the fundamental  results of the 
graph analysis. First, there is always a path from the 
start to the end point  because only strongly connec ted  
graphs are analyzed. When the divergence is very low 
(outdegree = 8), the computed  paths are unrealistic in 
that they can involve jumps across large distances (not 
shown). Jumps arise when the best available path con- 
tains one or more  synapses whose resistance is unmodi-  
fied. Since the unmodif ied weight is the same for all 
synapses between nodes whose positions are far ther  
apart than the critical distance (Dma~), the total resis- 
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FIGU~ 6. Linear resistance-distance function (A) and the corre- 
sponding strength--distance function (B). (A) The relationship be- 
tween distance and function is linear over the distance range 1-5 
pixel-edge lengths. The point at D = 0 is set slightly greater than 
zero to indicate that there is a maximum value for synaptic 
strength. For D > 5 pixel-edge lengths (at k = 2; see text), synaptic 
resistance is set to a very high value (1 • 106) to indicate that there 
is a minimal value for synaptic strength even as distance grows 
without limit. Neither the imposition of a minimum nor of a maxi- 
mum synaptic resistance is necessary for proper performance of 
the graph-searching algorithm. The imposition of a sudden jump 
to a maximum resistance is convenient, however, to allow nonlin- 
ear functions to be simply described (see Fig. 12 A). (B) The 
strength-distance relationship depicted here is the reciprocal of 
the resistance-distance relationship of A, although the value at D 
= 0 is not plotted to allow a useful strength scale. The strength- 
distance relationship may be compared with the curve in Fig. 4. 

A 

Low Divergence 

B 

Medium Divergence 

C 

High Divergence 

FIGURE 7. Examples of paths 
when the graph searching algo- 
rithm minimized the sum of the 
synaptic resistances along neural 
paths from a cell whose field is 
centered at start (5) to a cell 
whose field is centered at goal 
(G). The Euclidean distance 
from start to goal is 25.46 pixel- 
edge lengths. The degree to 
which the path approximates a 
straight line increases with diver- 
gence. The number of cells re- 
quired for the low divergence 
path (A) is 19 and the path is 
65.6 pixel-edge lengths long. For 
medium divergence (B),  the 
number of cells is 11 and the 
path length is 31.4. For high di- 
vergence (C), the number of 
cells is 9 and the path length is 
25.58. 

tance is m i n i m i z e d  by m i n i m i z i n g  the n u m b e r  of  such 
steps, even if they j u m p  across a great  distance. Graphs  
with saltatory best  paths occur  only at very low diver- 

gences  a n d  are n o t  cons ide red  fur ther .  
As the d ivergence  of  the ne twork  increases,  steps in 

the best  pa th  are m a d e  only over plausible  distances. 

W h e n  the d ivergence  is still r a the r  low (ou tdegree  = 
24), the a lgor i thm finds m e a n d e r i n g ,  ineff ic ient  paths. 
As i l lustrated in  Fig. 7 A, such paths may con ta in  seg- 
men t s  that  cross each other.  As the d ivergence  gets 
h ighe r  (ou tdegree  = 64 a n d  192), the paths progres- 

sively approach  a straight l ine (Fig. 7, B a n d  C). Thus,  
the accuracy of paths improves  as the connect ivi ty  gets 
richer.  The  re la t ionsh ip  be tween  pa th  l eng th  a n d  di- 
vergence  is shown numer ica l ly  in Fig. 8. The  hor izonta l  
l ine at ~25 .5  pixel-edge lengths  represents  the straight- 
l ine dis tance be tween  the start (26,26) a nd  e n d  (8,8) 
points.  W h e n  the d ivergence  is 24, the m e a n  path  for 
six calculat ions  is 43.9. At a d ivergence  of  64, the aver- 
age pa th  is 27.99, a 10% error.  Finally, when  the diver- 
gence  is 192, the path  is 25.58, an  e r ror  of only 0.47%. 
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FIGURE 8. Length of the computed best path as a function of the 
divergence of cells in the network. The underlying resistance-dis- 
tance function is shown in Fig. 6 A (and k = 2 in Fig. 9 A). The 
path length rapidly decreases as the paths straighten out and are 
only a few percent above the Euclidian ideal for divergence >150. 

I t  is t h e r e f o r e  c lea r  tha t  the  weights  in h igh  diver- 
g e n c e  g r aphs  con t a in  e n o u g h  i n f o r m a t i o n  to al low cal- 
cu l a t i on  o f  an  a lmos t - s t ra igh t  l ine  s e g m e n t  b e t w e e n  ar- 
b i t ra r i ly  c h o s e n  pa i rs  o f  2-D points .  A c c o r d i n g  to this  
c r i t e r ion ,  the  ne twork  qual i f ies  as a map .  

Varying the "Width" of the Resistance-Distance Function 

Mul le r  e t  al. (1991) showed  tha t  i nc rea s ing  the  d i ame-  
te r  o f  s i m u l a t e d  f i r ing  f ie lds  s t rongly  r educes  the  rap id-  
ity with which  synapt ic  s t r eng th  falls off  with d i s t ance  
b e t w e e n  f i r ing  f ie ld  pairs .  Since  synapt ic  s t r eng th  a n d  
res i s tance  a re  r ec ip roca l ly  r e l a t ed ,  i nc rea s ing  f ie ld  di- 
a m e t e r  m u s t  also r e d u c e  the  ra te  a t  which  res is tance  
grows with d is tance .  Fo r  brevity, we t h e r e f o r e  say tha t  
i nc r ea s ing  f ie ld  d i a m e t e r  inc reases  the  wid th  o f  the  re- 
s i s t a n c e - d i s t a n c e  func t ion .  Fig. 9 A shows t h r e e  l i nea r  
r e s i s t a n c e - d i s t a n c e  func t ions ,  for  k = 1, 2, a n d  3, wi th  
k = 1 y i e ld ing  the  b r o a d e s t  func t ion .  In  Fig. 9 B, p a t h  
l e n g t h  is p l o t t e d  aga ins t  d ive rgence  for  the  t h r e e  func-  
t ions.  T h e  m i d d l e  curve in  Fig. 9 B is i den t i ca l  to tha t  in 
Fig. 8. T h e  lower  curve,  which  a p p r o a c h e s  the  Eucl id-  
ian  idea l  very rapidly ,  is for  the  b r o a d e s t  r e s i s t ance -d i s -  
t ance  r e l a t ionsh ip ;  c o r r e s p o n d i n g l y ,  the  u p p e r  curve in  
Fig. 9 B is for  the  na r rowes t  r e l a t i o n s h i p  in  Fig. 9 A. 
Thus ,  n a r r o w e r  r e s i s t a n c e - d i s t a n c e  func t ions  l e ad  to 
less e f f ic ien t  pa ths  at  equa l  d ive rgence .  F r o m  the  ef fec t  
o f  varying the  res i s tance- -d is tance  func t ion ,  it  wou ld  
s eem tha t  progress ive ly  i nc rea s ing  Dmax ( ana log  o f  f ie ld  
rad ius )  w o u l d  be  advan tageous .  A n  a d d i t i o n a l  cons id-  
e r a t i on  suggests,  however ,  t ha t  diff icul t ies  arise if  wid th  
inc reases  w i thou t  l imit .  

T h e  diff icul ty occurs  w h e n  bes t  pa ths  m u s t  be  f o u n d  
in e n v i r o n m e n t s  whose  b o u n d a r i e s  a re  n o t  everywhere  
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FIGURE 9. The effects on computed paths of varying the distance 
constant in linear resistance-distance functions. (A) Three resis- 
tance distance functions for k = 1, 2, and 3. Resistance grows most 
slowly for k = 3 and most rapidly for k = 1. For each function, the 
value of resistance jumps to a high value when R reaches 10.0. In 
terms of firing fields, a small value of k corresponds to large fields 
and a large value to small fields. (B) Length of the computed best 
path as a function of the divergence of cells in the network for 
three values of k in the linear resistance-distance functions. For 
large fields (k = 1), the best available path rapidly converges on 
the Euclidian distance, As field size gets smaller, the length of the 
best available paths becomes significantly longer. Note, however, 
that the computed path length is a respectable approximation to 
the ideal even for k = 3. 
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convex. Cons ider  a pair  o f  cells with large fields that  
partially overlap. As a consequence ,  shor t  t ime intervals 
between presynapt ic  and  postsynaptic spikes are guar-  
an teed  to occur,  and  the synaptic resistance is sure to 
decrease.  In  the scheme presen ted  here,  the decrease  
o f  synaptic resistance is pure ly  a func t ion  o f  the t empo-  
ral firing proper t ies  o f  the inpu t  and  receptive cells. 
There fore ,  since paths tollow the straight line between 
field cen te r  pairs, the line s egmen t  of ten  cuts far into 
the concavity. The  difficulty is shown in Fig. 10, where  
paths f rom one  cusp to the o the r  inside a lune-shaped 
region are drawn. In Fig. 10 A, Dma• (i.e., field diame- 
ter) is large, and,  as expected,  segments  o f  best  paths 
enc roach  deeply in " forb idden"  territory. In fact, ifDma x 
were larger, the best pa th  could  j u m p  f rom one  cusp to 
the other .  Also as expected,  when  Dm~• is reduced ,  best 
paths e n c r o a c h  only minimally on  the fo rb idden  re- 
gion (Fig. 10 B). We conc lude  that  in te rmedia te  values 
o f  Dma~ p r o d u c e  bet ter  paths than  e i ther  very small or  
very large values. It seems clear that  the theory  is bol- 
s tered by f inding  that  simple a rgumen t s  pu t  b o u n d s  on  
field size, which is a crucial variable. 

Varying the Number of Nodes in the Graph 

The  divergence  necessary to virtually insure s t rong con-  
nectivity for  a r a n d o m  graph  o f  756 nodes  is only ~6 .  
In  contrast ,  at Dmax = 5.0, a d ivergence upwards  o f  150 
is requi red  for  the best pa th  in 2-D space to be nearly 
straight. In this case, the fract ion o f  nodes  directly con- 
nec ted  to a single n o d e  is N20%,  well in excess o f  any 
reasonable  estimate o f  the probabil i ty o f  a contac t  be- 
tween a r a n d o m l y  selected pair  o f  CA3 cells. 

F~GURE 10. Examples 
of best available paths 
in an environment 
with a concavity. The 
problem is to get from 
start (S) to goal (G) 
while staying in the 
shaded, lune-shaped 
area. (A) The distance 
constant is set to a low 
value (large fields). The 
result is that the best 
available paths cut 
across forbidden terri- 
tory. (B) With the dis- 
tance constant set to 
a high value (small 
fields), the paths stay 
within the shaded re- 
gion. 

We now argue that  the h igh fractional  connectivi ty is 
merely  a result  o f  using the minimal  n u m b e r  o f  nodes  
in the graph.  The  a r g u m e n t  is p resen ted  in Fig. 11, 
which shows the path  l e n g t h / d i v e r g e n c e  relat ionship 
for  when  one,  two, three,  four,  or  five nodes  are as- 
s igned to each pixel. Since the curves virtually superim- 
pose, the n u m b e r  o f  nodes  (in this range)  is a free pa- 
rameter ,  and  the probabil i ty an arbitrary pair  o f  nodes  
is c o n n e c t e d  can jus t  as well be 4 as 20%. Thus,  the the- 
ory does no t  require  unreasonab ly  high contac t  proba-  
bility. Note  that  the n u m b e r  o f  nodes  per  pixel c a n n o t  
grow wi thout  limit; at fixed divergence,  the network 
will no t  stay c o n n e c t e d  if the n u m b e r  o f  nodes  gets very 
large. For  a d ivergence o f  150, the network becomes  
unlikely to be c o n n e c t e d  if it contains  ~ 1  • 10 l~ nodes,  
~'.~104 times the n u m b e r  o f  cells in the rat h ippocampus .  

How Path Accuracy Depends on the Shape of the 
Resistance-Distance Function 

Up to now, pa th  calculat ions have been  m a d e  using lin- 
ear  res is tance-dis tance functions.  Since the empir ical  
funct ion  is unknown,  it is impor t an t  to ask if g o o d  per- 
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Varying the number of cells in the network does not FIGURE 11. 
change the accuracy of best available paths. The number of cells 
was changed by putting 1, 1.5, 2, 2.5, 3, and 3.5 cells at each of the 
756 pixels in the apparatus. For integer values of cells per pixel, 1, 
2, or three cells were put at each pixel. For half-integer values, the 
locations of the extra 378 cells were randomly chosen without re- 
placement from the 756 possible locations. The key result is that 
there is no systematic change of the best path length; in the stated 
range of cells per pixel, the best paths are almost perfectly fixed by 
the divergence. This means that the fractional divergence required 
for good solutions can be brought within accepted values (proba- 
bility of 0.02-0.10 that a pair of cells is monosynaptically con- 
nected). Linear resistance---distance function with k = 2. 
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formance of  the best path algorithm requires linearity, 
or if performance is acceptable in the face of  major 
changes in the resistance-distance relationship. Again, 
the best path is selected by minimizing the sum of  the 
resistances for sequences of cells beginning with a cell 
whose field is at the start location and ending with a 
cell whose field is at the goal location. Performance is 
judged  by comparing the total distance along the se- 
quence of firing fields with the length of  the straight 
line segment that connects the start to the goal. 

The  linear resistance-distance function with O m a  x • 5 
(k = 2) is reproduced  in Fig. 12 A along with a hyper- 
bolic function that accelerates towards greater distance 
and a second hyperbolic function that decelerates. The 
hyperbolic functions are chosen so that they coincide 
with the linear one  at D = 0 and D = Dmax. The equa- 
tion for the accelerating function is 

W = 11.0/(11.0 - 2D) - 0.9, (4) 

and for the decelerating function 

W =  11.1 - l l / ( 1 . 8 D  + 1). (5) 

In ei ther case, Wis set to a very high value if D > Dma x. 
Properties of  the best paths for the three resistance- 

distance functions are summarized in Fig. 12, B, C, and 
D. The average path length associated with each func- 
tion is shown in Fig. 12 B: For the linear function, the 
average path is only 0.5% longer than the Euclidean 
path when the divergence is 192. For the decelerating 
function the error  is 4.3%, and it is 12.0% for the accel- 
erating function at the same divergence. 

A second property of best paths, illustrated in Fig. 12 
C, is the number  of  nodes necessary to get f rom the 
start to the end. For the linear function, the number  of  
steps progressively decreases, in parallel with the de- 
crease of  path length. A similar result is seen for the de- 
celerating function, al though the number  of  nodes is 
consistently less than for the linear function. In con- 
trast, the number  of  nodes in the best path does not  de- 
crease for the accelerating function; to the contrary, 
there is an upward trend with higher  divergence. 

The  tendency for the accelerating function to take 
more  steps in highly connected  networks seems anoma- 
lous. The  reason for this behavior is, however, quite 
simple. For an accelerating resistance-distance func- 
tion, it is always true that: 

W(Dab) + W(Dbc) < W(Dab + Dbc), (6) 

where Dab is the distance between points a and b in 2-D 
space. Since the shortest path algorithm minimizes the 
sum of the resistances along the path, it will select paths 
with smaller steps over paths with shorter  total distance 
in 2-D space. Note that this selection does not  require 
that two paths ab ---> bc and ac exist for any specific pair 
of points ac. The algorithm makes an exhaustive search, 

and it is the sum of  the resistances along the entire 
path that is minimized. Consider two paths consisting 
of  different nodes (except for the start and end nodes). 
If the first happens to contain two short steps and the 
other  has none,  the algorithm will choose the first even 
if its length in 2-D space is a little longer. 

A similar argument  explains why the decelerating 
function consistently leads to paths with smaller num- 
bers of steps, even though the paths are not  as short as 
those associated with the linear function. In this case, 

W(Dab) + W(Dbc) > W(Dab + Dbc), (7) 

so that smaller weight sums are associated with paths in- 
volving few nodes. Of  course, the intermediate case, 

W(Dab) + W(Dbc) = W(Dab + Dbc), (8) 

means that the path-searching algorithm will find best 
paths that optimize distance itself. 

The  effect of  the shape of  the resistance-distance 
function on what is optimized can be summarized by 
calculating the average 2-D distance moved between 
each pair of nodes in the path ("average step size"). As 
shown in Fig. 12 D, average step size is quite constant 
for the linear function over the whole divergence 
range. In contrast, average step size increases modestly 
for the decelerating function and decreases quite strongly 
for the accelerating function. Some implications of the 
ability to control the nature of  paths according to the 
relationship between synaptic resistance and distance 
are considered in the Discussion. 

Having objectively described the paths produced  by 
two rather  arbitrary nonlinear,  monotonically increas- 
ing resistance-distance functions, we turn briefly to the 
difficult problem of  judging the quality of  the paths. By 
inspection of  plotted paths, it is our  opinion that the il- 
lustrated nonlinear  functions produce rather  good per- 
formance.  The paths for the accelerating function look 
somewhat bet ter  than the one in Fig. 7 B, where the er- 
ror  is "-'22%, although not  nearly as good as the near- 
ideal path of  Fig. 7 C. As might be expected for the de- 
celerating function where the error  was ,-~4%, the paths 
are quite close to the ideal line segment. 

Reasonable performance is also seen for certain 
other  nonlinear resistance-distance relationships. These 
include a step function, where resistance is a constant 
low value for D ~/)max and a constant high value other- 
wise, and an exponential  for which resistance rises very 
rapidly with distance. On the other  hand, there exist re- 
sistance--distance functions that do considerably more  
poorly. For example, if resistance varies with the square 
of  distance, paths are too long by 20.3% at a divergence 
of  192 and are clearly less efficient than those com- 
puted with the accelerating hyperbolic function. Never- 
theless, it seems that a variety of  monotonically increas- 
ing resistance-distance functions yield paths that are vi- 
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FIGURE 12. Effects o f  varying the  shape  o f  the  res i s tance-d is tance  funct ion .  (A) Plots o f  the  th ree  funct ions .  T h e  l inear  func t ion  (solid line) is for  k = 2. T h e  o t h e r  two func t ions  are app rox i ma t ions  to hype rbo las  c h o s e n  to m a t c h  the  l inea r  f u n c t i o n  a t  D = 0 a n d  D = 5 

pixel-edge lengths .  O n e  func t ion  (short dashes) is re fe r red  to as "decelerat ing" in the  text; the  o t h e r  as "accelerating." (B) T h e  l inear  func-  

t ion p roduces  be t te r  pa ths  at any  divergence,  bu t  each  o f  the  o t h e r  func t ions  yields reasonably  good  results,  a l t h o u g h  the  dece le ra t ing  

func t ion  is clearly m o r e  accurate .  (C) T h e  n u m b e r  o f  cells in the  best  available pa th  decreases  with d ivergence  for the  l inear  res is tance-dis-  

tance  funct ion .  T h e  s ame  is t rue for the  dece le ra t ing  funct ion ,  which  in fact t ends  to min imize  the  n u m b e r  o f  cells r a the r  t h an  the  dis- 

tance.  In  contrast ,  the  acce lera t ing  res i s tance-d is tance  func t ion  takes m o r e  a n d  m o r e  steps as the  d ivergence  increases.  This  effect, which  

is d iscussed m o r e  comple te ly  in the  text, h a p p e n s  because  the  accelera t ing  func t ion  causes  the  g raph- sea rch ing  a lgor i thm to take shor t  
s teps to min imize  the  s u m  o f  the  resis tances in the  path.  (D) As expec ted  if the  pa ths  are  approx imate ly  the  s ame  l eng th  a n d  the  n u m b e r  

o f  cells varies as stated,  the  dis tance  covered be tween  the  f i r ing fields o f  ad jacen t  f ir ing fields grows with d ivergence  for the  dece le ra t ing  

funct ion ,  is invar iant  to d ivergence  for  the  l inear  func t ion ,  a n d  decreases  with d ivergence  for the  accelera t ing  funct ion .  



sually rather close to the ideal. We conclude that the 
graph model does not depend on there being a linear 
relationship between resistance and distance. It should 
therefore be rather robust as more is learned about  the 
biophysics of NMDA-based LTP, which is, after all, the 
prime determinant  of  the resistance-distance function. 

We now return to asking how well the graph repre- 
sentation mimics a map. 

Problem 2: Finding Detours around a Barrier 

A second key navigational problem is to calculate effi- 
cient, intelligent paths from start to goal after a barrier 
is put  into a familiar environment.  The solution to this 
problem should not involve ad hoc assumptions about 
the effects of  barriers. To the contrary, a solution 
would be adequate only if known effects of  barriers 
could naturally be integrated with the scheme that 
finds straight lines in unobstructed space. 

Muller and Kubie (1987) found that the most com- 
mon effect of  putting barriers into the environment  is 
to suppress the discharge of  cells with fields in the vi- 
cinity of  the barrier (see Fig. 13). When the barrier bi- 
sected a firing field, the cell generally fired at a greatly 
reduced rate in the whole firing field. In contrast, when 
the barrier was put far from a field, firing was not re- 
duced, even when the barrier interfered with the view 
of  the demonstrably salient white cue card from the po- 
sition of  the field. Thus, the barrier effect is local; it 
suppresses firing in nearby but not  distant fields. An in- 
dication that firing is affected by the mechanical and 
not  sensory features of  a barrier is that a transparent 
barrier is as effective as an opaque barrier in suppress- 
ing discharge. In contrast, if the lead base used to an- 
chor  either barrier was put into the field, little reduc- 
tion of  discharge was seen, again suggesting that firing 
field suppression is caused by changes in possible mo- 
tions near the barrier. 

The strong reduction of  place cell discharge near a 
barrier suggests a way to incorporate the barrier effect 
into the graph model. We reason as follows: If  place 
cell firing near a barrier ceased entirely, the activity of  
other  cells would not  be further affected if the now- 
quiet cells were removed from the network. In the 
graph model, there is no analog of  discharge, but  the 
insignificance of cells with fields near a barrier can be 
mimicked by setting to the unmodif ied level the resis- 
tances of synapses they make with other cells. When 
this is done, cells with fields near the barrier are effec- 
tively removed from the network. 

Imagine now that a barrier is inserted between a start 
point  (labeled S) and a goal point  (labeled G), such 
that the line between the points is the perpendicular  bi- 
sector of  the barrier and such that the barrier lies haft- 
way between S and G, as in Fig. 14 B. The barrier is 
drawn as a black bar surrounded by a gray rectangular 
zone that represents the area over which the barrier 
suppresses firing. For each node whose associated 2-D 
position lies in the gray rectangle, every output  weight 
to a connected node is set to the unmodified level. 

When the path-searching algorithm is applied to the 
modified graph, it finds nearly ideal paths, as shown by 
the 10 superimposed examples in Fig. 14 B. As ex- 
pected from symmetry, about half the paths go around 
the barrier to the left and about half to the right. When 
the barrier is slid to the left, paths that go to the right 
are significantly shorter and are found by the algorithm 
(Fig. 14 A). Similarly, when the barrier is slid to the 
right, the algorithm selects paths that go to the left 
(Fig. 14 C). We conclude that the representation is eas- 
ily adapted to the known effects of  barriers to allow the 
path-searching algorithm to find optimal paths a round 
barriers. Thus, the graph representation qualifies as a 
map on these grounds as well. 

As stated, the method  of finding detours has a major 

FIGURE 13. An exper- 
iment on the effects of 
putting a barrier into a 
firing field. (A) The fir- 
ing field of a place cell 
with no obstruction in 
the apparatus. The me- 
dian rate in each color 
category is as follows 
(in spikes/s): yellow, 
0.0; orange, 0.59; red, 
1.53; green, 4.44; blue, 
12.0; purple, 27.1. (B) 
Positional firing pat- 
tern with a barrier bi- 

secting the field. The color code is the same as in A, so that it is evident that the discharge rate has dramatically decreased. When trans- 
lated into the language of connectivity, the decreased firing in the vicinity of a barrier is enough to allow the graph-searching algorithm to 
find good paths around a barrier, as shown in Fig. 14. 
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FIGURE 14. Best avail- 
able paths around a 
barrier. In this figure 
as well as Figs. 15 and 
16, a resistance-dis- 
tance function resem- 
bling the accelerating 
function in Fig. 12 A 
was used. The func- 
tion yields calculated 
paths that are not so 
close to optimal that 
they superimpose. 
The variability on suc- 
cessive runs, due to the 
use of the random 
number generator in 
connecting the graph, 
makes it possible to 
show several paths that 
are fairly different 
from each other. (A) 
With the barrier 
pushed towards the 
left, the 10 paths all go 
to the right. (B) With 
the barrier centered 
on the line that con- 
nects the start (S) and 
goal (G), about half 
the calculated paths 
go to the left and 
about half to the right. 
(C) As expected, if the 
barrier is set to the 
right, all 10 paths go 
around it to the left. 

defect. Specifically, if all f i r ing is suppressed  nea r  the 
barr ier ,  a "spatial scotoma" develops in the representa-  
t ion  since all i n f o r m a t i o n  abou t  the reg ion  n e a r  the 
bar r ie r  is lost. This  loss causes the a lgor i thm to f ind  
n o n o p t i m a l  paths be tween  cer ta in  pairs of poin ts  in  the 
e n v i r o n m e n t .  For  example ,  if the start a n d  goal points  
lie on  a l ine paral lel  to and  nea r  the barr ier ,  the algo- 
r i t hm does no t  f ind  the straight  l ine.  Ind i rec t  paths of 
the k ind  i l lustrated in Fig. 15 A are ins tead  genera ted ,  

FIGURE 15. For de- 
tours to be found, syn- 
aptic resistances in the 
vicinity of the barrier 
must be set to the un- 
modified value. An un- 
desirable consequence 
shown in A is that 
straight paths parallel 
to the barrier that go 
through the region of 
very high resistance 
synapses are excluded, 
even though they are 
kinematically possible. 
In the text, a method 
of filling in the sc- 
otoma is proposed that 
involves the recruit- 
ment of place cells that 
were previously silent 
in the environment. 
The paths in B show 
that the solution is sat- 
isfactory. 

even t h o u g h  there  is no  mechan ica l  h i n d r a n c e  to fol- 

lowing the straight  l ine.  
An in te res t ing  way to fix the defect  is to recru i t  previ- 

ously si lent  cells. It is agreed  that  a large fract ion of 
place cells have no  f i r ing field in any given envi ron-  

men t ;  est imates range  f rom ~ 8 0 %  ( T h o m s o n  and  Best, 
1989) down to ~ 5 0 %  (Muller  a n d  Kubie,  1987; Qu i rk  
et al., 1992). W h e n  the e n v i r o n m e n t  is changed ,  previ- 

ously si lent  cells may acqui re  f i r ing fields (Muller  and  
Kubie,  1987; Bostock et al., 1991). 

For  the scotoma to be "filled in," it is first necessary 
that  previously si lent  cells develop f i r ing fields in  the vi- 
cinity of the barrier.  Someth ing  similar to the suggested 

process was seen for a single place cell by Mul le r  a n d  
Kubie  (1987). This cell had  a small f i r ing field n e a r  the 
cyl inder  wall. W h e n  a bar r ie r  was pu t  in to  the field, the 
cell be ga n  to fire over a m u c h  larger  area, all a r o u n d  
the barr ier .  This  is no t  precisely what  is r equ i r ed  for re- 
moving  the scotoma,  b u t  it shows that  the ba r r i e r  can 
be associated with increased  as well as decreased firing. 

Assuming  that  new fields develop in the vicinity of 
the barr ier ,  the H e b b i a n  modi f ica t ion  process will 
come in to  play if the rat explores  n e a r  the barr ier ,  a n d  
distances in the erstwhile sco toma are now rep re sen t ed  
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by the strengths of  a new set of  synapses. In this reorga- 
nized representation, connections between the recruited 
cells straighten out  paths that are expected  to be paral- 
lel to the barrier,  as shown in Fig. 15 B. Thus, solving 
the de tour  p rob lem with a graph model  does not  ne- 
cessitate the generat ion of  nonopt imal  paths. 

Problem 3: Finding Shortcuts when They Become Available 

We now show how the graph scheme can generate  
shortcut  paths through a new hole in a previously solid 
barrier.  In this case, the barr ier  is imagined to have 
been  in the same place dur ing the animal 's  entire ex- 
per ience in the environment ,  so that there are place 
cells with fields everywhere in the environment ,  includ- 
ing near  the barrier. In general,  cells whose fields are 
near  each other  in 2-D space but  are separated by the 
barr ier  will be connec ted  by weak synapses because 
long times are required to get f rom the region of  one 
field to the region of  the other. 

If  a hole big enough  for the rat to get through is 
made  in the barr ier  and  the rat explores the hole, cells 
with fields separated by jus t  the thickness of  the barr ier  
will begin to fire at the same time. For two such cells 
that happen  to be connected, the synapse will strengthen. 
With no additional assumptions, paths that pass through 
the hole are selected as optimal  paths in synaptic resis- 
tance space. In this way, the shortcut  p rob lem is solved, 
as shown in Fig. 16, so that the graph representat ion 
qualifies as a map  on these grounds as well. The  nature 
of  the p roposed  solution to the shortcut  p rob lem is 
contrasted with other possible solutions in the Discussion. 

Reconstructing the Environment from Information Stored in 
the Recurrent Synapses 

According to the three criteria stated in the Introduc- 
tion, the p roposed  representat ion of  the env i ronment  
in CA3 is a map,  since it was demonst ra ted  that the in- 
format ion  stored in the synapses permits calculations 
of  geodesics, including detours and shortcuts. We now 
ask if the representat ion is a map  in even a s tronger  
sense: Does the network in some way contain an image 
of  the environment? We in no sense wish to imply that 
the nervous system "views" such an image, but  only that 
the information to reconstruct  an image of the envi- 
r o n m e n t  is present.  

In effect, the stored information consists of  a list of  
places and, for each place, a list of  distances to other  
places. Tha t  is, each place cell is associated with a posi- 
tion in the environment ,  and  the synapses made  by 
each cell encode  the distance of  the cell's field to the 
field of  each postsynaptic cell. We now ask if the rela- 
tive positions of  the firing fields can be reconstructed 
f rom the given information.  It should be stressed that 
no information whatsoever is available about  the coor- 
dinates of  firing fields in any 2-D coordinate  system; 

Shortcuts 

FIGURe 16. A demon- 
stration that the graph- 
searching algorithm can 
find optimal paths 
through a hole in a 
preexisting barrier. The 
hole is offset slightly to 
the right from the 
straight line that con- 
nects the start (S) and 
goal (G).  The best 
available paths bend 
in the expected way. 

only distances are known. 4 Reconstructions have been  
a t t empted  only for the linear resistance-distance func- 
tion, in which the synaptic resistance is propor t ional  to 
2-D distance. We imagine that reconstructions made  
with o ther  resistance-distance functions could not  be 
both  self-consistent and  planar.  Reconstructions are 
made  using only local distances, which corresponds to 
assuming that the radius of  the resistance-distance 
function is small compared  with the largest dimension 
of  the region that contains the points. We know, how- 
ever, that reconstruct ion works regardless of  restric- 
tions put  on the distance between point  pairs. 

One  way of  testing if the distances uniquely deter- 
mine relative positions is to ask whether  the structure 
fo rmed  by connect ing field locations to each other  is 
rigid, even though all that a given connect ion specifies 
is the distance between a pair of  field locations. The  
concept  of  rigidity is explained in Fig. 17. In Fig. 17 A, 
distances are known for field pairs AB, BC, and AC, so 
that the relative positions of  the fields are fixed. On the 
o ther  hand,  since the only given distance to field D is 
f rom field A, field D can be located anywhere on the 
circle of  radius AD drawn a round  A. The  quadrilateral 
in Fig. 17 B also is not  rigid, since it can be de fo rmed  
by, for example,  moving both  fields A and B equal dis- 
tances in the same direction. By contrast, the shape in 
Fig. 17 C is rigid; it cannot  be de fo rmed  while respect- 
ing all the distances. 

To de termine  if a network is associated with a rigid 
format ion of  firing fields, an exhaustive search is made  
for a small rigid formation.  If  one  is found,  it is used as 
a "seed." Tha t  is, searches are made  to de te rmine  if 

4An equivalent problem is to determine the approximate shape of 
the United States from a list of cities, where each city has an associ- 
ated list of distances to other cities. It is intuitively clear that by con- 
structing triangles it is possible to recover the unique layout of the 
cities relative to each other. The reconstruction turns out to be possi- 
ble even if only small fractions of all the distances are available, and 
even if distances are known only over a small fraction of the largest 
dimension of the US. 
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FIGURE 17. Rigidity of sets 
of points separated by known 
distances. It is possible to re- 
construct the arrangement of 
a set of points in 2-D space if 
enough information is avail- 
able about the distances that 
separate pairs of points; once 
enough distances are known, 
the relative positions of all 
points are fixed and the struc- 
ture is said to be rigid. In A, it 
is imagined that the distances 
AB, BC, and ACare all known. 
In this case, nodes A, B, and C 
will in general lie on a trian- 
gle, which is a rigid structure 
in that no point can be inde- 
pendently moved without vio- 
lating what is known about 
the distances. In contrast, if 
only the distance AD to a 
fourth point is known, D may 
lie anywhere on the circle 
centered on A with no con- 
flicts. (B) An example of a 
nonrigid structure. The quad- 
rilateral can be deformed as 
shown without changing any 
of the distances. (C) If the di- 
agonals are added to the 
quadrilateral, the structure 
becomes rigid. The process of 
determining whether there is 
enough distance information 
to Fix the relative positions of 
a set of points starts with a 
search for a small rigid object. 
(See text for additional de- 
scription.) 

cells c o n n e c t e d  to cells in the  seed  a re  also r ig idly  at- 
t a c h e d  to the  seed.  I f  t h e r e  a re  such cells, the  same  
search  is m a d e  on  the  a u g m e n t e d  seed  a n d  the  seed  
grows. I f  it  grows to i nc lude  all cells, the  f o r m a t i o n  is 
known  to be  r igid,  a n d  the  relat ive pos i t ions  o f  f ields 
a re  u n i q u e l y  d e t e r m i n e d .  We first  show tha t  r econ-  
s t ruc t ion  is poss ib le  a n d  ask how m u c h  connec t iv i ty  is 
necessary  for  ne tworks  o f  d i f f e ren t  sizes to be  r igid.  

A n  o r ig ina l  2-D set o f  400 poin ts ,  each  c o n n e c t e d  to 
20 n e a r b y  poin ts ,  is shown in Fig. 18 A. Fo r  conve- 
n ience ,  the  po in t s  a re  p u t  in to  the  c o o r d i n a t e  system 
given on  the  axes. T h e  r e c o n s t r u c t e d  set o f  po in t s  is 
shown in Fig. 18 B. By inspec t ion ,  i t  is c lea r  tha t  the  re- 
cons t ruc t i on  o f  relat ive pos i t ions  is exact ,  a l t h o u g h  the  
po in t s  a re  t rans la ted ,  ro ta t ed ,  a n d  m i r r o r  re f lec ted .  
Since  the  c o o r d i n a t e s  a re  on ly  a conven i ence ,  these  dif- 

f e r ences  have no  d e e p  s ignif icance.  In  fact, t r ans la t ion ,  
ro t a t ion ,  a n d  re f l ec t ion  are  ca l led  r ig id  t r a n s fo rma t ions  
s ince  they  p rese rve  the  s t ruc tu re  o f  objects .  F r o m  the  
abi l i ty  to r e c o n s t r u c t  the  e n v i r o n m e n t ,  we c o n c l u d e  
tha t  the  synapt ic  weight  r e p r e s e n t a t i o n  con ta ins  a "la- 
tent"  image  o f  the  e n v i r o n m e n t  which  can  be  m a d e  ex- 
pl ic i t  ( "deve loped" )  by the  s ta ted  r e c o n s t r u c t i o n  pro-  
cess. I t  is u n c l e a r  if  the  ra t  has access to this a spec t  o f  
the  r e p r e s e n t a t i o n ,  b u t  at  least  it  is there .  

We  c o n c l u d e  Results  by showing  tha t  the  connec t iv i ty  
o f  the  CA3 ne tw ork  is so g rea t  as to vir tual ly  ensu re  tha t  
an  equ iva len t  g r a p h  is r igid.  In  this a r g u m e n t ,  we ig- 
n o r e  the  d i r ec t iona l i t y  o f  c o n n e c t i o n s  s ince  d i s t ance  in 
the  p l a n e  is spec i f i ed  j u s t  as well by one-way as by two- 
way connec t ions .  

A n  u n d i r e c t e d  g r a p h  o f  n n o d e s  is said to be  con-  
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FIGURE 18. Reconstruction of a set of 
points from distance information. (A) The 
locations of the original set of 400 points 
are shown in an arbitrarily chosen coordi- 
nate system. The distance from each point 
to 20 other nearby points is the only infor- 
mation provided for the construction pro- 
cess. (B) The outcome of reconstruction is 
shown by plotting the calculated locations 
in the same coordinate system. Note that 
the structure of the original is preserved, al- 
though the composite object has trans- 
lated, rotated, and undergone a mirror 
transformation. 

nected  if it is possible to walk f rom any node  to any 
o ther  node  along edges of  the graph. More generally, a 
graph is called k-connected (k is a positive integer) if 
the graph remains connec ted  after removing any k - 1  
of  its nodes. According to Menger ' s  theorem,  a graph is 
k-connected if and only if any pair  of  its nodes can be 
connec ted  by k different paths that share only the end- 
points as nodes (Harary, 1969). It is a necessary but  not  
sufficient condit ion that every node  must  be of  at least 
degree  k (have at least k edges) for a graph to be k con- 
nected. 

A key result in graph theory is that the probability 
that  a randomly chosen, undirected graph with n nodes 
and  m = n(c + log n)/2 edges is connec ted  approaches  
e x p [ - e x p ( - c ) ] ,  where c is a constant  and  n ap- 
proaches  infinity (Erdos and Renyi, 1959); some nu- 
merical values are given in Bollobas and Thomason  
(1985). Specifically, undirected graphs with 250,000 
nodes  are connec ted  with probabili ty of  >0.99 if c = 5. 
The  n u m b e r  of  edges in such a graph is ~2,179,000, so 
that the required average divergence (edges /nodes)  is 
~8.72.  

Once the graph is connec ted  (i.e., 1 connected) ,  
connectivity increases rapidly as additional edges are 
added. A randomly chosen graph with n nodes  and 
~ n [ l o g  n + k log(log n ) ] / 2  edges is almost  certain to 
be k connected.  If  k is 6 (see below), a graph with 
250,000 nodes  is almost  certain to be k connec ted  when 
the average divergence is ~27.5.  In fact, a r andom 
graph is almost  certain to be k connec ted  as soon as ev- 
ery node  has k connections,  even though this condit ion 
is not  sufficient for all graphs (see above).  

In our  model ,  the approach  to k connectivity occurs 
even more  rapidly than for the completely r andom 
graph. This is because we construct  our  graphs such 
that  each node  is connec ted  to k other  randomly con- 
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nected nodes. Thus, the condit ion stated above for k 
connectivity is automatically satisfied. In fact, even 
though the graph contains only m = kn edges, the 
probabili ty that it is k connec ted  approaches  1 very 
quickly as n gets larger (Fenner  and Frieze, 1982). 

The  significance of  the considerations about  k con- 
nectivity comes f rom a result of  Lovasz and Yemini 
(1982), who showed that every 6-connected graph 
whose edges represent  (generic) edges in the plane 
must  be rigid. In the present  situation, with n = 
250,000, m = pn 2, and the connect ion probabili ty P = 
0.02 (Miles and Wong, 1986), the n u m b e r  of  edges is 
enormously  greater  than 6n. In fact, with P = 0.02, a 
rigid map  will be induced with as few as ~300  pyrami- 
dal cells; the lower bound  for the n u m b e r  of  cells to en- 
sure rigidity is a very small fraction of  the n u m b e r  of  py- 
ramidal  cells�9 This is impor tan t  because the silent cell 
p h e n o m e n o n  lowers the effective n u m b e r  of  place cells 
in a given env i ronment  to between 10 and  50% of  the 
n u m b e r  of  pyramidal  cells (Thompson  and Best, 1989; 
Muller and Kubie, 1987). Thus, the network can store 
an image of the env i ronment  even if a more  realistic es- 
t imate of  the n u m b e r  of  place cells in the representa-  
tion is used. 

D I S C U S S I O N  

A central feature of  the graph theory of cognitive map- 
ping is that  the strength of  LTP-modifiable synapses be- 
tween pairs of  place cells encodes the 2-D distance be- 
tween the centers of  their  firing fields (Muller et al., 
1991). The possibility of  encoding distances in 2-D 
space in a straightforward way is attractive for a n u m b e r  
of  reasons. For example,  it provides a role for place 
cells beyond signaling the current  location of  the rat, 
and it give rationales for why place cells should be con- 



nected to each other  at all, and why the connections 
should be LTP modifiable. 

The t reatment  in Results deals only with a single envi- 
ronment .  In a fixed environment,  each synapse be- 
tween a pair of  place cells encodes exactly one distance 
and nothing else. The supposition that a synapse repre- 
sents a single atomic fact stands in great contrast to the 
more usual idea that the strength of  a synapse is mean- 
ingful only in the context  of the strengths of a large 
number  synapses (see, for example, Kohonen,  1984). 
For most of  the Discussion, considerations are re- 
stricted to a single environment,  but  at the end atten- 
tion is paid to how multiple environments can be repre- 
sented without destructive interference. 

Encoding Distance in Single Synapses 

Before dealing with properties of  place cell networks, it 
is important  to make explicit some difficulties in pre- 
cisely encoding distance as synaptic resistance. First, an 
unambiguous encoding requires the rat to spend equal 
times in all parts of the apparatus. If, as is really the 
case, dwell time is nonuniform,  Hebbian synapses will 
represent  where the rat actually went as well as the dis- 
tance between field centers. Second, firing fields are as- 
sumed to differ only according to location. This is em- 
phatically untrue: Fields differ f rom each other  in 
terms of size and peak rate. For both reasons, variations 
in synaptic strength are expected even for field pairs 
whose centers are equal distances apart. 

We have not  yet investigated how such variations af- 
fect the quality of shortest paths. One possibility is that 
graph searching can yield good paths even though syn- 
aptic strength depends on individual place cell proper- 
ties and the behavioral proclivities of  the rat. This possi- 
bility arises because the distance between every pair of 
points in the environment  is very likely represented by 
many individual synapses. The searching process will 
tend to include the lowest resistance synapse from the 
set of synapses that represents each pair of points, 
thereby reducing the effects of the variance. Below, we 
consider a different solution, in which the network ac- 
tively minimizes variations of synaptic strength because 
of  factors other  than distance. 

Another  difficulty in the proposed encoding has to 
do with field shape. If fields are not  radially symmetric, 
the notion of distance itself becomes complicated. For 
example, in a rectangular or square apparatus, a firing 
field may be linear and run along almost the entire 
length of the wall (Muller et al., 1987). Given such 
shapes, it may be more appropriate to think of synaptic 
strength as encoding the degree of overlap of field 
pairs, rather  than distance. We have not  yet tried to ob- 
tain paths from a network in which weights are as- 
signed according to overlap instead of distance. 

Storing a Representation of the Environment in a Recurrent 
Network of CA3 Place Cells 

In the Introduction,  we proposed to call a navigational 
system map-like if it permit ted solutions to three short- 
est-path problems. The central finding in this paper  is 
that a network of  place cells strongly connected by syn- 
apses whose resistances encode distance satisfies the 
proposal. To build such a network, it is necessary that 
the place cell fields cover the environment  and that the 
rat explores the whole environment  so that synaptic 
weights can be set according to the temporal  overlap of  
firing of connected cell pairs. The  rat must visit all parts 
of the environment,  but  it need not  take all possible 
paths. An important  feature of the scheme is that learn- 
ing is unsupervised; it takes place during exploration. 

We began the Results with numerical arguments that 
the CA3 ~ CA3 network is strongly connected.  A major 
idea at this level is that the strongly connected network 
has an essential isomorphism to 2-D space: It is possible 
to get from any cell in the network to any other  cell just  
as it is possible to get to any point  in 2-D space from any 
other  point. We also pointed out that every path in 
neural space (sequence of  cell ~ synapse ---> cell ---> syn- 
apse, etc.) corresponds to a path in 2-D space, and that 
the number  of  connections is sufficient to represent  
the environment  with high fidelity. 

We then investigated the kinds of  paths that such a 
network makes possible to find in unobstructed space. 
We found that the best paths in 2-D space associated 
with best paths in neural space approached straight 
line segments as the number  of edges per node (diver- 
gence) of  the network increased. The path quality was 
shown also to depend  on the exact relationship be- 
tween resistance and distance, although each of  a selec- 
tion of different relationships yielded rather good results. 

Although not  proved, we believe that straight line so- 
lutions in 2-D space are found only when the resis- 
tance-distance relationship is linear. If the relationship 
is nonlinear,  the length of the best path is greater than 
the length of  the straight line segment from start to 
goal, and the system is non-Euclidean. By way of specu- 
lation, we note that changes in the represented dis- 
tance between two points in 2-D space can occur if the 
resistance-distance function is altered. This provides a 
way of modifying paths according to non-spatial factors, 
and is a way of introducing motivational concepts such 
as attraction or avoidance into the scheme. 

In our  view, the viability of  the graph approach was 
strongly bolstered by the ease with which the outcome 
of barrier experiments could be incorporated to gener- 
ate solutions to the detour  problem, the second of the 
three mapping problems. Muller and Kubie (1987) 
showed that place cell firing was generally suppressed 
when a barrier was inserted to bisect a firing field. We 
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now interpre t  the empirical  result as mean ing  that  cells 
with fields in the vicinity of  the barr ier  are effectively 
removed  f rom the network: I f  they cannot  fire, they 
cannot  influence the activity of  o ther  cells. The  barr ier  
effect has an immedia te  translation into the realm of  
synaptic weights: I f  the output  weights of  cells with 
fields in the vicinity of  the barr ier  are set to the unmod-  
ified level, such cells are effectively removed f rom the 
network. When  this is done,  the graph-searching algo- 
r i thm immediately finds near-optimal  paths, with no 
other  alterations in the network. By taking into account  
the existence of  cells whose fields are enhanced  by the 
barrier,  it was shown that the scotoma caused by setting 
synaptic weights to zero could be filled in, so that the 
new set of  weights accurately represents  the al tered to- 
pography  of  the environment .  

We also showed that the graph approach  provides a 
natural  solution to the third mapp ing  problem,  that of  
finding shortcuts. Behavioral work predicts that the rat  
will reexplore  the por t ion of  an env i ronment  in which 
a change is detected (Poucet  et al., 1986). In the 
present  case, this means  that the rat will go to the vicin- 
ity of  a gap that is made  in a preexisting barrier. When  
the rat is near  the gap, a synapse that connects  a cell 
pair whose fields are on opposite sides of  the existing 
barr ier  should s t rengthen when the head  enters the 
gap because the two cells can now fire together  in time. 

Does this mechanism for solving the shortcut  prob- 
lem involve cognitive mapping? If  cognitive mapp ing  
means direct use of  geometr ic  knowledge of  the envi- 
ronment ,  the answer must  be negative; the rat  does not  
"know" before it approaches  the gap that it is a short- 
cut. Note,  however, that since the rat would be ex- 
pected  to walk up to the gap to reexplore  and then to 
go through,  one imagines that  the behavior  would not  
appea r  to be very different than if insight learning us- 
ing global informat ion about  the env i ronment  were in- 
volved. Based on our  at tempts to date, it seems to be a 
very difficult p rob lem to design a behavioral experi- 
men t  that can distinguish between a topological and 
exploratory explanat ion of  shortcut  behavior  on the 
one hand  and  a "true" mapp ing  explanat ion on the 
other.  

Two additional points in the Results should be reca- 
pitulated. First, by analyzing paths in environments  
with nonconvex  boundaries ,  it was found  that increas- 
ing field size without limit would generate  paths that 
more  seriously encroach on forbidden regions. Since 
decreasing field size without limit will eventually ex- 
haust the ability of  a fixed n u m b e r  of  synapses to repre- 
sent the distance between all position pairs, it seems 
that  there is an opt imal  field size, whose scale turns out  
to be about  the size of  the rat. 

The  final demonst ra t ion  bears directly on the ques- 
tion of  how closely the strongly connec ted  network of  

CA3 place cells approximates  a map.  We showed that 
the shape of the env i ronment  can be reconstructed 
f rom distance informat ion stored in CA3 ~ CA3 syn- 
apses, so that the network contains an image of  the en- 
vironment .  It  is unknown if the animal has access to 
such global information,  jus t  as it is unknown if neural  
machinery exists to extract opt imal  paths. Nevertheless, 
it is encouraging that  aspects of  the overall structure of  
the env i ronment  can be represented  using only local 
information.  

As so far developed, the graph theory treats only the 
CA3 recurrent  network; it ignores the rest of  A m m o n ' s  
Horn ,  the dentate gyrus, entorhinal  cortex, and the 
subiculum, all of  which process positional signals. It 
also ignores the head  direction system whose activity is 
seen in the postsubiculum and anterior thalamus (Taube 
et al., 1990a, b; Taube,  1995). It is encouraging that the 
core of  a viable theory can appeal  to such a restricted 
part  of  the available machinery,  but  it is evident that 
the focus on CA3 means  that  the theory is incomplete.  
Also indicative of  incompleteness  is the inattention to 
correlations between the behavioral  state of  the rat  and 
the state of  the h ippocampal  EEG. Some speculation in 
this regard is made  below. 

Although incomplete,  the graph scheme is also parsi- 
monious  and specific. We assume only the existence of 
CA3 place cells, the anatomy of the CA3 ---) CA3 recur- 
rent  connections,  and the LTP-modifiability of  the con- 
nections. The  first two claims are well-established facts 
about  the h ippocampus.  The  third is compat ible  with 
the limited evidence so far available and is also ex- 
pected  by analogy with the CA3 ~ CA1 synapses that  
are known to be LTP-modifiable. The  path  results de- 
pend  only on the simultaneous existence of  the three 
assumed propert ies  in a single region of  the nervous 
system. The  scheme is also conservative in the sense 
that the stored informat ion is strictly associative, such 
that associative strength falls off with distance between 
the firing fields of  connec ted  place cell pairs. Hebbian  
synapses are eminent ly  suited for storing this sort of  in- 
formation.  

A biophysical question worth raising is whether  CA3 --~ 
CA3 synapses show long-term depression (LTD) as well 
as LTP (see, for example,  Levy et al., 1990; Stanton and 
Sejnowski, 1989). Unquestionably,  uncompensa ted  
LTP will eventually cause synaptic strength to saturate 
(i.e., minimize synaptic resistance). It is therefore  criti- 
cal whether  LTD causes synaptic resistance to increase 
via a process independen t  of  LTP, or whether  LTD 
truly reverses the effects of  LTP. If  LTD operates via a 
different mechanism,  the saturation p rob lem still ex- 
ists. If, instead, LTD reverses LTP, synaptic resistance 
can reflect the ongoing relationship of  the activity of  
the pre- and postsynaptic e lements  and not  simply the 
integral of  the activities over u n b o u n d e d  time intervals. 
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For the rest of  the Discussion, we assume that LTP and 
LTD are names for processes running  in opposite di- 
rections, a l though the evidence is by no means  conclu- 
sive. This assumption is implicit in our  scheme of  how 
the operat ion of  the network could reduce the depen-  
dence of  synaptic strength on behavior, thereby mak- 
ing the p roposed  representat ion more  map-like by a 
kind of  renormalizat ion.  

How an Environmental Representation Might Be Built 

The positional firing distributions of  place cells are sta- 
ble when a rat is put  into a certain familiar apparatus.  
The  same cells in general  have markedly different dis- 
tributions when recorded  in a second (or third) famil- 
iar apparatus,  but, again, the distributions are stable. In 
particular, if recordings are made  alternately in the two 
apparatuses, the positional firing of  individual cells reli- 
ably j umps  f rom one distribution to the o ther  (Bostock 
et al., 1991). These results have two fundamenta l  impli- 
cations. First, they are possible only if there is some 
neural  memory  of  each of  the familiar apparatuses; 
otherwise, fields could not  be stable in each environ- 
men t  but  would be mutable  between environments.  
The  time scale of  this form of m em ory  is on the order  
of  months.  Second, there must  exist a recognit ion pro- 
cess whereby the representat ion of a familiar environ- 
men t  is activated or recalled only when the rat is in the 
appropr ia te  environment .  This recall process, which is 
imagined to be similar to the sort of  pat tern recogni- 
tion proposed  by several authors (e.g., McNaughton 
and Morris, 1987; Rolls, 1989) is very fast. Informal  tests 
show us that discharge begins as the rat is lowered into 
the firing field of  a target cell, 20 cm or more  above the 
ground (Kubie and Muller, unpubl ished results). Cor- 
respondingly, no discharge is seen if the rat is lowered 
onto the floor outside the firing field. (A corollary of  
these results is that firing fields have 3-D extents.) 

We now ask what happens  if the recognit ion process 
does not  find a match for a familiar environment .  Pre- 
sumably, a new representat ion must  be genera ted for 
the unfamiliar environment ,  after which the represen- 
tation will be stable and capable of  reactivation. In the 
context  of  the graph theory, we imagine that the new 
representat ion is set up as follows. 

(a) A certain fraction of  the pyramidal cells is allo- 
cated to be place cells in the new environment .  In the 
simplest case, the fraction is the same for  all environ- 
ments,  regardless of  the complexity of  the env i ronment  
or  the task. It is also imagined that the cells are ran- 
domly selected with rep lacement  f rom among  the pyra- 
midal cells; a given cell may be a place cell in many en- 
vironments.  We refer  to the selected cells as the active 
subset of  pyramidal cells. The  notion that the active 
subset is only a fraction of  the pyramidal cell popula- 
tion comes f rom the "silent place cell" p h e n o m e n o n  

(Kubie and Ranck, 1983; Muller and Kubie, 1987; Thomp-  
son and Best, 1990). It is commonly  found  that units 
that  are robust  place cells in one env i ronment  are virtu- 
ally inactive in a second. In addition, the inactivity is 
stable for an environment .  

(b) Up to now, only three studies on the initiation of  
a new representat ion have been  published (Hill, 1978; 
Bostock et al., 1991; Wilson and McNaughton,  1993). 
These are in ag reement  that the stationary firing pat- 
terns of  individual place cells are rapidly established. In 
the work of  Hill and of  Wilson and McNaughton,  sta- 
tionary firing began on the first pass of  the rat through 
the field; Bostock et al. (1991; Plate 3), saw an interval 
of  ~ 3  min in which the cell was silent in the new envi- 
ronment ,  after which the new positional firing pat tern 
was stable. We therefore  assume that place cells are 
quickly assigned to fire in certain places. 

(c) Accordingly, the creation of  the graph takes place 
after reliable location-specific firing has begun.  Simula- 
tions of  how graph weights are established suggest that 
it takes several minutes before they approach  ideal val- 
ues (Muller et al., 1991). In our  view and in ag reement  
with the criticisms of  Burgess et al. (1994), it would be 
preferable  for the map  to be rapidly generated.  It 
would also be preferable  if the graph weights were less 
sensitive to the history of  the rat 's behavior. 

(d) To speed up format ion of  the graph and to make 
graph weights more  purely geometric,  it seems neces- 
sary to imagine a cooperative mechanism that operates 
at the level of  the network instead of individual syn- 
apses. Such large-scale mechanisms would reflect pro- 
cesses occurr ing synchronously in many  cells and there- 
fore should be detectable by recording the hippocam- 
pal EEG. 

The  two most  striking EEG p h e n o m e n a  are theta and 
"sharp waves." The  theta rhythm consists of  5-9 Hz 
sine-like waves that  are seen when the rat locomotes.  
Sharp waves occur  during an EEG state called large ir- 
regular activity and are seen when the rat is quietly alert 
or engaged in repetitive activities such as chewing or 
grooming  (Vanderwolf, 1969). We will consider a possi- 
ble role for theta rhythm below. 

In ag reement  with Buzsaki (1989), we assume that 
sharp waves are a network-level mechanism that could 
serve to modify synaptic weights. Sharp waves reflect 
the nearly simultaneous activation of  clusters of  pyrami- 
dal cells (Buzsaki, 1992). In this view, sharp waves are 
nonspatial  processes that accelerate graph format ion 
and increase conformance  of  graph weights to the ge- 
ometry  of  the environment .  In other  words, it is our  
guess that sharp waves, in conjunct ion with constraints 
imposed by 2-D space, can specify the required renor- 
malization of  weights. 

(e) As stated in the Introduct ion,  grave problems oc- 
cur if synapses get so strong that the presynaptic cell 
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can cause 1:1 discharge of the postsynaptic cell. On the 
other  hand, if the presynaptic cell can never strongly 
participate in firing the postsynaptic cell, it is unclear 
how the strength of  the synapse can be read in the pro- 
cess of  reading the map. There  are several ways in 
which these two very different requirements  for synap- 
tic strength can both  be satisfied. For example, Traub 
et al. (1992) suggested that weights are set when the 
hippocampal  EEG is in the theta state and accessed 
when the EEG shows large irregular activity. 

The  foregoing scenario outlines how a graph could 
come to represent  the environment,  how the represen- 
tation might  be formed rapidly, and how its numerical  
features could be independen t  of  the time sequence of  
positions occupied by the rat. We now consider how 
the representat ion could be read and used. 

Using a Graph to Get Therefrom Here 

It is perhaps tautological to say that a map-like repre- 
sentation can be used to find paths through 2-D space 
only if the endpoints  of  the path are themselves repre- 
sented. Since every path must start at the rat's current  
location, the discharge of  place cells provides a repre- 
sentation of all path origins. In contrast, it is not  clear 
how path terminations (or goals) are represented,  nor  
whether  the representat ion exists within Ammon's  
horn  or associated areas. The lack of  any obvious goal- 
related discharge in Ammon's  horn  led Burgess et al. 
(1994) to propose that goal cells exist in the subiculum. 
A very recent  repor t  by Gothard et al. (1994) suggests 
that activity of  the sort to be expected for representa- 
tion of goals is detectable in hippocampal  pyramidal 
cells, but  there may be other  interpretations of  the fir- 
ing correlates found by Gothard et al. 

In the absence of strong empirical evidence about  
goal representation,  and in keeping with our  focus on 
CA3, we will assume that path terminations are en- 
coded as the discharge of  CA3 pyramidal cells: When 
the goal is chosen, units associated with the goal loca- 
tion begin to discharge. As an aside, it is interesting to 
consider the appearance of  the time-averaged posi- 
tional discharge pattern of  such units. If goal units are 
variants of  place cells, they would look like "noisy" 
place cells; discharge would be seen any place in the 
apparatus from which the rat went directly to the re- 
gion of  the cell's firing field. It is also possible to imag- 
ine that goal cells have no ordinary firing field, so that 
they would appear  to discharge at a relatively low (time- 
averaged) rate over the whole surface of the apparatus. 
In ei ther case, goal-related firing would be put  in regis- 
ter by shifting spikes to be associated with later posi- 
tions, as seen by Gothard et al. (1994). That  is, goal- 
related discharge would precede the rat's arrival at the 
goal by a time interval de termined  by the distance trav- 
eled and the running speed. 

Returning to the issue of  using the graph, we take as 
given the activity of  cells associated with the rat's cur- 
rent  location, the activity of  cells associated with the 
goal location, and the connectivity and synaptic weights 
in the CA3 --) CA3 recurrent  network. It is a relatively 
easy task to imagine a way in which a rat could follow an 
already selected path. It is more  difficult to describe a 
neural process by which the path is selected. Accord- 
ingly, our  speculations on how to accomplish the first 
task are more  specific than for the second. 

In regard to following a path, a critical feature of  a 
graph representat ion is that a best path consists of a dis- 
crete sequence of  place cells; presumably, following a 
best path consists of  moving along the sequence of  field 
locations that correspond to the cell sequence. We 
therefore suggest that the discrete nature of  the cell se- 
quence is respected such that the rat moves from cell to 
cell in neural space (and from field to field in 2-D 
space) in synchrony with the theta rhythm; one step in 
the cell sequence is executed for each theta cycle. Note 
that this requires only that the distance from field cen- 
ter to field center  is covered in a them cycle; it does not  
require that the firing fields of  the cells cover nonover- 
lapping regions. To the contrary, if field width is great 
enough that it takes several theta cycles for  the rat to 
traverse the width (O'Keefe and Recce, 1993), overlap 
of  firing for cells in the sequence is expected. 

The supposition that movement  along the cell se- 
quence is tied to a cyclic process provides a great reduc- 
tion in the difficulty of  understanding how the graph is 
used: Since the putative navigational system returns to 
the same state in each theta cycle except  for progress 
along the path, the path-following problem is reduced 
to the question of  how a step in the correct  direction is 
made from the current  position. It is only at this point  
that we imagine that the compass-like directional sys- 
tem revealed by head direction cells (Taube et al., 
1990a, b; Taube,  1995) comes into play. Our  working 
hypothesis is that the fundamental  job  of the direc- 
tional system is to put  paths found by the omnidirec- 
tional positional system into register with the environ- 
ment.  In support  of  this content ion is the almost ideal 
separation of the hippocampal  positional signal f rom 
the postsubicular and thalamic directional signals. In 
addition, preliminary evidence suggests that the direc- 
tional system can be destroyed while leaving place cell 
firing largely intact (Dudchenko et al., 1995). Similarly, 
it appears that the hippocampal  positional system can 
be destroyed without seriously affecting the directional 
system (Golob and Taube, 1995). A brief  description of  
how the directional system could allow paths to be put  
into register with the environment  is given by Muller et 
al. (1996). 

A major difficulty associated with tying movement  to 
theta cycles arises if all fields are the same size. A conse- 
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quence is that theta frequency should increase when 
running speed is faster; under  the assumption of  equal 
size fields, the sequence of  positions can be traversed 
more rapidly only if the sequence of  cells is followed 
more  rapidly. O'Keefe and Recce (1993) proposed the 
same relationship for different reasons. Whishaw and 
Vanderwolf (1973) found theta frequency was indepen- 
dent  of running speed in a running  wheel. Buzsaki et 
al. (1982) repor ted  some variation in theta frequency 
with running speed not  nearly enough to support  the 
idea that theta is a clock for steps in 2-D space. 

A variation on the notion that theta cycles corre- 
spond to steps in a list of  cells is more  realistic in the 
sense that it recognizes that firing fields have different 
sizes. The notion is that when the rat runs faster, its 
path is represented by cells with larger fields. In this 
variant, there is no need  for large changes in theta fre- 
quency with changes in running speed. 

Returning to the general issue of  path selection, it is 
hard to know without simulation if any given scheme is 
realistic. We note, however, that it is possible to imag- 
ine neural embodiments  of  graph-searching algo- 
rithms, and that certain algorithms are particularly suit- 
able for execution by a highly parallel array of  synchro- 
nized coequal processors. Ford's algorithm (Even, 
1979) falls into this class and is quite interesting be- 
cause it finds in parallel the distance from a given node 
to all other  nodes. One common feature of shortest 
path algorithms is their reliance on "marking" nodes as 
having already been visited during the search process. 
Short-term potentiat ion is an ideal candidate for mark- 
ing in the CA3 network, since it allows storage of  labile 
information in the same set of  synapses used to repre- 
sent connectivity in the environment,  presumably with- 
out interference. Note that this introduces a third form 
of  memory into our  scheme in addition to the form 
that detects familiar environments and activates their 
representations, and the form that stores distances. 

When is path selection carried out? We agree with 
Schmajuk and Thieme (1992) that path selection may 
be accomplished during immobility. For this to be pos- 
sible, the rat's brain must be able to compute  the rela- 
tive efficiency of  all possible paths from the current  po- 
sition to the goal by searching the postulated map-like 
representat ion of  the environment.  Is there any behav- 
ioral evidence that points to the existence of a path se- 
lection process? Schmajuk and Thieme (1992), follow- 
ing Tolman (1932), discussed the idea that head-scan- 
ning movements at maze choice points are a componen t  
of  a process called "vicarious trial and error" (Tolman, 
1932). Vicarious trial and error  encapsulates the idea 
that paths can be selected by computat ion without the 
need for concurrent  locomotion.  We imagine, again in 
agreement  with Schmajuk, that the process carried out  
during immobility must be fast (and possibly of  low spa- 

tial resolution), whereas a slower, real time process is 
needed  during path execution. 

As a last speculation on using the graph, it is tempt- 
ing to suppose that path searching is accomplished 
during the CA1 sharp waves ment ioned above. CA1 
sharp waves are a p rominent  feature of the large irregu- 
lar activity pattern of  EEG that occurs during immobil- 
ity in the rat. The  ensemble events that cause CA1 
sharp waves, however, are generated in CA3 (Buzsaki et 
al., 1992). 

Storing Multiple Representations in CA3 

This paper  is devoted to the question of  how mapping 
information about  a single environment  can be stored. 
We nevertheless briefly address the essential question 
of  how the same network can be used to store maps of  
several environments. With enough environments, there 
cannot  be enough cells to "cover" each environment  
unless each place cell has several firing fields. The issue 
is therefore whether  many environments can be repre- 
sented without crippling mutual interference. 

In the simple model  presented, each synapse stores 
exactly one fact about  the world, namely, the distance 
between a pair of  points in the immediate environ- 
ment.  If an additional fact (say, the distance between 
another  pair of  points) must be stored in the same syn- 
apse, the encoding is degraded. It is therefore certain 
that interference occurs if each pyramidal cell func- 
tions as a place cell in each environment.  On the other  
hand, it has often been argued that, among other  ad- 
vantages, sparse representations reduce interference 
(Kohonen, 1984; Treves and Rolls, 1992; McNaughton 
and Morris, 1987). Since many individual pyramidal 
cells are place cells in some environments and are si- 
lent in others, the encoding is sparse. We find, how- 
ever, that taking the silent place cell p h e n o m e n o n  into 
account  is insufficient; objectionable interference oc- 
curs when just  two representations are stored in the 
same network if they share a small percentage (<  1%) 
of  the synapses. Thus, the encoding runs into a serious 
difficulty as soon as the problem of  multiple environ- 
ments is broached.  

We are therefore led to present  three speculative 
schemes that show that the 1:1 encoding of  distance as 
synaptic resistance is compatible with the requi rement  
to store maps of two or more  environments.  The first 
scheme is easy to understand,  al though it is not  very 
easily swallowed. Here,  we imagine that the synapses 
used to map a given environment  exist only when the 
rat is in that environment  (or perhaps is thinking about  
the environment) .  The  interference problem is elimi- 
nated because the representations are effectively stored 
in different sets of synapses. This scheme requires the 
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synapses to be made and broken in the time it takes the 
animal to move from one environment  to another.  
Currently, there are no indications that rate constants 
for synapse destruction and formation in the hippo- 
campus are high enough,  but  major variations in the 
number  of  synapses occur in <24 h (Wooley and 
McEwen, 1993, 1994). Spine stem shortening (possibly 
leading to synapse withdrawal) can take place in min- 
utes in honey bee neurons  (Brandon and Coss, 1982), 
bringing the time scale fairly close to what is required. 
A less controversial mechanism to accomplish a similar 
result would be for certain endings to be turned on and 
off  by presynaptic inhibition, but  unfortunately there is 
no evidence for axo-axonic synapses in Ammon's  horn.  

A second scheme for storing multiple environments 
uses constraints imposed by the structure of  2-D space. 
It is possible algorithmically to identify inconsistent syn- 
aptic resistances (encoded distances) if they are inten- 
tionally in t roduced into an otherwise correct  map. We 
imagine that there might be neural means to accom- 
plish this task, so that inappropriate  path segments 
would be removed from consideration by the searching 
algorithm. 

The final scheme takes place cell activity into consid- 
eration. The silent place cell p h e n o m e n o n  suggests 
that pyramidal cells are assigned independent ly  but  
with replacement  to different environments,  so that 
there is a unique active subset for each environment  
(Bostock et al., 1991). From previous arguments, we 
suppose that many cells fire at each location in an envi- 
ronment .  Then,  a unique part  of  the active subset dis- 
charges at each position in the environment.  Under  
these circumstances, cells in the active subset assigned 
to locations near  the rat's current  location would be 
preferentially activated compared  with cells that re- 
ceive connections that were "inappropriately" strength- 
ened  in ano ther  environment.  

In conclusion, we think that the number  of  CA3 
CA3 synapses is so large that many independen t  repre- 
sentations can be supported. The  schemes presented 
above suggest to us that the numbers  are sufficient, 
even given the added constraint of  storing a distance in 
each synapse. 

Comparisons with Other Neural Theories of Navigation 

Recently, several interesting theoretical papers have 
been  published on how hippocampal  place cells, post- 
subicular head direction cells, and units in related 
structures can help account  for the navigational abili- 
ties of rats. The  theories we have in mind are those that 
are strongly tied to a realistic view of  the neural struc- 
tures, their connectivity, and the activity of  their cells 
on  the one  hand, and locomotor  behavior on the 
other.  These include work by Wan et al. (1994a, b), 

Worden (1992), Sharp (1991), O'Keefe's  group (Bur- 
gess et al., 1994), Schmajuk (Schmajuk and Thieme,  
1992; Schmajuk and Blair, 1993a, b), McNaughton et 
al. (1994), and Hether ington and Shapiro (1993). 

Of  the theories cited, the scheme presented here  is 
most closely related to the work of  Hether ington  and 
Shapiro (1993), who are directly concerned  with stor- 
ing mapping information in the CA3 ---) CA3 synapses, 
and to the notions of  Schmajuk and Thieme (1992), 
who focus on storing adjacency information. Our  
model  is quite different f rom the geometric model  of 
Burgess et al. (1994), but  it shares goal cells as ele- 
ments. The  graph theory presented here  also has a 
great deal in common  with the theory of Deutsch 
(1960) and the rather  similar proposal of  Lieblich and 
Arbib (1982), who dealt less with the specific neural im- 
plementat ion of  the navigational system. 

It is worthwhile to expand briefly on a major differ- 
ence between our  theory and that of  Burgess et al. 
(1994). In the work of  Burgess et al. (1994), the firing 
of  individual cells is the essential focus, and the essen- 
tial computat ion is current  location, based on how rap- 
idly each cell discharges. In contrast, in our  work, the 
conjoint firing of  pairs of  cells is the essential focus, 
and the essential computation concerns distance, based 
on the action potential trains of  the pair of  cells. 

Nei ther  view of  the place cell p h e n o m e n o n  is com- 
plete or fully correct. Nevertheless, it is our  content ion 
that the graph theory is superior to the Euclidean the- 
ory, at least in regard to the empirical evidence con- 
cerning directional selectivity of  place ceils. We have 
demonstra ted that individual cells can be omnidirec- 
tional in open fields but  directionally tuned on the 
eight-arm maze (Muller et al., 1994). For graph theory, 
the great differences possible for directional selectivity 
present  no problem: Paths in neural space are always 
unidirectional,  regardless of  the directional selectivity 
of  place cells. In contrast, it is hard to see how a Euclid- 
ian processing system designed to extract absolute posi- 
tion from the conjoint  firing of place cells could work if 
the firing was directional in some environments and 
not  in others, since in one case the active set of  place 
cells would be constant and in the other  case it would 
change dramatically. 

Concluding Remarks 

In our  opinion, graph theory provides a realistic model  
for cognitive mapping and even provides a glimpse of  
what a cognitive map actually might be. Nevertheless, 
the scheme is not  wedded to cognitive mapping (in the 
same way it is not  wedded to directional selectivity). 
Specifically, if CA3 pyramidal cells can fire in conjunc- 
tion with something other  than position (and head di- 
rection in some circumstances), information about  
such a correlate would be stored in CA3 --) CA3 syn- 
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apses. The  i n f o r m a t i o n  would  measure  the dis tance be- 
tween the states associated with rapid  f i r ing in  each of 
the c o n n e c t e d  cells. Presumably,  such i n f o r m a t i o n  

would  p e r m i t  op t imal  paths to be  f o u n d  in  a m o r e  gen-  

eral  p r o b l e m  space t han  2-D space. O u r  view a bou t  
whe the r  the rat h i p p o c a m p u s  is preferent ia l ly  involved 
with space (see Nadel ,  1991) therefore  d e p e n d s  largely 
o n  the ques t ion  of  whe the r  pyramidal  cells can fire in  
nonspa t i a l  modes.  If they can,  (see, for example ,  

E i c h e n b a u m  et al., 1994) cognit ive m a p p i n g  mus t  be 

r ega rded  as a special case of  a more  genera l  type of 

compu ta t ion .  
Finally, there  is the ques t ion  of e x p e r i m e n t a l  predic-  

t ions a n d  test ing of  the model .  A centra l  ques t ion  is 
whe the r  dis tance in the e n v i r o n m e n t  can be e n c o d e d  
as synaptic s t rength.  Interest ingly,  this ques t ion  can be 

a p p r o a c h e d  in h i p p o c a m p a l  slices. In  out l ine ,  one  
would f ind a pair  of  pyramidal  cells such that  one  is pre- 

synaptic to the other.  The  or ig inal  resistance of  the syn- 
apse would  t hen  be measured .  Next, bo th  the pre- and  

postsynaptic cells would  be s t imula ted  by replaying in to  
each the ac t ion  po ten t ia l  t ime series of  two cells simul- 
taneously  r eco rded  f rom a freely mov ing  rat. Finally, 
the resistance of  the synapse would  be remeasured .  
The  g raph  m o d e l  predicts  that  the synaptic resistance 

shou ld  decrease if the fields of  the two s imul taneous ly  

r eco rded  cells overlap, a n d  shou ld  be u n c h a n g e d  or in- 
creased if the fields are far apart.  If the first o rde r  ex- 
p e r i m e n t  were successful, it would  t hen  be possible to 
go on  to character ize  the form of  the resis tance-dis-  
tance func t ion .  
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